Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Nanomedicine ; 19: 4279-4295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766658

RESUMEN

Ischemic stroke, being a prominent contributor to global disability and mortality, lacks an efficacious therapeutic approach in current clinical settings. Neural stem cells (NSCs) are a type of stem cell that are only found inside the nervous system. These cells can differentiate into various kinds of cells, potentially regenerating or restoring neural networks within areas of the brain that have been destroyed. This review begins by providing an introduction to the existing therapeutic approaches for ischemic stroke, followed by an examination of the promise and limits associated with the utilization of NSCs for the treatment of ischemic stroke. Subsequently, a comprehensive overview was conducted to synthesize the existing literature on the underlying processes of neural stem cell-derived small extracellular vesicles (NSC-sEVs) transplantation therapy in the context of ischemic stroke. These mechanisms encompass neuroprotection, inflammatory response suppression, and endogenous nerve and vascular regeneration facilitation. Nevertheless, the clinical translation of NSC-sEVs is hindered by challenges such as inadequate targeting efficacy and insufficient content loading. In light of these limitations, we have compiled an overview of the advancements in utilizing modified NSC-sEVs for treating ischemic stroke based on current methods of extracellular vesicle modification. In conclusion, examining NSC-sEVs-based therapeutic approaches is anticipated to be prominent in both fundamental and applied investigations about ischemic stroke.


Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Humanos , Accidente Cerebrovascular Isquémico/terapia , Animales , Trasplante de Células Madre/métodos
2.
Int Immunopharmacol ; 125(Pt A): 111164, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925947

RESUMEN

INTRODUCTION: The treatment of burn wounds, especially deep burn wounds, remains a major clinical challenge. Growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor A (VEGFA) show great potential in promoting the healing of damaged tissues. This study explored wound healing following targeted delivery of bFGF and VEGFA genes into deep burn wounds through a novel platelet membrane-coated nanoparticle (PM@gene-NP) complex delivery system. METHODS: First, bFGF and VEGFA genes were inserted into plasmid (pEGFP-N1) vectors. Subsequently, the assembled plasmids were loaded onto nanoparticles to form gene-loaded nanoparticle complexes, which were then wrapped with extracted platelet membrane, fully simulating the characteristics of platelets, in order to actively target sites of inflammatory damage. After administration of PM@gene-NP complexes through the tail vein of rats, a series of experiments were conducted to evaluate wound healing. RESULTS: The PM@gene-NP complexes effectively targeted the burn sites. After the administration of the PM@gene-NP complexes, the rats exhibited increased blood flow in the burn wounds, which also healed faster than control groups. Histological results showed fewer inflammatory cells in the burned skin tissue after treatment. After the wounds healed, the production of hair follicles, sebaceous glands and other skin accessories in the skin tissue increased. CONCLUSION: Our results showed that the PM@gene-NP complexes can effectively deliver gene therapy to the injured area, and this delivery system should be considered as a potential method for treating deep burns.


Asunto(s)
Quemaduras , Nanopartículas , Ratas , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Biomimética , Cicatrización de Heridas/genética , Quemaduras/genética , Quemaduras/terapia , Quemaduras/patología
3.
Sci Transl Med ; 15(716): eadh4181, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792958

RESUMEN

Clonal evolution drives cancer progression and therapeutic resistance. Recent studies have revealed divergent longitudinal trajectories in gliomas, but early molecular features steering posttreatment cancer evolution remain unclear. Here, we collected sequencing and clinical data of initial-recurrent tumor pairs from 544 adult diffuse gliomas and performed multivariate analysis to identify early molecular predictors of tumor evolution in three diffuse glioma subtypes. We found that CDKN2A deletion at initial diagnosis preceded tumor necrosis and microvascular proliferation that occur at later stages of IDH-mutant glioma. Ki67 expression at diagnosis was positively correlated with acquiring hypermutation at recurrence in the IDH-wild-type glioma. In all glioma subtypes, MYC gain or MYC-target activation at diagnosis was associated with treatment-induced hypermutation at recurrence. To predict glioma evolution, we constructed CELLO2 (Cancer EvoLution for LOngitudinal data version 2), a machine learning model integrating features at diagnosis to forecast hypermutation and progression after treatment. CELLO2 successfully stratified patients into subgroups with distinct prognoses and identified a high-risk patient group featured by MYC gain with worse post-progression survival, from the low-grade IDH-mutant-noncodel subtype. We then performed chronic temozolomide-induction experiments in glioma cell lines and isogenic patient-derived gliomaspheres and demonstrated that MYC drives temozolomide resistance by promoting hypermutation. Mechanistically, we demonstrated that, by binding to open chromatin and transcriptionally active genomic regions, c-MYC increases the vulnerability of key mismatch repair genes to treatment-induced mutagenesis, thus triggering hypermutation. This study reveals early predictors of cancer evolution under therapy and provides a resource for precision oncology targeting cancer dynamics in diffuse gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/terapia , Temozolomida/farmacología , Temozolomida/uso terapéutico , Mutación/genética , Medicina de Precisión , Recurrencia Local de Neoplasia/tratamiento farmacológico , Glioma/tratamiento farmacológico
4.
Cell Rep Med ; 4(9): 101177, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37652019

RESUMEN

The role of brain immune compartments in glioma evolution remains elusive. We profile immune cells in glioma microenvironment and the matched peripheral blood from 11 patients. Glioblastoma exhibits specific infiltration of blood-originated monocytes expressing epidermal growth factor receptor (EGFR) ligands EREG and AREG, coined as tumor-associated monocytes (TAMo). TAMo infiltration is mutually exclusive with EGFR alterations (p = 0.019), while co-occurring with mesenchymal subtype (p = 4.7 × 10-7) and marking worse prognosis (p = 0.004 and 0.032 in two cohorts). Evolutionary analysis of initial-recurrent glioma pairs and single-cell study of a multi-centric glioblastoma reveal association between elevated TAMo and glioma mesenchymal transformation. Further analyses identify FOSL2 as a TAMo master regulator and demonstrates that FOSL2-EREG/AREG-EGFR signaling axis promotes glioma invasion in vitro. Collectively, we identify TAMo in tumor microenvironment and reveal its driving role in activating EGFR signaling to shape glioma evolution.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Monocitos , Glioma/genética , Receptores ErbB/genética , Encéfalo , Microambiente Tumoral/genética
5.
Genome Med ; 15(1): 16, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915208

RESUMEN

BACKGROUND: Although temozolomide (TMZ) has been used as a standard adjuvant chemotherapeutic agent for primary glioblastoma (GBM), treating isocitrate dehydrogenase wild-type (IDH-wt) cases remains challenging due to intrinsic and acquired drug resistance. Therefore, elucidation of the molecular mechanisms of TMZ resistance is critical for its precision application. METHODS: We stratified 69 primary IDH-wt GBM patients into TMZ-resistant (n = 29) and sensitive (n = 40) groups, using TMZ screening of the corresponding patient-derived glioma stem-like cells (GSCs). Genomic and transcriptomic features were then examined to identify TMZ-associated molecular alterations. Subsequently, we developed a machine learning (ML) model to predict TMZ response from combined signatures. Moreover, TMZ response in multisector samples (52 tumor sectors from 18 cases) was evaluated to validate findings and investigate the impact of intra-tumoral heterogeneity on TMZ efficacy. RESULTS: In vitro TMZ sensitivity of patient-derived GSCs classified patients into groups with different survival outcomes (P = 1.12e-4 for progression-free survival (PFS) and 3.63e-4 for overall survival (OS)). Moreover, we found that elevated gene expression of EGR4, PAPPA, LRRC3, and ANXA3 was associated to intrinsic TMZ resistance. In addition, other features such as 5-aminolevulinic acid negative, mesenchymal/proneural expression subtypes, and hypermutation phenomena were prone to promote TMZ resistance. In contrast, concurrent copy-number-alteration in PTEN, EGFR, and CDKN2A/B was more frequent in TMZ-sensitive samples (Fisher's exact P = 0.0102), subsequently consolidated by multi-sector sequencing analyses. Integrating all features, we trained a ML tool to segregate TMZ-resistant and sensitive groups. Notably, our method segregated IDH-wt GBM patients from The Cancer Genome Atlas (TCGA) into two groups with divergent survival outcomes (P = 4.58e-4 for PFS and 3.66e-4 for OS). Furthermore, we showed a highly heterogeneous TMZ-response pattern within each GBM patient using in vitro TMZ screening and genomic characterization of multisector GSCs. Lastly, the prediction model that evaluates the TMZ efficacy for primary IDH-wt GBMs was developed into a webserver for public usage ( http://www.wang-lab-hkust.com:3838/TMZEP ). CONCLUSIONS: We identified molecular characteristics associated to TMZ sensitivity, and illustrate the potential clinical value of a ML model trained from pharmacogenomic profiling of patient-derived GSC against IDH-wt GBMs.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Farmacogenética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioma/genética , Resistencia a Antineoplásicos/genética , Factores de Transcripción de la Respuesta de Crecimiento Precoz
6.
Int Wound J ; 20(1): 8-17, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35560869

RESUMEN

A meta-analysis was performed to evaluate the effect of stem cells treatment in managing burn wounds. A systematic literature search up to March 2022 incorporated 24 studies reported between 2013 and 2021 including 400 animals with burn wounds at the beginning of the study; 211 were using stem cells treatment, and 189 controlled. Statistical tools like the contentious method were used within a random or fixed-influence model to establish the mean difference (MD) with 95% confidence intervals (CIs) to evaluate the influence of stem cells treatment in managing burn wounds. Stem cells treatment had a significantly higher burn wound healing rate (MD, 15.18; 95% CI, 11.29-19.07, P < .001), higher blood vessel number (MD, 12.28; 95% CI, 10.06-14.51, P < .001), higher vascular endothelial growth factor (MD, 10.24; 95% CI, 7.19-13.29, P < .001), lower interleukin-1 level (MD, -98.48; 95% CI, -155.33 to -41.63, P < .001), and lower tumour necrosis factor α level (MD, -28.71; 95% CI, -46.65 to -10.76, P < .002) compared with control in animals' models with burn wounds. Stem cells treatment had a significantly higher burn wound healing rate, higher blood vessel number, higher vascular endothelial growth factor, lower interleukin-1 level, and lower tumour necrosis factor α level compared with control in animals' models with burn wounds. Further studies are required to validate these findings.


Asunto(s)
Quemaduras , Factor de Necrosis Tumoral alfa , Animales , Factor A de Crecimiento Endotelial Vascular , Quemaduras/terapia , Células Madre , Interleucina-1
7.
Neural Regen Res ; 18(2): 404-409, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35900437

RESUMEN

Our previous study demonstrated the potential therapeutic role of human neural stem cell-derived exosomes (hNSC-Exo) in ischemic stroke. Here, we loaded brain-derived neurotrophic factor (BDNF) into exosomes derived from NSCs to construct engineered exosomes (BDNF-hNSC-Exo) and compared their effects with those of hNSC-Exo on ischemic stroke both in vitro and in vivo. In a model of H2O2-induced oxidative stress in NSCs, BDNF-hNSC-Exo markedly enhanced cell survival. In a rat middle cerebral artery occlusion model, BDNF-hNSC-Exo not only inhibited the activation of microglia, but also promoted the differentiation of endogenous NSCs into neurons. These results suggest that BDNF can improve the function of NSC-derived exosomes in the treatment of ischemic stroke. Our research may support the clinical use of other neurotrophic factors for central nervous system diseases.

8.
Front Bioeng Biotechnol ; 10: 1025546, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36394011

RESUMEN

Background: Keloid, also known as connective tissue hyperplasia, is a benign proliferative disorder with a global distribution. The available therapeutic interventions are steroid injections, surgical removal of keloids, radiotherapy, compression therapy, the application of cryosurgery, and many other methods. Objectives: Existing treatments or approaches for keloids may lead to similar or even larger lesions at the site of keloid excision, leading to a high recurrence rate. Therefore, this study aims at identifying a new gene-based therapy for the treatment of keloids. Methods: An ASPN-siRNA/nanoparticle combination (si-ASPN) and a negative siRNA/nanoparticle complex (NC) was developed on the basis of bioinformatics studies and used in vitro and in vivo experiments. Results: The results showed a strong correlation between the development of keloids and high expression of ASPN protein. With the expression of ASPN protein greatly reduced in keloid fibroblasts and nude mice allografts after treatment with si-ASPN, the collagen and fibroblasts were also uniform, thinner, parallel and regular. Conclusion: All the above experimental results suggest that keloid and ASPN are closely related and both fibroblast growth and metabolism of keloid are inhibited after silencing ASPN. Therefore, ASPN-siRNA delivered via nanoparticles can serve as a novel intervention therapy for the treatment of keloids.

9.
Front Cell Dev Biol ; 9: 703989, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307384

RESUMEN

Acute spinal cord injury (SCI) is a serious traumatic event to the spinal cord with considerable morbidity and mortality. This injury leads to short- and long-term variations in the spinal cord, and can have a serious effect on the patient's sensory, motor, or autonomic functions. Due to the complicated pathological process of SCI, there is currently no successful clinical treatment strategy. Exosomes, extracellular vesicles (EVs) with a double-layer membrane structure of 30-150 nm diameter, have recently been considered as critical mediators for communication between cells and tissues by transferring proteins, lipids, and nucleic acids. Further studies verified that exosomes participate in the pathophysiological process of several diseases, including cancer, neurodegenerative diseases, and cardiovascular diseases, and could have a significant impact in their treatment. As natural carriers of biologically active cargos, exosomes have emerged as pathological mediators of SCI. In this review article, we critically discuss the functions of exosomes as intracellular mediators and potential treatments in SCI and provide an outlook on future research.

10.
J Cell Mol Med ; 24(20): 11755-11767, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32918360

RESUMEN

Our objective was to determine the molecular mechanisms by which lncRNA HOXA-AS3 regulates the biological behaviour of glioblastoma multiforme (GBM). We used an lncRNA microarray assay to identify GBM-related lncRNA expression profiles. Qrt-PCR was used to survey the levels of expression of long non-coding RNA (lncRNA) HOXA-AS3 and the target gene. Dual-luciferase reporter assays were used to investigate the interaction of lncRNA HOXA-AS3, the target gene and miRNA. Western blot analysis was used to examine the expression of USP3 and epithelial-mesenchymal transition (EMT) genes. The MTT assay, transwell assay and wound healing assay were used to analyse the effects of lncRNA HOXA-AS3 on GBM cell viability, mobility and invasiveness, respectively. Our results showed that lncRNA HOXA-AS3 was significantly up-regulated in GBM cells and could promote GBM cell proliferation, invasion and migration in vitro and in vivo. HOXA-AS was found to be associated with poor survival prognosis in glioma patients. The dual-luciferase reporter assay also revealed that lncRNA HOXA-AS3 acts as a mir-455-5p sponge by up-regulating USP3 expression to promote GBM progression. Western blot analysis showed that lncRNA HOXA-AS3 could up-regulate EMT-related gene expression in GBM. Experiments showed mir-455-5p could rescue the effect of lncRNA HOXA-AS3 on cell proliferation and invasion. The newly identified HOXA-AS3/mir-455-5p/USP3 pathway offers important clues to understanding the key mechanisms underlying the action of lncRNA HOXA-AS3 in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , MicroARNs/genética , ARN Largo no Codificante/metabolismo , Proteasas Ubiquitina-Específicas/genética , Animales , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones Desnudos , MicroARNs/metabolismo , Invasividad Neoplásica , ARN Largo no Codificante/genética , Proteasas Ubiquitina-Específicas/metabolismo , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Biomed Nanotechnol ; 16(4): 399-418, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32970974

RESUMEN

Exosomes are small extracellular vesicles of 30-150 nm diameter secreted by almost all cells. In recent years, with continuous deeper understanding of exosomes physiological functions, different reports have proven that exosomes can facilitate cell-to-cell communication by binding to target cells and transferring their contents, together with RNAs, DNAs, proteins, and lipids between cells and tissues. With advantages that exosomes can be involved in various types of physiological processes, such as blood coagulation, cellular homeostasis, inflammation, immune surveillance, stem cell differentiation, neuroprotection, and tissue regeneration and angiogenesis. Exosomes have been demonstrated that they can be applied in identification and treatment of multiple disorders such as cancers, cerebral ischemia, and respiratory infectious diseases. Importantly, researchers utilize application of exosomes in the treatment of various respiratory infectious diseases that have made some breakthrough progress. However, with the global pandemic of Coronavirus Disease 2019 (COVID-19), we have focused on applications of exosomes in respiratory infectious diseases and their serious complications, including influenza, TB, ARDS and sepsis. In this review, we explain the use of exosomes in various respiratory infectious diseases and their serious complications, and hope to provide new ideas for the treatment of new coronavirus infections.


Asunto(s)
Infecciones por Coronavirus/terapia , Exosomas , Neumonía Viral/terapia , Infecciones del Sistema Respiratorio/terapia , Betacoronavirus , COVID-19 , Comunicación Celular , Humanos , Pandemias , SARS-CoV-2
12.
World J Stem Cells ; 11(10): 817-830, 2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31692854

RESUMEN

Brain ischemic stroke is one of the most common causes of death and disability, currently has no efficient therapeutic strategy in clinic. Due to irreversible functional neurons loss and neural tissue injury, stem cell transplantation may be the most promising treatment approach. Neural stem cells (NSCs) as the special type of stem cells only exist in the nervous system, can differentiate into neurons, astrocytes, and oligodendrocytes, and have the abilities to compensate insufficient endogenous nerve cells and improve the inflammatory microenvironment of cell survival. In this review, we focused on the important role of NSCs therapy for brain ischemic stroke, mainly introduced the methods of optimizing the therapeutic efficacy of NSC transplantation, such as transfection and overexpression of specific genes, pretreatment of NSCs with inflammatory factors, and co-transplantation with cytokines. Next, we discussed the potential problems of NSC transplantation which seriously limited their rapid clinical transformation and application. Finally, we expected a new research topic in the field of stem cell research. Based on the bystander effect, exosomes derived from NSCs can overcome many of the risks and difficulties associated with cell therapy. Thus, as natural seed resource of nervous system, NSCs-based cell-free treatment is a newly therapy strategy, will play more important role in treating ischemic stroke in the future.

13.
J Pharm Sci ; 108(11): 3684-3694, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31465736

RESUMEN

In this study, we developed an AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel (AS1411/SKN&DTX-M). Such microemulsion was capable of penetrating the blood-brain barrier (BBB), targeting CD44/nucleolin-overexpressed glioma, and inhibiting the orthotopic glioma growth. AS1411/SKN&DTX-M showed a spherical morphology with a diameter around 30 nm and rapidly released drugs in the presence of hyaluronidase and mild acid. In the U87 cellular studies, AS1411/SKN&DTX-M elevated the cytotoxicity, enhanced the cellular uptake, and induced the cell apoptosis. In the artificial blood-brain barrier model, the transepithelial electrical resistance was decreased after the treatment with AS1411/SKN&DTX-M and thereby of increasing the apparent permeability coefficient. Furthermore, AS1411/SKN&DTX-M showed a strong inhibition against the formation of cancer stem cell-enriched U87 cell spheroids, in which the expression of CD133 was downregulated significantly. In the biodistribution studies, AS1411/SKN&DTX-M could selectively accumulate in the brains of orthotopic luciferase-transfected U87 glioma tumor-bearing nude mice. Importantly, AS1411/SKN&DTX-M exhibited the overwhelming inhibition of glioma growth of orthotopic luciferase-transfected U87 glioma models and reached the longest survival period among all the treatments. In summary, the codelivery of shikonin and docetaxel using bifunctionalization with hyaluronic acid and AS1411 aptamer offers a promising strategy for dual drug-based combinational antiglioma treatment.


Asunto(s)
Antineoplásicos/química , Aptámeros de Nucleótidos/química , Docetaxel/química , Emulsiones/química , Ácido Hialurónico/química , Naftoquinonas/química , Oligodesoxirribonucleótidos/química , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Docetaxel/farmacología , Sistemas de Liberación de Medicamentos/métodos , Glioma/tratamiento farmacológico , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Naftoquinonas/farmacología , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Distribución Tisular , Nucleolina
14.
Drug Des Devel Ther ; 13: 757-766, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863015

RESUMEN

PURPOSE: Hormone-dependent breast cancer is the most common form of breast cancer, and inhibiting 17ß-HSD1 can play an attractive role in decreasing estrogen and cancer cell proliferation. However, the majority of existing inhibitors have been developed from estrogens and inevitably possess residual estrogenicity. siRNA knockdown provides a highly specific way to block a targeted enzyme, being especially useful to avoid estrogenicity. Application of 17ß-HSD1-siRNA in vivo is limited by the establishment of an animal model, as well as the potential nuclease activity in vivo. We tried to reveal the in vivo potential of 17ß-HSD1-siRNA-based breast cancer therapy. MATERIALS AND METHODS: To establish a competent animal model, daily subcutaneous injection of an estrone micellar aqueous solution was adopted to provide the substrate for estradiol biosynthesis. The effects of three different doses of estrone (0.1, 0.5, and 2.5 µg/kg/day) on tumor growth in T47D-17ß-HSD1-inoculated group were investigated and compared with the animals inoculated with wild type T47D cells. To solve in vivo delivery problem of siRNA, "17ß-HSD1-siRNA/LPD", a PEGylated and modified liposome-polycation-DNA nanoparticle containing 17ß-HSD1-siRNA was prepared by the thin film hydration method and postinsertion technology. Finally, "17ß-HSD1-siRNA/LPD" was tested in the optimized model. Tumor growth and 17ß-HSD1 expression were assessed. RESULTS: Comparison with the untreated group revealed significant suppression of tumor growth in "17ß-HSD1-siRNA/LPD"-treated group when HSD17B1 gene expression was knocked down. CONCLUSION: These findings showed promising in vivo assessments of 17ß-HSD1-siRNA candidates. This is the first report of an in vivo application of siRNA for steroid-converting enzymes in a nude mouse model.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Estradiol Deshidrogenasas/antagonistas & inhibidores , ARN Interferente Pequeño/farmacología , Animales , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/administración & dosificación , Estradiol Deshidrogenasas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , ARN Interferente Pequeño/administración & dosificación , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA