Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Cell Death Dis ; 15(3): 212, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485719

RESUMEN

During the maturation of hematopoietic stem/progenitor cells (HSPCs) to fully differentiated mature B lymphocytes, developing lymphocytes may undergo malignant transformation and produce B-cell lymphomas. Emerging evidence shows that through the endothelial-hematopoietic transition, specialized endothelial cells called the hemogenic endothelium can differentiate into HSPCs. However, the contribution of genetic defects in hemogenic endothelial cells to B-cell lymphomagenesis has not yet been investigated. Here, we report that mice with endothelial cell-specific deletion of Fbw7 spontaneously developed diffuse large B-cell lymphoma (DLBCL) following Bcl6 accumulation. Using lineage tracing, we showed that B-cell lymphomas in Fbw7 knockout mice were hemogenic endothelium-derived. Mechanistically, we found that FBW7 directly interacted with Bcl6 and promoted its proteasomal degradation. FBW7 expression levels are inversely correlated with BCL6 expression. Additionally, pharmacological disruption of Bcl6 abolished Fbw7 deletion-induced B-cell lymphomagenesis. We conclude that selective deletion of E3 ubiquitin ligase FBW7 in VE-cadherin positive endothelial cells instigates diffuse large B-cell lymphoma via upregulation of BCL6 stability. In addition, the mice with endothelial cell-specific deletion of Fbw7 provide a valuable preclinical platform for in vivo development and evaluation of novel therapeutic interventions for the treatment of DLBCL.


Asunto(s)
Antígenos CD , Cadherinas , Linfoma de Células B Grandes Difuso , Ubiquitina-Proteína Ligasas , Animales , Ratones , Células Endoteliales/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Ratones Noqueados , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Sci Rep ; 14(1): 1713, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242911

RESUMEN

Ketone bodies serve as an energy source, especially in the absence of carbohydrates or in the extended exercise. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a crucial energy sensor that regulates lipid and glucose metabolism. However, whether AMPK regulates ketone metabolism in whole body is unclear even though AMPK regulates ketogenesis in liver. Prolonged resulted in a significant increase in blood and urine levels of ketone bodies in wild-type (WT) mice. Interestingly, fasting AMPKα2-/- and AMPKα1-/- mice exhibited significantly higher levels of ketone bodies in both blood and urine compared to fasting WT mice. BHB tolerance assays revealed that both AMPKα2-/- and AMPKα1-/- mice exhibited slower ketone consumption compared to WT mice, as indicated by higher blood BHB or urine BHB levels in the AMPKα2-/- and AMPKα1-/- mice even after the peak. Interestingly, fasting AMPKα2-/- and AMPKα1-/- mice exhibited significantly higher levels of ketone bodies in both blood and urine compared to fasting WT mice. . Specifically, AMPKα2ΔMusc mice showed approximately a twofold increase in blood BHB levels, and AMPKα2ΔMyo mice exhibited a 1.5-fold increase compared to their WT littermates after a 48-h fasting. However, blood BHB levels in AMPKα1ΔMusc and AMPKα1ΔMyo mice were as same as in WT mice. Notably, AMPKα2ΔMusc mice demonstrated a slower rate of BHB consumption in the BHB tolerance assay, whereas AMPKα1ΔMusc mice did not show such an effect. Declining rates of body weights and blood glucoses were similar among all the mice. Protein levels of SCOT, the rate-limiting enzyme of ketolysis, decreased in skeletal muscle of AMPKα2-/- mice. Moreover, SCOT protein ubiquitination increased in C2C12 cells either transfected with kinase-dead AMPKα2 or subjected to AMPKα2 inhibition. AMPKα2 physiologically binds and stabilizes SCOT, which is dependent on AMPKα2 activity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Cuerpos Cetónicos , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Ayuno , Cetonas , Ratones Noqueados , Ubiquitinación , Coenzima A Transferasas/metabolismo
3.
Am J Respir Cell Mol Biol ; 70(1): 39-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37713305

RESUMEN

Increasing evidence suggests that mitochondrial dysfunction in pulmonary endothelial cells (ECs) plays a causative role in the initiation and progression of pulmonary hypertension (PH); how mitochondria become dysfunctional in PH remains elusive. Mitochondria-derived vesicles (MDVs) are small subcellular vesicles that excise from mitochondria. Whether MDV deregulation causes mitochondrial dysfunction in PH is unknown. The aim of this study was to determine MDV regulation in ECs and to elucidate how MDV deregulation in ECs leads to PH. MDV formation and mitochondrial morphology/dynamics were examined in ECs of EC-specific liver kinase B1 (LKB1) knockout mice (LKB1ec-/-), in monocrotaline-induced PH rats, and in lungs of patients with PH. Pulmonary ECs of patients with PH and hypoxia-treated pulmonary ECs exhibited increased mitochondrial fragmentation and disorganized mitochondrial ultrastructure characterized by electron lucent-swelling matrix compartments and concentric layering of the cristae network, together with defective MDV shedding. MDVs actively regulated mitochondrial membrane dynamics and mitochondrial ultrastructure via removing mitofission-related cargoes. The shedding of MDVs from parental mitochondria required LKB1-mediated mitochondrial recruitment of Rab9 GTPase. LKB1ec-/- mice spontaneously developed PH with decreased mitochondrial pools of Rab9 GTPase, defective MDV shedding, and disequilibrium of the mitochondrial fusion-fission cycle in pulmonary ECs. Aerosol intratracheal delivery of adeno-associated virus LKB1 reversed PH, together with improved MDV shedding and mitochondrial function in rats in vivo. We conclude that LKB1 regulates MDV shedding and mitochondrial dynamics in pulmonary ECs by enhancing mitochondrial recruitment of Rab9 GTPase. Defects of LKB1-mediated MDV shedding from parental mitochondria instigate EC dysfunction and PH.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Mitocondriales , Ratas , Humanos , Ratones , Animales , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Mitocondrias , GTP Fosfohidrolasas/metabolismo , Ratones Noqueados , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo
4.
Cell Mol Life Sci ; 80(9): 264, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615725

RESUMEN

The SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase that has been reported to regulate carcinogenesis and inflammation. However, its role in vascular smooth muscle cell (VSMC) homeostasis and vascular diseases has not been determined. Here, we investigated the role of SMYD2 in VSMC phenotypic modulation and vascular intimal hyperplasia and elucidated the underlying mechanism. We observed that SMYD2 expression was downregulated in injured carotid arteries in mice and phenotypically modulated VSMCs in vitro. Using an SMC-specific SMYD2 knockout mouse model, we found that SMYD2 ablation in VSMCs exacerbated neointima formation after vascular injury in vivo. Conversely, SMYD2 overexpression inhibited VSMC proliferation and migration in vitro and attenuated arterial narrowing in injured vessels in mice. SMYD2 downregulation promoted VSMC phenotypic switching accompanied with enhanced proliferation and migration. Mechanistically, genome-wide transcriptome analysis and loss/gain-of-function studies revealed that SMYD2 up-regulated VSMC contractile gene expression and suppressed VSMC proliferation and migration, in part, by promoting expression and transactivation of the master transcription cofactor myocardin. In addition, myocardin directly interacted with SMYD2, thereby facilitating SMYD2 recruitment to the CArG regions of SMC contractile gene promoters and leading to an open chromatin status around SMC contractile gene promoters via SMYD2-mediated H3K4 methylation. Hence, we conclude that SMYD2 is a novel regulator of VSMC contractile phenotype and intimal hyperplasia via a myocardin-dependent epigenetic regulatory mechanism.


Asunto(s)
Músculo Liso Vascular , Proteínas Nucleares , Animales , Ratones , Carcinogénesis , Hiperplasia/genética , Ratones Noqueados , Proteínas Nucleares/genética
5.
Theranostics ; 13(9): 2825-2842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284455

RESUMEN

Rationale: Nicotine has been reported to be a strong risk factor for atherosclerosis. However, the underlying mechanism by which nicotine controls atherosclerotic plaque stability remain largely unknown. Objective: The aim of this study was to evaluate the impact of lysosomal dysfunction mediated NLRP3 inflammasome activation in vascular smooth muscle cell (VSMC) on atherosclerotic plaque formation and stability in advanced atherosclerosis at the brachiocephalic arteries (BA). Methods and Results: Features of atherosclerotic plaque stability and the markers for NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome were monitored in the BA from nicotine or vehicle-treated apolipoprotein E deficient (Apoe-/-) mice fed with Western-type diet (WD). Nicotine treatment for 6 weeks accelerated atherosclerotic plaque formation and enhanced the hallmarks of plaque instability in BA of Apoe-/- mice. Moreover, nicotine elevated interleukin 1 beta (IL-1ß) in serum and aorta and was preferred to activate NLRP3 inflammasome in aortic vascular smooth muscle cells (VSMC). Importantly, pharmacological inhibition of Caspase1, a key downstream target of NLRP3 inflammasome complex, and genetic inactivation of NLRP3 significantly restrained nicotine-elevated IL-1ß in serum and aorta, as well as nicotine-stimulated atherosclerotic plaque formation and plaque destabilization in BA. We further confirmed the role of VSMC-derived NLRP3 inflammasome in nicotine-induced plaque instability by using VSMC specific TXNIP (upstream regulator of NLRP3 inflammasome) deletion mice. Mechanistic study further showed that nicotine induced lysosomal dysfunction resulted in cathepsin B cytoplasmic release. Inhibition or knockdown of cathepsin B blocked nicotine-dependent inflammasome activation. Conclusions: Nicotine promotes atherosclerotic plaque instability by lysosomal dysfunction-mediated NLRP3 inflammasome activation in vascular smooth muscle cells.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Catepsina B , Nicotina/efectos adversos , Músculo Liso Vascular , Aterosclerosis/genética , Apolipoproteínas E/genética
6.
Res Sq ; 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090651

RESUMEN

The SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase that has been reported to regulate carcinogenesis and inflammation. However, its role in vascular smooth muscle cell (VSMC) homeostasis and vascular diseases has not been determined. Here, we investigated the role of SMYD2 in VSMC phenotypic modulation and vascular intimal hyperplasia and elucidated the underlying mechanism. We observed that SMYD2 expression was downregulated in injured carotid arteries in mice and phenotypically modulated VSMCs in vitro. Using a SMC-specific Smyd2 knockout mouse model, we found that Smyd2 ablation in VSMCs exacerbates neointima formation after vascular injury in vivo. Conversely, Smyd2 overexpression inhibits VSMC proliferation and migration in vitro and attenuates arterial narrowing in injured vessels in mice. Smyd2 downregulation promotes VSMC phenotypic switching accompanied with enhanced proliferation and migration. Mechanistically, genome-wide transcriptome analysis and loss/gain-of-function studies revealed that SMYD2 up-regulates VSMC contractile gene expression and suppresses VSMC proliferation and migration, in part, by promoting expression and transactivation of the master transcription cofactor myocardin. In addition, myocardin directly interacts with SMYD2, thereby facilitating SMYD2 recruitment to the CArG regions of SMC contractile gene promoters and leading to an open chromatin status around SMC contractile gene promoters via SMYD2-mediated H3K4 methylation. Hence, we conclude that SMYD2 is a novel regulator of VSMC contractile phenotype and intimal hyperplasia via a myocardin-dependent epigenetic regulatory mechanism and may be a potential therapeutic target for occlusive vascular diseases.

7.
Nat Commun ; 13(1): 6371, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289221

RESUMEN

Indoleamine 2,3 dioxygenase-1 (IDO1) catalyzes tryptophan-kynurenine metabolism in many inflammatory and cancer diseases. Of note, acute inflammation that occurs immediately after heart injury is essential for neonatal cardiomyocyte proliferation and heart regeneration. However, the IDO1-catalyzed tryptophan metabolism during heart regeneration is largely unexplored. Here, we find that apical neonatal mouse heart resection surgery led to rapid and consistent increases in cardiac IDO1 expression and kynurenine accumulation. Cardiac deletion of Ido1 gene or chemical inhibition of IDO1 impairs heart regeneration. Mechanistically, elevated kynurenine triggers cardiomyocyte proliferation by activating the cytoplasmic aryl hydrocarbon receptor-SRC-YAP/ERK pathway. In addition, cardiomyocyte-derived kynurenine transports to endothelial cells and stimulates cardiac angiogenesis by promoting aryl hydrocarbon receptor nuclear translocation and enhancing vascular endothelial growth factor A expression. Notably, Ahr deletion prevents indoleamine 2,3 dioxygenase -kynurenine-associated heart regeneration. In summary, increasing indoleamine 2,3 dioxygenase-derived kynurenine level promotes cardiac regeneration by functioning as an endogenous regulator of cardiomyocyte proliferation and cardiac angiogenesis.


Asunto(s)
Quinurenina , Receptores de Hidrocarburo de Aril , Ratones , Animales , Quinurenina/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Triptófano/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Endoteliales/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal/fisiología , Proliferación Celular
8.
Front Cardiovasc Med ; 9: 961491, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017098

RESUMEN

Objective: The purpose of this study was to evaluate the prognosis of patients with anomalous left coronary artery originating from pulmonary artery with varying cardiac function after surgical correction. Methods: This was a single-center retrospective cohort study including 51 patients with anomalous left coronary artery originating from pulmonary artery, all of whom underwent surgery at our center. Results: All 5 deaths occurred in the pre-operative low cardiac function group (n = 39). After corrected by body surface area, parameters such as left coronary artery, right coronary artery, left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and main pulmonary artery diameter, were lower in patients in the normal cardiac function group than in the low cardiac function group. The rate of collateral circulation formation was higher in the normal cardiac function group. The proportion of changes of T wave was higher in the low cardiac function group (P = 0.005), and the duration of vasoactive drugs (dopamine, milrinone, epinephrine, nitroglycerin.) was longer in the low cardiac function group. Left ventricular end-diastolic diameter, left ventricular end-systolic diameter, main pulmonary artery diameter, and left atrial diameter were smaller than those pre-operatively (P < 0.05). Left ventricular ejection fraction was higher than that pre-operatively (P = 0.003). The degree of mitral regurgitation in the low cardiac function group was reduced post-operatively (P < 0.001). Conclusion: There was a significant difference between the pre-operative baseline data of the low cardiac function group and the normal cardiac function group. After surgical repair, cardiac function gradually returned to normal in the low cardiac function group. The low cardiac function group required vasoactive drugs for a longer period of time. The left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left atrial diameter, and main pulmonary artery diameter decreased and gradually returned to normal after surgery. The degree of mitral regurgitation in the low cardiac function group was reduced after surgery.

9.
Circulation ; 145(24): 1784-1798, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35582948

RESUMEN

BACKGROUND: IDO1 (indoleamine 2,3-dioxygenase 1) is the rate-limiting enzyme for tryptophan metabolism. IDO1 malfunction is involved in the pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMCs) with an osteogenic phenotype promote calcification and features of plaque instability. However, it remains unclear whether aberrant IDO1-regulated tryptophan metabolism causes VSMCs osteogenic reprogramming and calcification. METHODS: We generated global Apoe (apolipoprotein E) and Ido1 double knockout mice, and Apoe knockout mice with specific deletion of IDO1 in VSMCs or macrophages. Arterial intimal calcification was evaluated by a Western diet-induced atherosclerotic calcification model. RESULTS: Global deficiency of IDO1 boosted calcific lesion formation without sex bias in vivo. Conditional IDO1 loss of function in VSMCs rather than macrophages promoted calcific lesion development and the abundance of RUNX2 (runt-related transcription factor 2). In contrast, administration of kynurenine via intraperitoneal injection markedly delayed the progression of intimal calcification in parallel with decreased RUNX2 expression in both Apoe-/- and Apoe-/-Ido1-/- mice. We found that IDO1 deletion restrained RUNX2 from proteasomal degradation, which resulted in enhanced osteogenic reprogramming of VSMCs. Kynurenine administration downregulated RUNX2 in an aryl hydrocarbon receptor-dependent manner. Kynurenine acted as the endogenous ligand of aryl hydrocarbon receptor, controlled resultant interactions between cullin 4B and aryl hydrocarbon receptor to form an E3 ubiquitin ligase that bound with RUNX2, and subsequently promoted ubiquitin-mediated instability of RUNX2 in VSMCs. Serum samples from patients with coronary artery calcification had impaired IDO1 activity and decreased kynurenine catabolites compared with those without calcification. CONCLUSIONS: Kynurenine, an IDO1-mediated tryptophan metabolism main product, promotes RUNX2 ubiquitination and subsequently leads to its proteasomal degradation via an aryl hydrocarbon receptor-dependent nongenomic pathway. Insufficient kynurenine exerts the deleterious role of IDO1 ablation in promoting RUNX2-mediated VSMCs osteogenic reprogramming and calcification in vivo.


Asunto(s)
Aterosclerosis , Calcificación Vascular , Animales , Apolipoproteínas E , Aterosclerosis/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Calcificación Vascular/metabolismo
10.
Nat Commun ; 13(1): 648, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115536

RESUMEN

In the bone marrow, classical and plasmacytoid dendritic cells (DC) develop from the macrophage-DC precursor (MDP) through a common DC precursor (CDP) step. This developmental process receives essential input from the niche in which it takes place, containing endothelial cells (EC) among other cell types. Here we show that targeted deletion of serine/threonine kinase 11 (Stk11) encoding tumor suppressor liver kinase b1 (Lkb1) in mouse ECs but not DCs, results in disrupted differentiation of MDPs to CDPs, severe reduction in mature DC numbers and spontaneous tumorigenesis. In wild type ECs, Lkb1 phosphorylates polypyrimidine tract binding protein 1 (Ptbp1) at threonine 138, which regulates stem cell factor (Scf) pre-mRNA splicing. In the absence of Lkb1, exon 6 of Scf is spliced out, leading to the loss of Scf secretion. Adeno-associated-virus-mediated delivery of genes encoding either soluble Scf or the phosphomimetic mutant Ptbp1T138E proteins rescued the defects of MDP to CDP differentiation and DC shortage in the endothelium specific Stk11 knockout mice. In summary, endothelial Stk11 expression regulates DC differentiation via modulation of Scf splicing, marking the Stk11-soluble-Scf axis as a potential cause of DC deficiency syndromes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Células Dendríticas/metabolismo , Células Endoteliales/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Western Blotting , Células de la Médula Ósea/metabolismo , Supervivencia Celular/genética , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Noqueados , Ratones Transgénicos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Células Madre/genética , Factor de Células Madre/metabolismo
11.
iScience ; 25(1): 103570, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34988407

RESUMEN

Overwhelming evidence indicates that infiltration of tumors by Treg cells with elevated levels of FOXP3 suppresses the host antitumor immune response. However, the molecular mechanisms that maintain high expression of FOXP3 in tumor-infiltrating Treg cells remain elusive. Here, we report that AMP-activated protein kinase alpha1 (AMPKα1) enables high FOXP3 expression in tumor-infiltrating Treg cells. Mice with Treg-specific AMPKα1 deletion showed delayed tumor progression and enhanced antitumor T cell immunity. Further experiments showed that AMPKα1 maintains the functional integrity of Treg cells and prevents interferon-γ production in tumor-infiltrating Treg cells. Mechanistically, AMPKα1 maintains the protein stability of FOXP3 in Treg cells by downregulating the expression of E3 ligase CHIP (STUB1). Our results suggest that AMPKα1 activation promotes tumor growth by maintaining FOXP3 stability in tumor-infiltrating Treg cells and that selective inhibition of AMPK in Treg cells might be an effective anti-tumor therapy.

12.
Front Cardiovasc Med ; 8: 664752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631807

RESUMEN

Objectives: The management of atrial isomerism with complex congenital heart disease remains challenging. Experience has been largely obtained in advanced countries. The clinical diversity is greater in China. We evaluated the early- and medium-term outcomes of surgical treatment of these patients. Methods: We reviewed 86 patients of atrial isomerism with complex congenital heart disease undergoing varied surgeries in our center in 2008-2020. Cox regression models were used to analyze the risk factors for mortality. Results: There were 75 cases of right and 11 of left atrial isomerism. Eighty-three (96.5%) patients underwent single-ventricle staged palliation approach, with 10 early and 7 late deaths. The overall 1-, 5-, and 10-year survival rates were 84.7, 79.3, and 79.3%, respectively. Thirty-six (43.4%) patients completed the Fontan procedure with median age of 48 months and freedom from death or Fontan failure at 1-, 5-, and 8-years were 94.4, 87.4, and 80.7%, respectively. Concomitant total anomalous pulmonary venous connection [hazard ratio (HR): 5.15 (1.95-12.94), p = 0.008], more than moderate atrioventricular valve regurgitation [HR: 4.82 (2.42-6.79), p = 0.003], and the need for first-stage palliative surgery [HR: 4.58 (1.64-10.76), p = 0.015] were independent risk factors for mortality. Conclusions: Despite even greater clinical diversity, the surgical outcomes of atrial isomerism with complex congenital heart disease are improving in China. The early and intermediate outcomes are comparable to many previous reports. Concomitant total anomalous pulmonary venous connection, moderate or severe atrioventricular valve regurgitation, and the need for a first-stage palliative surgery are still independent risk factors for mortality.

13.
Front Pharmacol ; 12: 726586, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393802

RESUMEN

Although a few studies show that the use of electronic nicotine delivery systems (ENDS) may ameliorate objective and subjective outcomes in COPD smokers who switched to electronic cigarettes, it is unclear whether e-cigarette exposure alters lung pathological features and inflammatory response in COPD. Here, we employed ßENaC-overexpressing mice bearing COPD-like pulmonary abnormality, and exposed them to ENDS. We found that ENDS exposure aggravated airspace enlargement and mucus production in ßENaC-overexpressing mice, which was associated with increased MMP12 and Muc5ac, respectively. ENDS exposure to mice significantly increased the numbers of macrophages, particularly in M2 macrophages in bronchoalveolar lavage (BAL) fluid, despite ENDS did not induce M2 macrophage polarization in a cultured murine macrophage cell line (RAW264.7). There were no changes in neutrophils in BAL fluid by ENDS exposure. Multiple cytokine productions were increased including M-CSF, IL-1r α , IL-10, and TGF-ß1, in BAL fluid from mice when exposed to ENDS. The Sirius Red staining and hydroxyproline assay showed ENDS-exposed mice displayed enhanced fibrotic phenotypes compared to control mice. In conclusion, ENDS exposure enhances airspace enlargement, mucus secretion, and fibrogenesis in COPD mice. This is associated with increased MMP12, inflammatory responses, and M2 macrophage phenotype. This study provides pre-clinical data implicating that electronic cigarette exposure is not safe in COPD patients who want to replace traditional cigarettes with ENDS.

14.
Front Cell Dev Biol ; 9: 691585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34169079

RESUMEN

Pulmonary hypertension (PH) is a debilitating and life-threatening disease characterized by increased blood pressure within the pulmonary arteries. Adenosine monophosphate-activated protein kinase (AMPK) is a heterotrimeric serine-threonine kinase that contributes to the regulation of metabolic and redox signaling pathways. It has key roles in the regulation of cell survival and proliferation. The role of AMPK in PH is controversial because both inhibition and activation of AMPK are preventive against PH development. Some clinical studies found that metformin, the first-line antidiabetic drug and the canonical AMPK activator, has therapeutic efficacy during treatment of early-stage PH. Other study findings suggest the use of metformin is preferentially beneficial for treatment of PH associated with heart failure with preserved ejection fraction (PH-HFpEF). In this review, we discuss the "AMPK paradox" and highlight the differential effects of AMPK on pulmonary vasoconstriction and pulmonary vascular remodeling. We also review the effects of AMPK activators and inhibitors on rescue of preexisting PH in animals and include a discussion of gender differences in the response to metformin in PH.

15.
Cell Death Dis ; 12(6): 518, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016959

RESUMEN

Oncogenic KRAS mutations combined with the loss of the LKB1 tumor-suppressor gene (KL) are strongly associated with aggressive forms of lung cancer. N6-methyladenosine (m6A) in mRNA is a crucial epigenetic modification that controls cancer self-renewal and progression. However, the regulation and role of m6A modification in this cancer are unclear. We found that decreased m6A levels correlated with the disease progression and poor survival for KL patients. The correlation was mediated by a special increase in ALKBH5 (AlkB family member 5) levels, an m6A demethylase. ALKBH5 gain- or loss-of function could effectively reverse LKB1 regulated cell proliferation, colony formation, and migration of KRAS-mutated lung cancer cells. Mechanistically, LKB1 loss upregulated ALKBH5 expression by DNA hypermethylation of the CTCF-binding motif on the ALKBH5 promoter, which inhibited CTCF binding but enhanced histone modifications, including H3K4me3, H3K9ac, and H3K27ac. This effect could successfully be rescued by LKB1 expression. ALKBH5 demethylation of m6A stabilized oncogenic drivers, such as SOX2, SMAD7, and MYC, through a pathway dependent on YTHDF2, an m6A reader protein. The above findings were confirmed in clinical KRAS-mutated lung cancer patients. We conclude that loss of LKB1 promotes ALKBH5 transcription by a DNA methylation mechanism, reduces m6A modification, and increases the stability of m6A target oncogenes, thus contributing to aggressive phenotypes of KRAS-mutated lung cancer.


Asunto(s)
Adenosina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Mensajero/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina/genética , Adenosina/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Transfección
16.
Interact Cardiovasc Thorac Surg ; 33(2): 301-308, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-33822951

RESUMEN

OBJECTIVES: The postoperative risk factors for electroencephalogram(EEG) abnormalities after paediatric cardiopulmonary bypass (CPB) remain to be identified. We investigated the characteristics of EEG abnormalities and risk factors in routine clinical management post-CPB. METHODS: EEG and cerebral oxygen saturation (ScO2) were monitored in 96 patients (aged 3 days, 37 months, median 5 months) for 72 h post-CPB. Clinical measurements included 4-hourly arterial and central venous pressure, arterial blood gases, doses of inotropic and vasoactive drugs, daily C-reactive protein (CRP) and NT-proB-type Natriuretic Peptide (NT-proBNP). Demographics, STAT categories and outcomes (duration of mechanical ventilation,CICU stay) were recorded. Un. RESULTS: Seizures occurred in 20 patients (20.8%) beginning at 0-48 hand lasting 10 min-31 h; background abnormalities occurred in 67 (69.8%) beginning at 0-8 h and lasting 4-48 h. Patients with EEG abnormalities had worse outcomes. In univariable regression, seizures positively correlated with STAT categories, CPB time, temperature, blood pressure, central venous pressure, NT-proBNP, CRP, lactate and epinephrine, negatively with ScO2 and PaCO2 (P < 0.001 for lactate and epinephrine, P < 0.1 for the remaining). The degree of background abnormalities positively correlated with STAT categories, CPB time, operative time, central venous pressure, milrinone, negatively with blood pressure (P = 0.0003-0.087); it negatively correlated with lower dose of epinephrine (P < 0.001) and positively with higher dose (P = 0.03l). In multivariable regression, seizures positively correlated with epinephrine, lactate and temperature; the background abnormality correlations remain significant except for milrinone and operative time (P < 0.001 for epinephrine, P < 0.05 for the remaining). CONCLUSIONS: Numerous perioperative risk factors are associated with EEG abnormalities post-CPB. The most significant and consistent risk factor is epinephrine.


Asunto(s)
Puente Cardiopulmonar , Oxígeno , Puente Cardiopulmonar/efectos adversos , Niño , Electroencefalografía , Humanos , Periodo Posoperatorio , Factores de Riesgo
17.
Diabetes ; 70(2): 577-588, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33262120

RESUMEN

Exosomes are important for intercellular communication, but the role of exosomes in the communication between adipose tissue (AT) and the liver remains unknown. The aim of this study is to determine the contribution of AT-derived exosomes in nonalcoholic fatty liver disease (NAFLD). Exosome components, liver fat content, and liver function were monitored in AT in mice fed a high-fat diet (HFD) or treated with metformin or GW4869 and with AMPKα1-floxed (Prkaα1 fl/fl/wild-type [WT]), Prkaα1 -/-, liver tissue-specific Prkaα1 -/-, or AT-specific Prkaα1 -/- modification. In cultured adipocytes and white AT, the absence of AMPKα1 increased exosome release and exosomal proteins by elevating tumor susceptibility gene 101 (TSG101)-mediated exosome biogenesis. In adipocytes treated with palmitic acid, TSG101 facilitated scavenger receptor class B (CD36) sorting into exosomes. CD36-containing exosomes were then endocytosed by hepatocytes to induce lipid accumulation and inflammation. Consistently, an HFD induced more severe lipid accumulation and cell death in Prkaα1 -/- and AT-specific Prkaα1 -/- mice than in WT and liver-specific Prkaα1 -/- mice. AMPK activation by metformin reduced adipocyte-mediated exosome release and mitigated fatty liver development in WT and liver-specific Prkaα1 -/- mice. Moreover, administration of the exosome inhibitor GW4869 blocked exosome secretion and alleviated HFD-induced fatty livers in Prkaα1 -/- and adipocyte-specific Prkaα1 -/- mice. We conclude that HFD-mediated AMPKα1 inhibition promotes NAFLD by increasing numbers of AT CD36-containing exosomes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/metabolismo , Dieta Alta en Grasa , Exosomas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/genética , Animales , Silenciador del Gen , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Ratones , Ratones Noqueados , ARN Interferente Pequeño
18.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679729

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedades Cardiovasculares/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/análisis , Adenosina Trifosfato/metabolismo , Animales , Enfermedades Cardiovasculares/patología , Metabolismo Energético , Humanos , Mitocondrias/patología , Recambio Mitocondrial , Especies Reactivas de Oxígeno/metabolismo
19.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316320

RESUMEN

Recent evidence indicates that activation of adenosine monophosphate-activated protein kinase (AMPK), a highly conserved sensor and modulator of cellular energy and redox, regulates cell mitosis. However, the underlying molecular mechanisms for AMPKα subunit regulation of chromosome segregation remain poorly understood. This study aimed to ascertain if AMPKα1 deletion contributes to chromosome missegregation by elevating Polo-like kinase 4 (PLK4) expression. Centrosome proteins and aneuploidy were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J) or AMPKα1 homozygous deficient (AMPKα1-/-) mice by Western blotting and metaphase chromosome spread. Deletion of AMPKα1, the predominant AMPKα isoform in immortalized MEFs, led to centrosome amplification and chromosome missegregation, as well as the consequent aneuploidy (34-66%) and micronucleus. Furthermore, AMPKα1 null cells exhibited a significant induction of PLK4. Knockdown of nuclear factor kappa B2/p52 ameliorated the PLK4 elevation in AMPKα1-deleted MEFs. Finally, PLK4 inhibition by Centrinone reversed centrosome amplification of AMPKα1-deleted MEFs. Taken together, our results suggest that AMPKα1 plays a fundamental role in the maintenance of chromosomal integrity through the control of p52-mediated transcription of PLK4, a trigger of centriole biogenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Animales , Células Cultivadas , Segregación Cromosómica , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidad p52 de NF-kappa B/antagonistas & inhibidores , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba
20.
Exp Mol Med ; 52(4): 548-555, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269287

RESUMEN

Aging is a universal process that renders individuals vulnerable to many diseases. Although this process is irreversible, dietary modulation and caloric restriction are often considered to have antiaging effects. Dietary modulation can increase and maintain circulating ketone bodies, especially ß-hydroxybutyrate (ß-HB), which is one of the most abundant ketone bodies in human circulation. Increased ß-HB has been reported to prevent or improve the symptoms of various age-associated diseases. Indeed, numerous studies have reported that a ketogenic diet or ketone ester administration alleviates symptoms of neurodegenerative diseases, cardiovascular diseases, and cancers. Considering the potential of ß-HB and the intriguing data emerging from in vivo and in vitro experiments as well as clinical trials, this therapeutic area is worthy of attention. In this review, we highlight studies that focus on the identified targets of ß-HB and the cellular signals regulated by ß-HB with respect to alleviation of age-associated ailments.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Envejecimiento/metabolismo , Susceptibilidad a Enfermedades , Metabolismo de los Lípidos , Animales , Humanos , Envejecimiento de la Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA