Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Cycle ; 21(20): 2206-2221, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35815665

RESUMEN

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have distinct origins: ESCs are derived from pre-implanted embryos while iPSCs are reprogrammed somatic cells. Both have their own characteristics and lineage specificity, and both are valuable tools for studying human neurological development and disease. Thus far, few studies have analyzed how differences between stem cell types influence mitochondrial function and mitochondrial DNA (mtDNA) homeostasis during differentiation into neural and glial lineages. In this study, we compared mitochondrial function and mtDNA replication in human ESCs and iPSCs at three different stages - pluripotent, neural progenitor and astrocyte. We found that while ESCs and iPSCs have a similar mitochondrial signature, neural and astrocyte derivations manifested differences. At the neural stem cell (NSC) stage, iPSC-NSCs displayed decreased ATP production and a reduction in mitochondrial respiratory chain (MRC) complex IV expression compared to ESC-NSCs. IPSC-astrocytes showed increased mitochondrial activity including elevated ATP production, MRC complex IV expression, mtDNA copy number and mitochondrial biogenesis relative to those derived from ESCs. These findings show that while ESCs and iPSCs are similar at the pluripotent stage, differences in mitochondrial function may develop during differentiation and must be taken into account when extrapolating results from different cell types.Abbreviation: BSA: Bovine serum albumin; DCFDA: 2',7'-dichlorodihydrofluorescein diacetate; DCX: Doublecortin; EAAT-1: Excitatory amino acid transporter 1; ESCs: Embryonic stem cells; GFAP: Glial fibrillary acidic protein; GS: Glutamine synthetase; iPSCs: Induced pluripotent stem cells; LC3B: Microtubule-associated protein 1 light chain 3ß; LC-MS: Liquid chromatography-mass spectrometry; mito-ROS: Mitochondrial ROS; MMP: Mitochondrial membrane potential; MRC: Mitochondrial respiratory chain; mtDNA: Mitochondrial DNA; MTDR: MitoTracker Deep Red; MTG: MitoTracker Green; NSCs: Neural stem cells; PDL: Poly-D-lysine; PFA: Paraformaldehyde; PGC-1α: PPAR-γ coactivator-1 alpha; PPAR-γ: Peroxisome proliferator-activated receptor-gamma; p-SIRT1: Phosphorylated sirtuin 1; p-ULK1: Phosphorylated unc-51 like autophagy activating kinase 1; qPCR: Quantitative PCR; RT: Room temperature; RT-qPCR: Quantitative reverse transcription PCR; SEM: Standard error of the mean; TFAM: Mitochondrial transcription factor A; TMRE: Tetramethylrhodamine ethyl ester; TOMM20: Translocase of outer mitochondrial membrane 20.


Asunto(s)
Células Madre Pluripotentes Inducidas , Adenosina Trifosfato/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diferenciación Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Dominio Doblecortina , Células Madre Embrionarias/metabolismo , Ésteres/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Bovina , Sirtuina 1/metabolismo
2.
Cell Cycle ; 21(11): 1178-1193, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35298342

RESUMEN

We showed previously that POLG mutations cause major changes in mitochondrial function, including loss of mitochondrial respiratory chain (MRC) complex I, mitochondrial DNA (mtDNA) depletion and an abnormal NAD+/NADH ratio in both neural stem cells (NSCs) and astrocytes differentiated from induced pluripotent stem cells (iPSCs). In the current study, we looked at mitochondrial remodeling as stem cells transit pluripotency and during differentiation from NSCs to both dopaminergic (DA) neurons and astrocytes comparing the process in POLG-mutated and control stem cells. We saw that mitochondrial membrane potential (MMP), mitochondrial volume, ATP production and reactive oxygen species (ROS) changed in similar ways in POLG and control NSCs, but mtDNA replication, MRC complex I and NAD+ metabolism failed to remodel normally. In DA neurons differentiated from NSCs, we saw that POLG mutations caused failure to increase MMP and ATP production and blunted the increase in mtDNA and complex I. Interestingly, mitochondrial remodeling during astrocyte differentiation from NSCs was similar in both POLG-mutated and control NSCs. Further, we showed downregulation of the SIRT3/AMPK pathways in POLG-mutated cells, suggesting that POLG mutations lead to abnormal mitochondrial remodeling in early neural development due to the downregulation of these pathways. [Figure: see text].


Asunto(s)
ADN Polimerasa gamma , Células Madre Pluripotentes , Sirtuina 3 , Humanos , Adenosina Trifosfato , Proteínas Quinasas Activadas por AMP , Astrocitos/citología , Diferenciación Celular , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/genética , Mutación/genética , NAD , Células-Madre Neurales/citología , Sirtuina 3/genética
3.
FEBS J ; 289(23): 7399-7410, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34323016

RESUMEN

ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.


Asunto(s)
ADP Ribosa Transferasas , Biosíntesis de Proteínas , ADP Ribosa Transferasas/genética , Adenosina Difosfato Ribosa , Adenosina Difosfato
4.
Mech Ageing Dev ; 199: 111569, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34509469

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme in redox reactions. NAD+ is also important in cellular signalling as it is consumed by PARPs, SARM1, sirtuins and CD38. Cellular NAD+ levels regulate several essential processes including DNA repair, immune cell function, senescence, and chromatin remodelling. Maintenance of these cellular processes is important for healthy ageing and lifespan. Interestingly, the levels of NAD+ decline during ageing in several organisms, including humans. Declining NAD+ levels have been linked to several age-related diseases including various metabolic diseases and cognitive decline. Decreasing tissue NAD+ concentrations have been ascribed to an imbalance between biosynthesis and consumption of the dinucleotide, resulting from, for instance, reduced levels of the rate limiting enzyme NAMPT along with an increased activation state of the NAD+-consuming enzymes PARPs and CD38. The progression of some age-related diseases can be halted or reversed by therapeutic augmentation of NAD+ levels. NAD+ metabolism has therefore emerged as a potential target to ameliorate age-related diseases. The present review explores how ageing affects NAD+ metabolism and current approaches to reverse the age-dependent decline of NAD+.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Envejecimiento , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/metabolismo , NAD , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sirtuinas/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Animales , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/terapia , Descubrimiento de Drogas , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/terapia , NAD/biosíntesis , NAD/metabolismo , Oxidación-Reducción , Transducción de Señal
5.
Biomolecules ; 11(7)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34356669

RESUMEN

It has recently been demonstrated that the rat poison vacor interferes with mammalian NAD metabolism, because it acts as a nicotinamide analog and is converted by enzymes of the NAD salvage pathway. Thereby, vacor is transformed into the NAD analog vacor adenine dinucleotide (VAD), a molecule that causes cell toxicity. Therefore, vacor may potentially be exploited to kill cancer cells. In this study, we have developed efficient enzymatic and chemical procedures to produce vacor analogs of NAD and nicotinamide riboside (NR). VAD was readily generated by a base-exchange reaction, replacing the nicotinamide moiety of NAD by vacor, catalyzed by Aplysia californica ADP ribosyl cyclase. Additionally, we present the chemical synthesis of the nucleoside version of vacor, vacor riboside (VR). Similar to the physiological NAD precursor, NR, VR was converted to the corresponding mononucleotide (VMN) by nicotinamide riboside kinases (NRKs). This conversion is quantitative and very efficient. Consequently, phosphorylation of VR by NRKs represents a valuable alternative to produce the vacor analog of NMN, compared to its generation from vacor by nicotinamide phosphoribosyltransferase (NamPT).


Asunto(s)
Antineoplásicos/síntesis química , NAD/química , Niacinamida/análogos & derivados , Compuestos de Fenilurea/química , Compuestos de Piridinio/síntesis química , ADP-Ribosil Ciclasa/química , ADP-Ribosil Ciclasa/metabolismo , Animales , Antineoplásicos/farmacología , Aplysia/enzimología , Proliferación Celular/efectos de los fármacos , Células HEK293 , Humanos , Niacinamida/síntesis química , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
6.
Nat Commun ; 12(1): 1631, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712585

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is a key molecule in cellular bioenergetics and signalling. Various bacterial pathogens release NADase enzymes into the host cell that deplete the host's NAD+ pool, thereby causing rapid cell death. Here, we report the identification of NADases on the surface of fungi such as the pathogen Aspergillus fumigatus and the saprophyte Neurospora crassa. The enzymes harbour a tuberculosis necrotizing toxin (TNT) domain and are predominately present in pathogenic species. The 1.6 Å X-ray structure of the homodimeric A. fumigatus protein reveals unique properties including N-linked glycosylation and a Ca2+-binding site whose occupancy regulates activity. The structure in complex with a substrate analogue suggests a catalytic mechanism that is distinct from those of known NADases, ADP-ribosyl cyclases and transferases. We propose that fungal NADases may convey advantages during interaction with the host or competing microorganisms.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , NAD+ Nucleosidasa/química , NAD+ Nucleosidasa/aislamiento & purificación , NAD+ Nucleosidasa/metabolismo , ADP-Ribosil Ciclasa/metabolismo , Animales , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Modelos Moleculares , NAD/metabolismo , NAD+ Nucleosidasa/genética , Neurospora crassa/enzimología , Neurospora crassa/genética , Neurospora crassa/metabolismo , Neurospora crassa/patogenicidad , Conformación Proteica , Células Sf9 , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 116(32): 15957-15966, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31341085

RESUMEN

Nicotinamide adenine dinucleotide (NAD) provides an important link between metabolism and signal transduction and has emerged as central hub between bioenergetics and all major cellular events. NAD-dependent signaling (e.g., by sirtuins and poly-adenosine diphosphate [ADP] ribose polymerases [PARPs]) consumes considerable amounts of NAD. To maintain physiological functions, NAD consumption and biosynthesis need to be carefully balanced. Using extensive phylogenetic analyses, mathematical modeling of NAD metabolism, and experimental verification, we show that the diversification of NAD-dependent signaling in vertebrates depended on 3 critical evolutionary events: 1) the transition of NAD biosynthesis to exclusive usage of nicotinamide phosphoribosyltransferase (NamPT); 2) the occurrence of nicotinamide N-methyltransferase (NNMT), which diverts nicotinamide (Nam) from recycling into NAD, preventing Nam accumulation and inhibition of NAD-dependent signaling reactions; and 3) structural adaptation of NamPT, providing an unusually high affinity toward Nam, necessary to maintain NAD levels. Our results reveal an unexpected coevolution and kinetic interplay between NNMT and NamPT that enables extensive NAD signaling. This has implications for therapeutic strategies of NAD supplementation and the use of NNMT or NamPT inhibitors in disease treatment.


Asunto(s)
Evolución Biológica , NAD/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Células HeLa , Humanos , Cinética , Nicotinamida N-Metiltransferasa , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Filogenia , Especificidad por Sustrato , Vertebrados/metabolismo
8.
Cell Chem Biol ; 25(4): 471-482.e7, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29478906

RESUMEN

Interest in the modulation of nicotinamide adenine dinucleotide (NAD) metabolome is gaining great momentum because of its therapeutic potential in different human disorders. Suppression of nicotinamide salvage by nicotinamide phosphoribosyl transferase (NAMPT) inhibitors, however, gave inconclusive results in neoplastic patients because several metabolic routes circumvent the enzymatic block converging directly on nicotinamide mononucleotide adenylyl transferases (NMNATs) for NAD synthesis. Unfortunately, NMNAT inhibitors have not been identified. Here, we report the identification of Vacor as a substrate metabolized by the consecutive action of NAMPT and NMNAT2 into the NAD analog Vacor adenine dinucleotide (VAD). This leads to inhibition of both enzymes, as well as NAD-dependent dehydrogenases, thereby causing unprecedented rapid NAD depletion, glycolytic block, energy failure, and necrotic death of NMNAT2-proficient cancer cells. Conversely, lack of NMNAT2 expression confers complete resistance to Vacor. Remarkably, Vacor prompts VAD formation and growth suppression in NMNAT2-positive neuroblastoma and melanoma xenografts. Our data show the first evidence of harnessing the entire nicotinamide salvage pathway for antimetabolic strategies.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Compuestos de Fenilurea/farmacología , Animales , Antimetabolitos Antineoplásicos/metabolismo , Antimetabolitos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones Desnudos , Modelos Moleculares , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Compuestos de Fenilurea/metabolismo , Compuestos de Fenilurea/uso terapéutico
9.
FEBS J ; 284(23): 3999-4001, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29205912

RESUMEN

In this issue of The FEBS Journal, Munnur and Ahel describe the reversible mono-ADP-ribosylation of DNA by PARP3, a member of the poly-ADP-ribose-polymerase family known to modify proteins. They demonstrate a selective ADP-ribosylation of the 5'-phosphate group on DNA ends and show that the modification can be reversed by several known ADP-ribosylhydrolases including PARG.


Asunto(s)
ADP-Ribosilación , Adenosina Difosfato Ribosa , ADN , Roturas del ADN
10.
Methods Mol Biol ; 1608: 45-56, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695502

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is vital to many cellular processes and is distributed between distinct subcellular pools in the compartmentalized eukaryotic cell. The detection and relative quantification of these individual pools is difficult because of the methods usually applied, which require cell disruption and fractionation.Here, we describe an immunochemical method to visualize and relatively quantify subcellular NAD+ pools, which relies on the NAD+-consuming activity of poly-ADP-ribose polymerase 1 (PARP1). We demonstrate that this system can be readily applied to detect changes in the mitochondrial, Golgi, endoplasmic reticulum, and peroxisomal NAD+ pools.


Asunto(s)
Técnicas Biosensibles/métodos , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Humanos , Immunoblotting , Inmunohistoquímica , Mitocondrias/metabolismo , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
11.
J Biol Chem ; 290(45): 27124-27137, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26385918

RESUMEN

NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.


Asunto(s)
NAD/biosíntesis , Ribonucleósidos/biosíntesis , 5'-Nucleotidasa/metabolismo , Citocinas/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas , Niacina/metabolismo , Niacinamida/análogos & derivados , Niacinamida/biosíntesis , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Pentosiltransferasa/metabolismo , Fosforilación , Compuestos de Piridinio , Proteínas Recombinantes/metabolismo , Ribonucleósidos/metabolismo , Transducción de Señal , Especificidad por Sustrato
12.
Nat Commun ; 5: 3936, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24874098

RESUMEN

NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spectrally identical. Here, using genetic and pharmacological approaches to perturb NAD(P)H metabolism, we find that fluorescence lifetime imaging (FLIM) differentiates quantitatively between the two cofactors. Systematic manipulations to change the balance between oxidative and glycolytic metabolism suggest that these states do not directly impact NAD(P)H fluorescence decay rates. The lifetime changes observed in cancers thus likely reflect shifts in the NADPH/NADH balance. Using a mathematical model, we use these experimental data to quantify the relative levels of NADH and NADPH in different cell types of a complex tissue, the mammalian cochlea. This reveals NADPH-enriched populations of cells, raising questions about their distinct metabolic roles.


Asunto(s)
Cóclea/química , Glucólisis , NADP/análisis , NAD/análisis , Imagen Óptica/métodos , Oxidación-Reducción , Animales , Metabolismo Energético , Fluorescencia , Células HEK293 , Humanos , NAD/metabolismo , NADP/metabolismo , Ratas
13.
Curr Top Med Chem ; 13(23): 2907-17, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24171775

RESUMEN

NAD plays a major role in all cells as substrate for signal transduction and as cofactor in metabolic redox reactions. Since NAD-dependent signaling involves degradation of the nucleotide, continuous restoration of cellular NAD pools is essential. Moreover, NAD-dependent signaling reactions, which include ADP-ribosylation, protein deacetylation by sirtuins and calcium messenger synthesis, are regulated by NAD availability. Consequently, perturbations of NAD supply can have severe consequences and, in fact, have been associated with major human diseases such as age- and diet-induced disorders, neurodegenerative diseases and cancer. Given the increasing awareness of the biological roles of NAD, the routes, molecular mechanisms and regulation of NAD biosynthesis have been the subject of intense research over the last decade. Impressive progress has been made regarding the molecular identification, functional and structural characterization as well as regulation of the human NAD biosynthetic enzymes. Exciting therapeutic concepts have emerged, which aim at modulation of NAD availability by interfering with the biosynthetic network to prevent, reduce or reverse pathological conditions. Since there are several entry points into NAD synthesis, including the known vitamin B3 precursors nicotinamide and nicotinic acid, targeted nutritional supplementation is likely to have beneficial effects in various diseases. On the other hand, inhibition of NAD synthesis promotes cell death and has emerged as a therapeutic concept for cancer treatment.


Asunto(s)
Investigación Biomédica , Enzimas/metabolismo , NAD , Humanos , Modelos Moleculares , Estructura Molecular , NAD/antagonistas & inhibidores , NAD/biosíntesis , NAD/metabolismo , NAD/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/metabolismo
14.
J Biol Chem ; 288(48): 34555-66, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24129579

RESUMEN

Tryptophan is utilized in various metabolic routes including protein synthesis, serotonin, and melatonin synthesis and the kynurenine pathway. Perturbations in these pathways have been associated with neurodegenerative diseases and cancer. Here we present a comprehensive kinetic model of the complex network of human tryptophan metabolism based upon existing kinetic data for all enzymatic conversions and transporters. By integrating tissue-specific expression data, modeling tryptophan metabolism in liver and brain returned intermediate metabolite concentrations in the physiological range. Sensitivity and metabolic control analyses identified expected key enzymes to govern fluxes in the branches of the network. Combining tissue-specific models revealed a considerable impact of the kynurenine pathway in liver on the concentrations of neuroactive derivatives in the brain. Moreover, using expression data from a cancer study predicted metabolite changes that resembled the experimental observations. We conclude that the combination of the kinetic model with expression data represents a powerful diagnostic tool to predict alterations in tryptophan metabolism. The model is readily scalable to include more tissues, thereby enabling assessment of organismal tryptophan metabolism in health and disease.


Asunto(s)
Hígado/enzimología , Redes y Vías Metabólicas/genética , Modelos Teóricos , Triptófano/metabolismo , Humanos , Cinética , Quinurenina/metabolismo , Hígado/metabolismo , Especificidad de Órganos , Transcriptoma , Triptófano/genética
15.
FEBS J ; 280(15): 3542, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23763848

RESUMEN

ADP-ribosyltransferase ARTD1/PARP1 is a target for cancer and ischemia drug development. Several other ARTD-family enzymes have been characterized in recent years, and it has become clear that their inhibition might also have therapeutic value. This minireview series summarizes current knowledge of pharmacological inhibition of ADP-ribosyltransferases by a compound class called PARP inhibitors and the prospects for drug development.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Humanos , Isquemia/tratamiento farmacológico , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo
16.
FEBS J ; 280(15): 3483, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23773547

RESUMEN

ADP-ribosylation of proteins is a versatile post-translational modification that can alter the chemistry of a specific side chain or provide a handle for the binding of a recognition domain. A better understanding of ADP-ribosylating enzymes and their targets is opening new therapeutic opportunities. This minireview series focuses on physiological aspects of ADP-ribosylation, while a companion series focuses on drug targets.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , ADP Ribosa Transferasas/metabolismo , Animales , Humanos
17.
FEBS J ; 280(15): 3530-41, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23617329

RESUMEN

Mitochondrial metabolism is intimately connected to the universal coenzyme NAD. In addition to its role in redox reactions of energy transduction, NAD serves as substrate in regulatory reactions that lead to its degradation. Importantly, all types of the known NAD-consuming signalling reactions have been reported to take place in mitochondria. These reactions include the generation of second messengers, as well as post-translational protein modifications such as ADP-ribosylation and protein deacetylation. Therefore, the availability and redox state of NAD emerged as important factors in the regulation of mitochondrial metabolism. Molecular mechanisms and targets of mitochondrial NAD-dependent protein deacetylation and mono-ADP-ribosylation have been established, whereas poly-ADP-ribosylation and NAD-derived messenger generation in the organelles await in-depth characterization. In this review, we highlight the major NAD-dependent reactions occurring within mitochondria and describe their metabolic and regulatory functions. We also discuss the metabolic fates of the NAD-degradation products, nicotinamide and ADP-ribose, and how the mitochondrial NAD pool is restored.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Humanos , Proteínas Mitocondriales/metabolismo , Sirtuina 3/metabolismo , Sirtuinas/metabolismo
18.
Nat Rev Cancer ; 12(11): 741-52, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23018234

RESUMEN

NAD is a vital molecule in all organisms. It is a key component of both energy and signal transduction--processes that undergo crucial changes in cancer cells. NAD(+)-dependent signalling pathways are many and varied, and they regulate fundamental events such as transcription, DNA repair, cell cycle progression, apoptosis and metabolism. Many of these processes have been linked to cancer development. Given that NAD(+)-dependent signalling reactions involve the degradation of the molecule, permanent nucleotide resynthesis through different biosynthetic pathways is crucial for incessant cancer cell proliferation. This necessity supports the targeting of NAD metabolism as a new therapeutic concept for cancer treatment.


Asunto(s)
Metaboloma , NAD/metabolismo , Neoplasias/metabolismo , Transducción de Señal/fisiología , Humanos , NAD/biosíntesis
19.
FEBS J ; 279(18): 3355-63, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22404877

RESUMEN

NAD is best known as an electron carrier and a cosubstrate of various redox reactions. However, over the past 20 years, NAD(+) has been shown to be a key signaling molecule that mediates post-translational protein modifications and serves as precursor of ADP-ribose-containing messenger molecules, which are involved in calcium mobilization. In contrast to its role as a redox carrier, NAD(+)-dependent signaling processes involve the release of nicotinamide (Nam) and require constant replenishment of cellular NAD(+) pools. So far, very little is known about the evolution of NAD(P) synthesis in eukaryotes. In the present study, genes involved in NAD(P) metabolism in 45 species were identified and analyzed with regard to similarities and differences in NAD(P) synthesis. The results show that the Preiss-Handler pathway and NAD(+) kinase are present in all organisms investigated, and thus seem to be ancestral routes. Additionally, two pathways exist that convert Nam to NAD(+); we identified several species that have apparently functional copies of both biosynthetic routes, which have been thought to be mutually exclusive. Furthermore, our findings suggest the parallel phylogenetic appearance of Nam N-methyltransferase, Nam phosphoribosyl transferase, and poly-ADP-ribosyltransferases.


Asunto(s)
NAD/biosíntesis , Adenosina Difosfato Ribosa/metabolismo , Animales , Eucariontes/metabolismo , Humanos , Redes y Vías Metabólicas , Niacinamida/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Filogenia , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo
20.
J Biol Chem ; 287(20): 16088-102, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22433848

RESUMEN

Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3(-/-) mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Glicósido Hidrolasas/metabolismo , Mitocondrias/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Células 3T3 , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Exones/fisiología , Proteínas Activadoras de GTPasa/genética , Glicósido Hidrolasas/genética , Células HeLa , Células Hep G2 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Mitocondrias/genética , Poli Adenosina Difosfato Ribosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA