Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
World J Clin Cases ; 12(18): 3515-3528, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38983402

RESUMEN

BACKGROUND: Iron deficiency anemia (IDA) is a prevalent nutritional disorder during pregnancy. Clinical studies indicate that incorporating Chinese patent medicines (CPMs) with oral iron (OI) in treating IDA in pregnancy can reduce adverse effects and improve clinical outcomes. Nonetheless, the comparative efficacy of different CPMs remains unclear. AIM: To assess the safety and effectiveness of different CPMs for treating IDA during pregnancy using network meta-analysis. METHODS: We conducted a search for randomized controlled trials (RCTs) that combined CPM and OI for IDA treatment in pregnancy, spanning from 2013 to the present. Data analysis was performed using Rev Man 5.3 and Stata 14.0 on literature that satisfied the quality criteria. RESULTS: The analysis included 45 RCTs, encompassing 4422 pregnant patients with IDA. Six CPMs were examined, including Shengxuebao Mixture, Shengxuening Tablets (SXN), Yiqi Weixue CPMs (YQWX), Jianpi Shengxue CPMs (JPSX), Yiqi Buxue Tablets, and Compound Hongyi Buxue Oral Liquid (FFHY). Findings indicated that FFHY + OI significantly improved the clinical effective rate. SXN + OI was most effective in boosting red blood cells counts and hemoglobin levels. YQWX + OI showed superior results in improving serum ferritin, and SXN + OI was most effective in increasing serum iron levels. JPSX + OI was optimal in reducing adverse pregnancy outcomes, while YQBX + OI effectively minimized adverse events. A cluster analysis suggested that SXN + OI could be the potentially optimal therapeutic regimen for IDA in pregnancy. CONCLUSION: This study demonstrates that the combination of OI with CPMs offers better outcomes than OI alone. Based on clinical efficacy and other measured outcomes, SXN + OI emerges as the most effective treatment modality for improving the health of pregnant patients with IDA.

2.
Front Oncol ; 14: 1387700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903727

RESUMEN

Ovarian mucinous tumors with sarcomatous mural nodules are rare. Sarcomatous nodules have a bad prognosis. Its diagnosis and treatment are controversial.It is still controversial whether malignant mural nodules represent a dedifferentiated form of mucinous tumors or collisional tumors. This is a case report of a 32-year-old female diagnosed with ovarian mucinous tumor recurred as a mucinous carcinoma combined with sarcomatoid and undifferentiated sarcoma mural nodules after surgery and chemotherapy. The primary lesion did not have a sarcomatous component after comprehensive sampling and repeated review, while the recurrent lesion had a predominantly sarcomatous component. The patient received a second operation and postoperative chemotherapy plus Anlotinib with no progression at 16 months of follow-up. Primary mucinous carcinoma and sarcomatous mural nodules revealed the same K-RAS mutation(c.35G>T, pG12V), TP53 mutation (c.817C>T, p.R273C), MLL2 mutation(c.13450C>T, p.R4484) and NF1 mutation(c.7876A>G, p.S2626G). We present a comprehensive analysis on morphologic characteristics, molecular detection results, clinical management, and prognosis of ovarian mucinous tumors with mural nodules of sarcomatoid and undifferentiated sarcoma. Mutation sharing between primary mucinous carcinoma and recurrent sarcomatous nodules supports monoclonal origin of primary and recurrent tumors, suggesting a tendency for sarcomatous differentiation during the progression of epithelial tumors. Malignant mural nodules represent dedifferentiation in mucinous ovarian tumors rather than collision of two different tumor types. Therefore, it is imperative to conduct comprehensive sampling, rigorous clinical examination, and postoperative follow-up in order to thoroughly evaluate all mural nodules of ovarian mucinous tumors due to their potential for malignancy and sarcomatous differentiation.

3.
Cancer Sci ; 115(7): 2301-2317, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38676428

RESUMEN

GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Helicobacter pylori , Neoplasias Gástricas , Proteína con Dedos de Zinc GLI1 , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Humanos , Animales , Línea Celular Tumoral , Ratones , Transducción de Señal , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Regulación hacia Arriba , Masculino , Carcinogénesis/genética
4.
Biomed Pharmacother ; 174: 116574, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593706

RESUMEN

Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.


Asunto(s)
Muerte Celular , Neoplasias Gastrointestinales , Metales , Humanos , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/tratamiento farmacológico , Animales , Muerte Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Iones/metabolismo , Antineoplásicos/farmacología
5.
Int J Biol Macromol ; 267(Pt 1): 131292, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580015

RESUMEN

To enhance the water-resistance and antibacterial properties of KGM films, mandarin oil (MO), was directly emulsified by pectin and then dispersed to the KGM matrix. The effect of MO concentration (0, 0.5, 1.0, 1.5, and 2 wt%) on the performance of the film-forming emulsions as well as the emulsion films was investigated. The results revealed that pectin could encapsulate and protect MO, and KGM as film matrix could further contributed to the high stability of the film-forming emulsions. The FT-IR, XRD, and SEM suggested that MO stabilized by pectin was uniformly distributed in the KGM matrix. The compatibility and good interaction between KGM and pectin contributed to highly dense and compact structure. Furthermore, increasing the concentration of MO effectively improved water-resistance, oxygen barrier, and antimicrobial activity of the KGM based films. The 1.5 wt% MO loaded KGM film had the highest tensile strength (72.22 MPa) and water contact angle (θ = 95.73°), reduced the WVP and oxygen permeability by about 25.8 % and 32.8 times, respectively, prolonged the shelf life of strawberries for 8 days. As demonstrated, the 1.5 wt% MO-loaded KGM film has considerable potential for high-performance natural biodegradable active films to ensure food safety and reduce environmental impacts.


Asunto(s)
Emulsiones , Frutas , Mananos , Pectinas , Pectinas/química , Emulsiones/química , Frutas/química , Mananos/química , Permeabilidad , Embalaje de Alimentos/métodos , Conservación de Alimentos/métodos , Resistencia a la Tracción , Antibacterianos/química , Antibacterianos/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Agua/química
6.
Photodiagnosis Photodyn Ther ; 46: 104038, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447816

RESUMEN

Given the highly heterogeneous characteristics of advanced gastric cancer (GC), most patients must receive neoadjuvant therapy or conversion therapy consisting of chemotherapy to decrease tumor grade and improve the likelihood of complete resection. Drug resistance, however, always leads to an aborted conversion therapy and inevitable death. When meet drug resistance, alternative drug regimens will be applied with immunotherapy or targeted therapy, whose clinical efficacy remains limited when new drug resistance or severer liver and kidney toxicity emerge. Photodynamic therapy (PDT), a novel treatment, has demonstrated remarkable therapeutic efficacy in different stages of GC. However, no report has been reported so far on the clinical application of photodynamic therapy in conversion therapy after drug resistance. Here we report a case of middle-aged patient with advanced GC, who experienced failure of conversion therapy consisted of multi-line chemotherapy along with immunotherapy. Ultimate success was achieved through a comprehensive conversion therapy of PDT, chemotherapy, immunotherapy, and targeted therapy. Subsequently, the patient underwent robotic-assisted radical gastrectomy while the surgical specimen showed no tumor cell exists. The patient underwent 3 cycles of systemic adjuvant therapy following surgical intervention. Presently, the patient remains 17 months in a satisfactory state of health.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Terapia Recuperativa , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Persona de Mediana Edad , Masculino , Terapia Recuperativa/métodos , Gastrectomía , Resistencia a Antineoplásicos , Inmunoterapia/métodos
7.
Environ Sci Technol ; 58(13): 5784-5795, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507561

RESUMEN

The dietary preferences of the elderly population exhibit distinct variations from the overall averages in most countries, gaining increasing significance due to aging demographics worldwide. These dietary preferences play a crucial role in shaping global food systems, which will result in changed environmental impacts in the future such as greenhouse gas (GHG) emissions. We present a quantitative evaluation of the influence of population aging on the changes in GHG emissions from global food systems. To achieve this, we developed regional dietary coefficients (DCs) of the elderly based on the Global Dietary Database (GDD). We then reconciled the GDD with the dataset from the Food and Agriculture Organization of the United Nations (FAO) to calculate the food GHG emissions of the average population in each of the countries. By applying the DCs, we estimated the national food GHG emissions and obtained the variations between the emissions from aged and average populations. We employed a modified version of the regional integrated model of climate and the economy model (RICE) to forecast the emission trends in different countries based on FAO and GDD data. This integrated approach allowed us to evaluate the dynamic relationships among aging demographics, food consumption patterns, and economic developments within regions. Our results indicate that the annual aging-embodied global food GHG emissions will reach 288 million tonnes of CO2 equivalent (Mt CO2e) by 2100. This estimation is crucial for policymakers, entrepreneurs, and researchers as it provides insights into a potential future environmental challenge and emphasizes the importance of sustainable food production and consumption strategies to GHG emission mitigations associated with aging dietary patterns.


Asunto(s)
Gases de Efecto Invernadero , Anciano , Humanos , Efecto Invernadero , Ambiente , Agricultura , Envejecimiento
8.
J Agric Food Chem ; 72(12): 6178-6188, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483540

RESUMEN

Ferroptosis holds great potential as a therapeutic approach for gastric cancer (GC), a prevalent and deadly malignant tumor associated with high rates of incidence and mortality. Myricetin, well-known for its multifaceted biomedical attributes, particularly its anticancer properties, has yet to be thoroughly investigated regarding its involvement in ferroptosis. The aim of this research was to elucidate the impact of myricetin on ferroptosis in GC progression. The present study observed that myricetin could trigger ferroptosis in GC cells by enhancing malondialdehyde production and Fe2+ accumulation while suppressing glutathione levels. Mechanistically, myricetin directly interacted with NADPH oxidase 4 (NOX4), influencing its stability by inhibiting its ubiquitin degradation. Moreover, myricetin regulated the inhibition of ferroptosis induced by Helicobacter pylori cytotoxin-associated gene A (CagA) through the NOX4/NRF2/GPX4 pathway. In vivo experiments demonstrated that myricetin treatment significantly inhibited the growth of subcutaneous tumors in BALB/c nude mice. It was accompanied by increased NOX4 expression in tumor tissue and suppression of the NRF2/GPX4 antioxidant pathway. Therefore, this research underscores myricetin as a novel inducer of ferroptosis in GC cells through its interaction with NOX4. It is a promising candidate for GC treatment.


Asunto(s)
Ferroptosis , Flavonoides , Neoplasias Gástricas , Animales , Ratones , NADPH Oxidasa 4 , Ratones Desnudos , Factor 2 Relacionado con NF-E2
9.
Adv Biol (Weinh) ; 8(4): e2300534, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38314942

RESUMEN

N6-methyladenosine (m6A) modification is involved in many aspects of gastric cancer (GC). Moreover, m6A and glycolysis-related genes (GRGs) play important roles in immunotherapeutic and prognostic implication of GC. However, GRGs involved in m6A regulation have never been analyzed comprehensively in GC. Herein, the study aims to identify and validate a novel signature based on m6A-related GRGs in GC patients. Therefore, a m6A-related GRGs signature is established, which can predict the survival of patients with GC and remain an independent prognostic factor in multivariate analyses. Clinical significance of the model is well validated in internal cohort and independent validation cohort. In addition, the expression levels of risk model-related GRGs in clinical samples are validated. Consistent with the database results, all model genes are up-regulated in expression except DCN. After regrouping the patients based on this risk model, the study can effectively distinguish between them in respect to immune-cell infiltration microenvironment and immunotherapeutic response. Additionally, candidate drugs targeting risk model-related GRGs are confirmed. Finally, a nomogram combining risk scores and clinical parameters is created, and calibration plots show that the nomogram can accurately predict survival. This risk model can serve as a reliable assessment tool for predicting prognosis and immunotherapeutic responses in GC patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Pronóstico , Genes Reguladores , Nomogramas , Inmunoterapia , Microambiente Tumoral/genética
11.
Immunobiology ; 228(6): 152753, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832501

RESUMEN

Phosphatidylinositol 3-kinase delta (PI3Kδ) and gamma (PI3Kγ) are predominantly located in immune and hematopoietic cells. It is well-established that PI3Kδ/γ plays important roles in the immune system and participates in inflammation; hence, it could be a potential target for anti-inflammatory therapy. Currently, several PI3K inhibitors are used clinically to treat cancers with aberrant PI3K signaling; however, their role in treating acute respiratory inflammatory diseases has rarely been explored. Herein, we investigated the potential anti-inflammatory activities of several pharmacological PI3K inhibitors, including marketed drugs idelalisib (PI3Kδ), duvelisib (PI3Kδ/γ), and copanlisib (pan-PI3K with preferential α/δ) and the clinical drug eganelisib (PI3Kγ), for treating acute lung injury (ALI). In the lipopolysaccharide-induced RAW264.7 macrophage inflammatory model, the four inhibitors significantly suppressed proinflammatory cytokine expression by inhibiting the PI3K signaling pathway. Oral administration of PI3K inhibitors markedly improved lung injury in a murine model of ALI. PI3K pathway inhibition decreased inflammatory cell infiltration and totalprotein levels, as well as reduced the expression of associated lung inflammatory factors. Collectively, all four representative PI3K inhibitors exerted prominent anti-inflammatory properties, indicating that PI3K δ and/or γ inhibition could be ideal targets to treat respiratory inflammatory diseases by reducing the inflammatory response. The findings of the current study provide a new basis for utilizing PI3K inhibitors to treat acute respiratory inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Fosfatidilinositol 3-Quinasas , Ratones , Animales , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Lesión Pulmonar Aguda/tratamiento farmacológico
12.
Inflamm Res ; 72(10-11): 1999-2012, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798541

RESUMEN

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a debilitating lung condition with few available treatments. The early driver of wound repair that contributes to IPF has been extensively identified as repetitive alveolar epithelial damage. According to recent reports, IPF is linked to ferroptosis, a unique type of cell death characterized by a fatal buildup of iron and lipid peroxidation. OBJECTIVE AND METHOD: There is little information on epithelial cells that induce pulmonary fibrosis by going through ferroptosis. In this study, we used bleomycin (BLM) to examine the impact of ferroptosis on IPF in mouse lung epithelial cells (MLE-12). RESULTS: We discovered that BLM increases ferroptosis in MLE-12. Additionally, we found that NCOA4 is overexpressed and plays a key role in the ferroptosis of epithelial cells throughout the IPF process. Using Molecular docking, we found that Fraxetin, a natural component extracted from Fraxinus rhynchophylla, formed a stable binding to NCOA4. In vitro investigations showed that Fraxetin administration greatly decreased ferroptosis and NCOA4 expression, which in turn lowered the release of inflammatory cytokines. CONCLUSION: Fraxetin treatment significantly alleviated BLM-induced lung inflammation and fibrosis. Our findings imply that fraxetin possesses inhibitory roles in ferroptosis and can be a potential drug against IPF.


Asunto(s)
Ferroptosis , Fibrosis Pulmonar Idiopática , Ratones , Animales , Bleomicina/efectos adversos , Simulación del Acoplamiento Molecular , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Células Epiteliales/metabolismo , Factores de Transcripción
13.
Oncogene ; 42(44): 3221-3235, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704784

RESUMEN

Chemotherapy resistance represents a major cause of therapeutic failure and mortality in cancer patients. Mesenchymal stromal cells (MSCs), an integral component of tumor microenvironment, are known to promote drug resistance. However, the detailed mechanisms remain to be elucidated. Here, we found that MSCs confer breast cancer resistance to doxorubicin by diminishing its intratumoral accumulation. Hyaluronan (HA), a major extracellular matrix (ECM) product of MSCs, was found to mediate the chemoresistant effect. The chemoresistant effect of MSCs was abrogated when hyaluronic acid synthase 2 (HAS2) was depleted or inhibited. Exogenous HA also protected tumor grafts from doxorubicin. Molecular dynamics simulation analysis indicates that HA can bind with doxorubicin, mainly via hydrophobic and hydrogen bonds, and thus reduce its entry into breast cancer cells. This mechanism is distinct from the reported chemoresistant effect of HA via its receptor on cell surface. High HA serum levels were also found to be positively associated with chemoresistance in breast cancer patients. Our findings indicate that the HA-doxorubicin binding dynamics can confer cancer cells chemoresistance. Reducing HA may enhance chemotherapy efficacy.


Asunto(s)
Neoplasias de la Mama , Células Madre Mesenquimatosas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Ácido Hialurónico/metabolismo , Doxorrubicina/farmacología , Hialuronano Sintasas/metabolismo , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptores de Hialuranos/metabolismo , Microambiente Tumoral
14.
Exp Ther Med ; 26(3): 429, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37602311

RESUMEN

Kidney renal clear cell carcinoma (KIRC) is a frequent malignant tumor characterized by a high degree of heterogeneity and genetic instability. DNA double-strand breaks generated by homologous recombination deficit (HRD) are a well-known contributor to genomic instability, which can encourage tumor development. It is not known, however, whether the molecular characteristics linked with HRD have a predictive role in KIRC. The discovery cohort comprised 501 KIRC patients from The Cancer Genome Atlas database. Genome and transcriptome data of HRD patients were used for comprehensive analysis. Single cell RNA sequencing (scRNA-seq) was used to verify the test results of bulk RNA-seq. In the present study, patients with a high HRD score had a worse prognosis compared with those with a low HRD score. The DNA damage response signaling pathways and immune-related signaling pathways were notably enriched in the HRD-positive subgroup. Further comprehensive analysis of the tumor microenvironment (TME) revealed that the signal of exhausted CD8+ T cells was enriched in the HRD-positive subgroup. Finally, scRNA-seq analyses confirmed that the immune-related signaling pathways were upregulated in HRD-positive patients. In conclusion, the present study not only demonstrated that a high HRD score is a valid prognostic biomarker in KIRC patients, but also revealed the TME in HRD-positive tumors.

15.
J Biomol Struct Dyn ; : 1-12, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572326

RESUMEN

Since dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with the pathogenesis of cancer, inflammation, and autoimmunity, PI3K has emerged as an attractive target for drug development. Although copanlisib is the first pan-PI3K inhibitor to be approved for clinical use, the precise mechanism by which it acts on PI3K has not been fully elucidated. To reveal the binding mechanisms and structure-activity relationship between PI3K and copanlisib, a comprehensive modeling approach that combines 3D-quantitative structure-activity relationship (3D-QSAR), pharmacophore model, and molecular dynamics (MD) simulation was utilized. Initially, the structure-activity relationship of copanlisib and its derivatives were explored by constructing a 3D-QSAR. Then, the key chemical characteristics were identified by building common feature pharmacophore models. Finally, MD simulations were performed to elucidate the important interactions between copanlisib and different PI3K subtypes, and highlight the key residues for tight-binding inhibitors. The present study uncovered the principal mechanism of copanlisib's action on PI3K at the theoretical level, and these findings might provide guidance for the rational design of pan-PI3K inhibitors.Communicated by Ramaswamy H. Sarma.

16.
Front Immunol ; 14: 1186258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283767

RESUMEN

Introduction: Adenoid hypertrophy is the main cause of obstructive sleep apnea in children. Previous studies have suggested that pathogenic infections and local immune system disorders in the adenoids are associated with adenoid hypertrophy. The abnormalities in the number and function of various lymphocyte subsets in the adenoids may play a role in this association. However, changes in the proportion of lymphocyte subsets in hypertrophic adenoids remain unclear. Methods: To identify patterns of lymphocyte subsets in hypertrophic adenoids, we used multicolor flow cytometry to analyze the lymphocyte subset composition in two groups of children: the mild to moderate hypertrophy group (n = 10) and the severe hypertrophy group (n = 5). Results: A significant increase in naïve lymphocytes and a decrease in effector lymphocytes were found in severe hypertrophic adenoids. Discussion: This finding suggests that abnormal lymphocyte differentiation or migration may contribute to the development of adenoid hypertrophy. Our study provides valuable insights and clues into the immunological mechanism underlying adenoid hypertrophy.


Asunto(s)
Tonsila Faríngea , Apnea Obstructiva del Sueño , Niño , Humanos , Subgrupos Linfocitarios/patología , Recuento de Linfocitos , Hipertrofia
18.
Comput Biol Chem ; 104: 107879, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37182359

RESUMEN

Since dysregulation of the phosphatidylinositol 3-kinase gamma (PI3Kγ) signaling pathway is associated with the pathogenesis of cancer, inflammation, and autoimmunity, PI3Kγ has emerged as an attractive target for drug development. IPI-549 is the only selective PI3Kγ inhibitor that has advanced to clinical trials, thus, IPI-549 could serve as a promising template for designing novel PI3Kγ inhibitors. In this present study, a modeling strategy consisting of common feature pharmacophore modeling, receptor-ligand pharmacophore modeling, and molecular dynamics simulation was utilized to identify the key pharmacodynamic characteristic elements of the target compound and the key residue information of the PI3Kγ interaction with the inhibitors. Then, 10 molecules were designed based on the structure-activity relationships, and some of them exhibited satisfactory predicted binding affinities to PI3Kγ. Finally, a hierarchical multistage virtual screening method, involving the developed common feature and receptor-ligand pharmacophore model and molecular docking, was constructed for screening the potential PI3Kγ inhibitors. Overall, we hope these findings would provide some guidance for the development of novel PI3Kγ inhibitors.


Asunto(s)
Simulación de Dinámica Molecular , Farmacóforo , Diseño de Fármacos , Ligandos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Relación Estructura-Actividad Cuantitativa , Humanos
19.
Nat Food ; 4(3): 247-256, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118273

RESUMEN

Global greenhouse gas (GHG) emissions from food loss and waste (FLW) are not well characterized from cradle to grave. Here GHG emissions due to FLW in supply chain and waste management systems are quantified, followed by an assessment of the GHG emission reductions that could be achieved by policy and technological interventions. Global FLW emitted 9.3 Gt of CO2 equivalent from the supply chain and waste management systems in 2017, which accounted for about half of the global annual GHG emissions from the whole food system. The sources of FLW emissions are widely distributed across nine post-farming stages and vary according to country, region and food category. Income level, technology availability and prevailing dietary pattern also affect the country and regional FLW emissions. Halving FLW generation, halving meat consumption and enhancing FLW management technologies are the strategies we assess for FLW emission reductions. The region-specific and food-category-specific outcomes and the trade-off in emission reductions between supply chain and waste management are elucidated. These insights may help decision makers localize and optimize intervention strategies for sustainable FLW management.


Asunto(s)
Gases de Efecto Invernadero , Administración de Residuos , Gases de Efecto Invernadero/análisis , Efecto Invernadero , Carne , Dieta
20.
BMC Med ; 21(1): 134, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016382

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infection causes aberrant DNA methylation and contributes to the risk of gastric cancer (GC). Guanine nucleotide-binding protein subunit beta-4 (GNB4) is involved in various tumorigenic processes. We found an aberrant methylation level of GNB4 in H. pylori-induced GC in our previous bioinformatic analysis; however, its expression and underlying molecular mechanisms are poorly understood. METHODS: The expression, underlying signaling pathways, and clinical significance of GNB4 were analyzed in a local cohort of 107 patients with GC and several public databases. H. pylori infection was induced in in vitro and in vivo models. Methylation-specific PCR, pyrosequencing, and mass spectrometry analysis were used to detect changes in methylation levels. GNB4, TET1, and YAP1 were overexpressed or knocked down in GC cell lines. We performed gain- and loss-of-function experiments, including CCK-8, EdU, colony formation, transwell migration, and invasion assays. Nude mice were injected with genetically manipulated GC cells, and the growth of xenograft tumors and metastases was measured. Real-time quantitative PCR, western blotting, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and co-immunoprecipitation experiments were performed to elucidate the underlying molecular mechanisms. RESULTS: GNB4 expression was significantly upregulated in GC and correlated with aggressive clinical characteristics and poor prognosis. Increased levels of GNB4 were associated with shorter survival times. Infection with H. pylori strains 26695 and SS1 induced GNB4 mRNA and protein expression in GC cell lines and mice. Additionally, silencing of GNB4 blocked the pro-proliferative, metastatic, and invasive ability of H. pylori in GC cells. H. pylori infection remarkably decreased the methylation level of the GNB4 promoter region, particularly at the CpG#5 site (chr3:179451746-179451745). H. pylori infection upregulated TET1 expression via activation of the NF-κB. TET binds to the GNB4 promoter region which undergoes demethylation modification. Functionally, we identified that GNB4 induced oncogenic behaviors of tumors via the Hippo-YAP1 pathway in both in vitro and in vivo models. CONCLUSIONS: Our findings demonstrate that H. pylori infection activates the NF-κB-TET1-GNB4 demethylation-YAP1 axis, which may be a potential therapeutic target for GC.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Helicobacter pylori , Neoplasias Gástricas , Humanos , Ratones , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Helicobacter pylori/metabolismo , Ratones Desnudos , Carcinogénesis/genética , Neoplasias Gástricas/genética , Desmetilación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA