Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Exp Cell Res ; 437(1): 113995, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490621

RESUMEN

PURPOSE: Oral Squamous Cell Carcinoma (OSCC) is the 6th most common cancer worldwide. It is generally aggressive and closely associated with chemoresistance and poor survival. There is accumulating evidence for the involvement of inhibitors of apoptosis proteins (IAPs), including IAP1 and XIAP, in mediating chemotherapy resistance in OSCC. Various strategies for targeting IAPs have been designed and tested in recent years and several small molecule IAP inhibitors are in clinical trials as monotherapies as well as in combination with radiotherapy and chemotherapy. The purpose of this study was to evaluate and compare the efficacy and biological activity of three IAP inhibitors both as stand-alone and sensitising agents to cisplatin in a preclinical model of squamous cell carcinoma of the tongue. METHODS: Cisplatin-sensitive SCC4 and -resistant SCC4cisR cells were utilised in this study. Apoptosis was evaluated by flow cytometric analysis of Annexin V/Propidium Iodide-stained cells. Expression of IAP proteins was determined by western blotting and knockdown of cIAP1, livin and XIAP was conducted by transfection of cells with siRNA. RESULTS: We establish for the first time the therapeutic efficacy of the Smac mimetic, BV6 and the XIAP inhibitor Embelin, for OSCC. Both of these IAP targeting agents synergistically enhanced cisplatin-mediated apoptotic cell death in resistant cells which was mediated in part by depletion of XIAP. In addition, knockdown of XIAP using siRNA enhanced cisplatin-mediated cell death, demonstrating the importance of targeting XIAP in this sensitisation. CONCLUSION: These findings provide pre-clinical evidence that IAP inhibition may be a valuable therapeutic option in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Cisplatino/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Línea Celular Tumoral , Neoplasias de la Boca/tratamiento farmacológico , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Proteínas Portadoras , ARN Interferente Pequeño
2.
Bioorg Chem ; 141: 106877, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37804699

RESUMEN

The synthesis and biochemical activity of a series of chiral trans 3-hydroxyl ß-lactams targeting tubulin is described. Synthesis of the series of enantiopure ß-lactams was achieved using chiral derivatising reagent N-Boc-l-proline. The absolute configuration was determined as 3S,4S for (+) enantiomer 4EN1 and 3R,4R for (-) enantiomer 4EN2. Antiproliferative studies identified chiral 3S,4S b-lactams with subnanomolar IC50 values across a range of cancer cell lines, improving potency with respect to the corresponding racemates. Fluoro-substituted (+)-(3S,4S)-4-(3-fluoro-4-methoxyphenyl)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (27EN1) was determined as the lead eutomer with dual antiproliferative activity in triple negative breast cancer cells (TNBC), and combretastatin A-4 resistant HT-29 colorectal cancer cells. IC50 values were in the range of 0.26-0.7 nM across four cell lines. Tubulin polymerisation assays, confocal microscopy and molecular modelling studies indicated that 3S,4S eutomers are microtubule destabilisers, while 3R,4R distomers have lower potency as microtubule destabilisers. 27EN1 demonstrated anti-mitotic and pro-apoptotic activity in MDA-MB-231 and HT-29 cells in addition to selective toxicity toward MCF-7 breast cancer versus non-tumorigenic MCF-10-2A cells. The related 3S,4S ß-lactam eutomer 4EN1 downregulated expression of key cell survival anti-apoptotic proteins Bcl-2 and Mcl-1 in MDA-MB-231 cells while 27EN1 downregulated Mcl-1 in HT-29 cells. Chiral ß-lactam 27EN1 will be further developed for treatment of TNBC and CA-4 resistant colorectal cancers.


Asunto(s)
Neoplasias Colorrectales , Neoplasias de la Mama Triple Negativas , Humanos , Lactamas/farmacología , Tubulina (Proteína)/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Relación Estructura-Actividad , Microtúbulos/metabolismo , beta-Lactamas/química , Neoplasias Colorrectales/tratamiento farmacológico
3.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513912

RESUMEN

A series of novel 3-(prop-1-en-2-yl)azetidin-2-one, 3-allylazetidin-2-one and 3-(buta-1,3-dien-1-yl)azetidin-2-one analogues of combretastatin A-4 (CA-4) were designed and synthesised as colchicine-binding site inhibitors (CBSI) in which the ethylene bridge of CA-4 was replaced with a ß-lactam (2-azetidinone) scaffold. These compounds, together with related prodrugs, were evaluated for their antiproliferative activity, cell cycle effects and ability to inhibit tubulin assembly. The compounds demonstrated significant in vitro antiproliferative activities in MCF-7 breast cancer cells, particularly for compounds 9h, 9q, 9r, 10p, 10r and 11h, with IC50 values in the range 10-33 nM. These compounds were also potent in the triple-negative breast cancer (TBNC) cell line MDA-MB-231, with IC50 values in the range 23-33 nM, and were comparable with the activity of CA-4. The compounds inhibited the polymerisation of tubulin in vitro, with significant reduction in tubulin polymerization, and were shown to interact at the colchicine-binding site on tubulin. Flow cytometry demonstrated that compound 9q arrested MCF-7 cells in the G2/M phase and resulted in cellular apoptosis. The antimitotic properties of 9q in MCF-7 human breast cancer cells were also evaluated, and the effect on the organization of microtubules in the cells after treatment with compound 9q was observed using confocal microscopy. The immunofluorescence results confirm that ß-lactam 9q is targeting tubulin and resulted in mitotic catastrophe in MCF-7 cells. In silico molecular docking supports the hypothesis that the compounds interact with the colchicine-binding domain of tubulin. Compound 9q is a novel potent microtubule-destabilising agent with potential as a promising lead compound for the development of new antitumour agents.

4.
J Cancer Res Clin Oncol ; 149(11): 8379-8391, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37079050

RESUMEN

PURPOSE: Malignant rhabdoid tumour (MRT) is a rare and aggressive childhood malignancy that occurs in the kidneys or central nervous system and is associated with very poor prognosis. Chemoresistance is a major issue in the treatment of this malignancy leading to an urgent need for a greater understanding of its underlying mechanisms in MRT and novel treatment strategies for MRT patients. The balance between oxidative stress mediated by reactive oxygen species (ROS) and the antioxidant system has become a subject of interest in cancer therapy research. Studies have implicated key players of the antioxidant system in chemotherapeutic including the well-known antioxidant glutathione (GSH) and the transcription factor nuclear erythroid-related factor-2 (Nrf2).   METHODS: This study evaluated the role of these components in the response of MRT cells to treatment with the commonly used chemotherapeutic agent, cisplatin. RESULTS: This study characterised the basal levels of GSH, ROS and Nrf2 in a panel of MRT cell lines and found a correlation between the expression profile of the antioxidant defence system and cisplatin sensitivity. Results showed that treatment with ROS scavenger N-acetylcysteine (NAC) protected cells from cisplatin-induced ROS and apoptosis. Interestingly, depleting GSH levels with the inhibitor buthionine sulphoximine (BSO) enhanced cisplatin-induced ROS and sensitised cells to cisplatin. Lastly, targeting Nrf2 with the small molecule inhibitor ML385 or by siRNA diminished GSH levels, enhanced ROS and sensitised resistant MRT cells to cisplatin. CONCLUSIONS: These results suggest that targeting the Nrf2/GSH antioxidant system may present a novel therapeutic strategy to combat chemoresistance in rhabdoid tumours.


Asunto(s)
Cisplatino , Tumor Rabdoide , Humanos , Niño , Cisplatino/farmacología , Antioxidantes/farmacología , Tumor Rabdoide/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Butionina Sulfoximina , Apoptosis , Línea Celular Tumoral
5.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36145265

RESUMEN

The stilbene combretastatin A-4 (CA-4) is a potent microtubule-disrupting agent interacting at the colchicine-binding site of tubulin. In the present work, the synthesis, characterisation and mechanism of action of a series of 3-fluoro and 3,3-difluoro substituted ß-lactams as analogues of the tubulin-targeting agent CA-4 are described. The synthesis was achieved by a convenient microwave-assisted Reformatsky reaction and is the first report of 3-fluoro and 3,3-difluoro ß-lactams as CA-4 analogues. The ß-lactam compounds 3-fluoro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxy phenyl)azetidin-2-one 32 and 3-fluoro-4-(3-fluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) 33 exhibited potent activity in MCF-7 human breast cancer cells with IC50 values of 0.075 µM and 0.095 µM, respectively, and demonstrated low toxicity in non-cancerous cells. Compound 32 also demonstrated significant antiproliferative activity at nanomolar concentrations in the triple-negative breast cancer cell line Hs578T (IC50 0.033 µM), together with potency in the invasive isogenic subclone Hs578Ts(i)8 (IC50 = 0.065 µM), while 33 was also effective in MDA-MB-231 cells (IC50 0.620 µM). Mechanistic studies demonstrated that 33 inhibited tubulin polymerisation, induced apoptosis in MCF-7 cells, and induced a downregulation in the expression of anti-apoptotic Bcl2 and survivin with corresponding upregulation in the expression of pro-apoptotic Bax. In silico studies indicated the interaction of the compounds with the colchicine-binding site, demonstrating the potential for further developing novel cancer therapeutics as microtubule-targeting agents.

6.
Cancers (Basel) ; 14(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35954391

RESUMEN

Drug resistance limits the effectiveness of oesophageal adenocarcinoma (OAC) chemotherapies, leading to a poor prognosis for this disease. Elucidation of the underlying resistance mechanisms is key to enabling the identification of more effective treatments. This study, therefore, aims to identify novel therapeutic and/or chemotherapy sensitising drug targets in OAC. Transcriptional data from a cohort of 273 pre-treatment OAC biopsies, from patients who received neoadjuvant chemotherapy followed by surgical resection, were analysed using gene set enrichment analysis (GSEA) to determine differential gene expression between responding and non-responding OAC tumours. From this, 80 genes were selected for high-throughput siRNA screening in OAC cell lines with or without standard chemotherapy treatment. In parallel, cell viability assays were performed using a panel of FDA-approved drugs and combination index (CI) values were calculated to evaluate drug synergy with standard chemotherapy. Mechanisms of synergy were investigated using western blot, propidium iodide flow cytometry, and proliferation assays. Taken together, the screens identified that targeting Src, using either siRNA or the small molecule inhibitor dasatinib, enhanced the efficacy of chemotherapy in OAC cells. Further in vitro functional analysis confirmed Src inhibition to be synergistic with standard OAC chemotherapies, 5-fluorouracil (5-FU), and cisplatin (CDDP). In conclusion, a compound screen together with a functional genomic approach identified Src as a potential chemosensitising target in OAC, which could be assessed in a clinical study for poor prognosis OAC patients.

7.
Cancer Treat Res Commun ; 32: 100584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35679755

RESUMEN

Malignant rhabdoid tumour (MRT) is a rare and aggressive paediatric tumour that typically arises in the kidneys or central nervous system (CNS). The malignancy often affects patients under the age of three and is associated with an extremely poor survival rate, with most deaths occurring within the first year of presentation. Thus, there is an unmet and urgent medical need for novel therapeutic strategies for this malignancy. One of the major issues when treating MRT patients is the emergence of chemoresistance. Autophagy has become an area of focus in the study of chemoresistance due to its reported dual role as both a pro-survival and pro-death mechanism. The role of autophagy in the chemotherapeutic response of MRT remains largely unknown. A greater understanding of the role of autophagy may lead to the development of therapeutic strategies to enhance chemotherapeutic effect and improve the clinical outcome of MRT patients. This study evaluated the cellular response to cisplatin, a representative chemotherapeutic agent used in the treatment of MRT, and the role of autophagy in mediating cisplatin resistance. Our results demonstrated that cisplatin induced apoptosis and autophagy concomitantly in a panel of MRT cell lines. Furthermore, inhibition of caspase-induced apoptosis with Z-VAD-FMK also inhibited autophagy levels demonstrating a complex interplay between these two pathways. In addition, blocking autophagy at the early stages of the autophagic process using the pharmacological inhibitor SAR405 or through the genetic knockdown of critical autophagic protein ATG5 by siRNA did not sensitise cells to cisplatin-induced apoptosis. Collectively, these results suggest that induction of autophagy does not appear to elicit a pro-survival effect in the chemotherapeutic response of MRT cells.


Asunto(s)
Antineoplásicos , Tumor Rabdoide , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Autofagia , Niño , Cisplatino/farmacología , Cisplatino/uso terapéutico , Humanos , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología
8.
Cancer Treat Res Commun ; 32: 100579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35613525

RESUMEN

Malignant rhabdoid tumour (MRT) is a rare, aggressive paediatric malignancy most commonly diagnosed in those below the age of three. MRTs can arise in soft tissue but are more often associated with the central nervous system or kidney. Unfortunately, the prognosis upon diagnosis with MRT is poor. Given the resistance of MRT to current treatment protocols including cisplatin, and the vulnerability of this young patient population to aggressive therapies, there is a need for novel treatment options. Several members of the inhibitor of apoptosis protein (IAP) family including X­linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/cIAP2), livin and survivin have been implicated in chemotherapy resistance in various malignancies. We have previously demonstrated expression of these IAP family members in a panel of MRT cell lines. In the present study, sensitivity of this same panel of MRT cell lines to small-molecule mediated inhibition of the IAPs via the survivin inhibitor YM155 and the XIAP/cIAP1/cIAP2 inhibitor BV6 was demonstrated. Additionally, both BV6 and the XIAP inhibitor embelin synergistically enhanced cisplatin mediated apoptotic cell death in MRT cell lines, with enhanced caspase-3 cleavage. Importantly, we have demonstrated, for the first time, expression of XIAP, its target caspase-3 and its endogenous inhibitor SMAC in rhabdoid tumour patient tissue. In conclusion, this study provides pre-clinical evidence that IAP inhibition may be a new therapeutic option in MRT.


Asunto(s)
Cisplatino , Proteínas Inhibidoras de la Apoptosis , Tumor Rabdoide , Antineoplásicos/uso terapéutico , Caspasa 3/metabolismo , Línea Celular Tumoral , Niño , Cisplatino/farmacología , Cisplatino/uso terapéutico , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/metabolismo , Tumor Rabdoide/tratamiento farmacológico , Survivin
9.
Eur J Med Chem ; 235: 114274, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344902

RESUMEN

Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment. Microtubule-targeting agents (MTAs) are some of the most successful anti-cancer drugs used in the clinic to date. Scaling up our efforts to develop new anti-cancer agents, we rationally designed multifunctional agents 5a-l with improved potency and safety that combine tubulin depolymerising efficacy with autophagic flux inhibitory activity. Through a combination of computational, biological, biochemical, pharmacokinetic-safety, metabolic studies and SAR analyses we identified the hits 5i,k. These MTAs were characterised as potent pro-apoptotic agents and also demonstrated autophagy inhibition efficacy. To measure their efficacy at inhibiting autophagy, we investigated their effects on basal and starvation-mediated autophagic flux by quantifying the expression of LC3II/LC3I and p62 proteins in oral squamous cell carcinoma and human leukaemia through western blotting and by immunofluorescence study of LC3 and LAMP1 in a cervical carcinoma cell line. Analogues 5i and 5k, endowed with pro-apoptotic activity on a range of hematological cancer cells (including ex-vivo chronic lymphocytic leukaemia (CLL) cells) and several solid tumor cell lines, also behaved as late-stage autophagy inhibitors by impairing autophagosome-lysosome fusion.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de la Boca , Antineoplásicos/metabolismo , Apoptosis , Autofagia , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Microtúbulos , Neoplasias de la Boca/tratamiento farmacológico
10.
Life Sci ; 290: 120236, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953891

RESUMEN

AIMS: We have recently described a novel guanidinium-based compound, VP79s, which induces cytotoxicity in various cancer cell lines. Here, we aim to investigate the activity of VP79s and associated mechanisms of action in multiple myeloma (MM) cells in vitro and ex vivo. MAIN METHODS: The effects of VP79s on cell viability and induction of apoptosis was examined in a panel of drug-sensitive and drug-resistant MM cell lines, as well as ex vivo patient samples and normal donor lymphocytes and platelets. Cell signaling pathways associated with the biological effects of VP79s were analysed by immunoblotting and flow cytometry. Gene expression changes were assessed by quantitative real-time PCR analysis. KEY FINDINGS: VP79s was found to rapidly inhibit both constitutively active and IL-6-induced STAT3 signaling with concurrent downregulation of the IL-6 receptors, CD130 and CD126. VP79s induced a rapid and dose-dependent downregulation of anti-apoptotic Bcl-2 family member, myeloid cell leukaemia-1 (MCL-1). VP79s enhanced bortezomib induced cell death and was also found to overcome bone marrow stromal cell induced drug resistance. VP79s exhibited activity in ex vivo patient samples at concentrations which had no effect on peripheral blood mononuclear cells, lymphocytes and platelets isolated from healthy donors. SIGNIFICANCE: As VP79s resulted in rapid inhibition of the key IL-6/STAT3 signaling pathway and downregulation of MCL-1 expression with subsequent selective anti-myeloma activity, VP79s may be a potential therapeutic agent with a novel mechanism of action in MM cells.


Asunto(s)
Guanidina/farmacología , Mieloma Múltiple/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Expresión Génica/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/genética , Guanidina/análogos & derivados , Humanos , Interleucina-6/metabolismo , Janus Quinasa 1/metabolismo , Quinasas Janus/metabolismo , Leucemia/tratamiento farmacológico , Leucocitos Mononucleares/metabolismo , Mieloma Múltiple/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Mieloides , Factor de Transcripción STAT3/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Pharmacol Res ; 174: 105965, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34732370

RESUMEN

Survival and expansion of malignant B cells in chronic lymphocytic leukemia (CLL) are highly dependent both on intrinsic defects in the apoptotic machinery and on the interactions with cells and soluble factors in the lymphoid microenvironment. The adaptor protein p66Shc is a negative regulator of antigen receptor signaling, chemotaxis and apoptosis whose loss in CLL B cells contributes to their extended survival and poor prognosis. Hence, the identification of compounds that restore p66Shc expression and function in malignant B cells may pave the way to a new therapeutic approach for CLL. Here we show that a novel oxazepine-based compound (OBC-1) restores p66Shc expression in primary human CLL cells by promoting JNK-dependent STAT4 activation without affecting normal B cells. Moreover, we demonstrate that the potent pro-apoptotic activity of OBC-1 in human leukemic cells directly correlates with p66Shc expression levels and is abrogated when p66Shc is genetically deleted. Preclinical testing of OBC-1 and the novel analogue OBC-2 in Eµ-TCL1 tumor-bearing mice resulted in a significantly longer overall survival and a reduction of the tumor burden in the spleen and peritoneum. Interestingly, OBCs promote leukemic cell mobilization from the spleen to the blood, which correlates with upregulation of sphingosine-1-phosphate receptor expression. In summary, our work identifies OBCs as a promising class of compounds that, by boosting p66Shc expression through the activation of the JNK/STAT4 pathway, display dual therapeutic effects for CLL intervention, namely the ability to mobilize cells from secondary lymphoid organs and a potent pro-apoptotic activity against circulating leukemic cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Oxazepinas/uso terapéutico , Animales , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones Transgénicos , Oxazepinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
12.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34832901

RESUMEN

Antimitotic drugs that target tubulin are among the most widely used chemotherapeutic agents; however, the development of multidrug resistance has limited their clinical activity. We report the synthesis and biological properties of a series of novel 3-chloro-ß-lactams and 3,3-dichloro-ß-lactams (2-azetidinones) that are structurally related to the tubulin polymerisation inhibitor and vascular targeting agent, Combretastatin A-4. These compounds were evaluated as potential tubulin polymerisation inhibitors and for their antiproliferative effects in breast cancer cells. A number of the compounds showed potent activity in MCF-7 breast cancer cells, e.g., compound 10n (3-chloro-4-(3-hydroxy-4-methoxy-phenyl)-1-(3,4,5-trimethoxyphenyl)azetidin-2-one) and compound 11n (3,3-dichloro-4-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-azetidin-2-one), with IC50 values of 17 and 31 nM, respectively, and displayed comparable cellular effects to those of Combretastatin A-4. Compound 10n demonstrated minimal cytotoxicity against non-tumorigenic HEK-293T cells and inhibited the in vitro polymerisation of tubulin with significant G2/M phase cell cycle arrest. Immunofluorescence staining of MCF-7 cells confirmed that ß-lactam 10n caused a mitotic catastrophe by targeting tubulin. In addition, compound 10n promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2 and Mcl-1. Molecular docking was used to explore the potential molecular interactions between novel 3-chloro-ß-lactams and the amino acid residues of the colchicine binding active site cavity of ß-tubulin. Collectively, these results suggest that 3-chloro-2-azetidinones, such as compound 10n, could be promising lead compounds for further clinical anti-cancer drug development.

13.
Toxicol Appl Pharmacol ; 427: 115646, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34274415

RESUMEN

Oral Squamous Cell Carcinoma (OSCC) is the sixth most common cancer worldwide. Chemoresistance is a critical problem in OSCC leading to therapeutic failure and tumour recurrence. Recently, autophagy has acquired an emerging interest in cancer as it has been shown to be frequently activated in tumour cells treated with chemotherapeutics. Whether drug-induced autophagy represents a mechanism that allows cancer cells to survive or a pro-death mechanism associated with apoptosis remains controversial. This study evaluated the cellular response to cisplatin and the role of autophagy in mediating cisplatin resistance in OSCC cells. Our results demonstrated that cisplatin concurrently induced apoptosis and autophagy in OSCC cell lines partially through the ROS/JNK pathway. Moreover, inhibition of cisplatin-induced apoptosis abrogated autophagy, indicating a complex interplay between these pathways. Cisplatin-induced autophagy does not appear to elicit a pro-survival effect in OSCC as early-stage autophagy inhibition, using either a pharmacological inhibitor or knockdown of the key autophagy protein ATG5, did not sensitise cells to cisplatin. Additionally, autophagy did not play a role in acquired resistance to cisplatin in our novel cisplatin-resistant OSSC cell line (SCC-4cisR) obtained by pulsed stepwise exposure of SCC-4 cells to cisplatin (~14-fold change in sensitivity). There was no change in the basal levels of autophagy in the SCC-4cisR cells compared to the SCC-4 cells. Furthermore, a significant increase in cisplatin-induced autophagy was observed only in the SCC-4 cells, but not in the derived SCC-4cisR cells. Collectively, these data indicate that autophagy may not be implicated in acquired cisplatin resistance in OSCC.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/fisiología , Autofagia/fisiología , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/uso terapéutico , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Humanos
14.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671674

RESUMEN

We report the synthesis and biochemical evaluation of compounds that are designed as hybrids of the microtubule targeting benzophenone phenstatin and the aromatase inhibitor letrozole. A preliminary screening in estrogen receptor (ER)-positive MCF-7 breast cancer cells identified 5-((2H-1,2,3-triazol-1-yl)(3,4,5-trimethoxyphenyl)methyl)-2-methoxyphenol 24 as a potent antiproliferative compound with an IC50 value of 52 nM in MCF-7 breast cancer cells (ER+/PR+) and 74 nM in triple-negative MDA-MB-231 breast cancer cells. The compounds demonstrated significant G2/M phase cell cycle arrest and induction of apoptosis in the MCF-7 cell line, inhibited tubulin polymerisation, and were selective for cancer cells when evaluated in non-tumorigenic MCF-10A breast cells. The immunofluorescence staining of MCF-7 cells confirmed that the compounds targeted tubulin and induced multinucleation, which is a recognised sign of mitotic catastrophe. Computational docking studies of compounds 19e, 21l, and 24 in the colchicine binding site of tubulin indicated potential binding conformations for the compounds. Compounds 19e and 21l were also shown to selectively inhibit aromatase. These compounds are promising candidates for development as antiproliferative, aromatase inhibitory, and microtubule-disrupting agents for breast cancer.

15.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371382

RESUMEN

We previously identified a guanidinium-based lead compound that inhibited BRAF through a hypothetic type-III allosteric mechanism. Considering the pharmacophore identified in this lead compound (i.e., "lipophilic group", "di-substituted guanidine", "phenylguanidine polar end"), several modifications were investigated to improve its cytotoxicity in different cancer cell lines. Thus, several lipophilic groups were explored, the di-substituted guanidine was replaced by a secondary amine and the phenyl ring in the polar end was substituted by a pyridine. In a structure-based design approach, four representative derivatives were docked into an in-house model of an active triphosphate-containing BRAF protein, and the interactions established were analysed. Based on these computational studies, a variety of derivatives was synthesized, and their predicted drug-like properties calculated. Next, the effect on cell viability of these compounds was assessed in cell line models of promyelocytic leukaemia and breast, cervical and colorectal carcinomas. The potential of a selection of these compounds as apoptotic agents was assessed by screening in the promyelocytic leukaemia cell line HL-60. The toxicity against non-tumorigenic epithelial MCF10A cells was also investigated. These studies allowed for several structure-activity relationships to be derived. Investigations on the mechanism of action of representative compounds suggest a divergent effect on inhibition of the MAPK/ERK signalling pathway.

16.
ACS Med Chem Lett ; 11(11): 2268-2276, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33214839

RESUMEN

Histone deacetylase inhibitors (HDACi) have emerged as promising therapeutics for the treatment of neurodegeneration, cancer, and rare disorders. Herein, we report the development of a series of spiroindoline-based HDAC6 isoform-selective inhibitors based on the X-ray crystal studies of the hit 6a. We identified compound 6j as the most potent and selective hHDAC6 inhibitor of the series. Biological investigation of compounds 6b, 6h, and 6j demonstrated their antiproliferative activity against several cancer cell lines. Western blotting studies indicated that they were able to increase tubulin acetylation, without significant variation in histone acetylation state, and induced PARP cleavage indicating their apoptotic potential at the molecular level. 6j induced HDAC6-dependent pSTAT3 inhibition.

17.
Bioorg Med Chem ; 28(5): 115261, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31987694

RESUMEN

4-Aryl-4H-Chromene derivatives have been previously shown to exhibit anti-proliferative, apoptotic and anti-angiogenic activity in a variety of tumor models in vitro and in vivo generally via activation of caspases through inhibition of tubulin polymerisation. We have previously identified by Virtual Screening (VS) a 4-aryl-4H-chromene scaffold, of which two examples were shown to bind Estrogen Receptor α and ß with low nanomolar affinity and <20-fold selectivity for α over ß and low micromolar anti-proliferative activity in the MCF-7 cell line. Thus, using the 4-aryl-4H-chromene scaffold as a starting point, a series of compounds with a range of basic arylethers at C-4 and modifications at the C3-ester substituent of the benzopyran ring were synthesised, producing some potent ER antagonists in the MCF-7 cell line which were highly selective for ERα (compound 35; 350-fold selectivity) or ERß (compound 42; 170-fold selectivity).


Asunto(s)
Antineoplásicos/farmacología , Benzopiranos/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Antineoplásicos/química , Benzopiranos/química , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Modelos Moleculares , Estructura Molecular
18.
Eur J Med Chem ; 189: 112050, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31954879

RESUMEN

A series of novel 1,4-diaryl-2-azetidinone analogues of combretastatin A-4 (CA-4) have been designed, synthesised and evaluated in vitro for antiproliferative activity, antiapoptotic activity and inhibition of tubulin polymerisation. Glucuronidation of CA-4 by uridine 5-diphosphoglucuronosyl transferase enzymes (UGTs) has been identified as a mechanism of resistance in cancer cells. Potential sites of ring B glucuronate conjugation are removed by replacing the B ring meta-hydroxy substituent of selected series of ß-lactams with alternative substituents e.g. F, Cl, Br, I, CH3. The 3-phenyl-ß-lactam 11 and 3-hydroxy-ß-lactam 46 demonstrate improved activity over CA-4 in CA-4 resistant HT-29 colon cancer cells (IC50 = 9 nM and 3 nM respectively compared with IC50 = 4.16 µM for CA-4), while retaining potency in MCF-7 breast cancer cells (IC50 = 17 nM and 22 nM respectively compared with IC50 = for 4 nM for CA-4). Compound 46 binds at the colchicine site of tubulin, and strongly inhibits tubulin assembly at micromolar concentrations comparable to CA-4. In addition, compound 46 induced mitotic arrest at low concentration in both cell lines MCF-7 and HT-29 together with downregulation of expression of antiapoptotic proteins Mcl-1, Bcl-2 and survivin in MCF-7 cells. These novel antiproliferative and antiapoptotic ß-lactams are potentially useful scaffolds in the development of tubulin-targeting agents for the treatment of breast cancers and chemoresistant colon cancers.


Asunto(s)
Antineoplásicos/farmacología , beta-Lactamas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Necrosis/inducido químicamente , Unión Proteica , Estilbenos/química , Survivin/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacología , beta-Lactamas/síntesis química , beta-Lactamas/metabolismo
19.
Curr Top Med Chem ; 20(6): 433-457, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31894749

RESUMEN

Telomeres are protective chromosomal ends that shield the chromosomes from DNA damage, exonucleolytic degradation, recombination, and end-to-end fusion. Telomerase is a ribonucleoprotein that adds TTAGGG tandem repeats to the telomeric ends. It has been observed that 85 to 90% of human tumors express high levels of telomerase, playing a crucial role in the development of cancers. Interestingly, the telomerase activity is generally absent in normal somatic cells. This selective telomerase expression has driven scientists to develop novel anti-cancer therapeutics with high specificity and potency. Several advancements have been made in this area, which is reflected by the enormous success of the anticancer agent Imetelstat. Since the discovery of Imetelstat, several research groups have contributed to enrich the therapeutic arsenal against cancer. Such contributions include the application of new classes of small molecules, peptides, and hTERT-based immunotherapeutic agents (p540, GV1001, GRNVAC1 or combinations of these such as Vx-001). Many of these therapeutic tools are under different stages of clinical trials and have shown promising outcomes. In this review, we highlight the current status of telomerase-based cancer therapeutics and the outcome of these investigations.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Telomerasa/antagonistas & inhibidores , Antineoplásicos/química , Ensayos Clínicos como Asunto , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/efectos de los fármacos , Telómero/genética , Telómero/metabolismo
20.
Med Res Rev ; 40(3): 1002-1060, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31742748

RESUMEN

Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.


Asunto(s)
Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Neoplasias de la Boca/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Consumo de Bebidas Alcohólicas , Antineoplásicos/farmacología , Autofagosomas/metabolismo , Biomarcadores/metabolismo , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas de Esófago/radioterapia , Predisposición Genética a la Enfermedad , Humanos , Lisosomas/metabolismo , Neoplasias de la Boca/radioterapia , Pronóstico , Radioterapia/métodos , Transducción de Señal , Productos de Tabaco , Virosis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA