Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Eur J Pharmacol ; 953: 175839, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37301318

RESUMEN

We previously reported that brain α7 nicotinic acetylcholine receptors inhibited the rat micturition reflex. To elucidate the mechanisms underlying this inhibition, we focused on the relationship between α7 nicotinic acetylcholine receptors and hydrogen sulphide (H2S) because we found that H2S also inhibits the rat micturition reflex in the brain. Therefore, we investigated whether H2S is involved in the inhibition of the micturition reflex induced by the activation of α7 nicotinic acetylcholine receptors in the brain. Cystometry was performed in male Wistar rats under urethane anesthesia (0.8 g/kg, ip) to examine the effects of icv pre-treated GYY4137 (H2S donor, 1 or 3 nmol/rat) or aminooxyacetic acid (AOAA; non-selective H2S synthesis inhibitor, 3 or 10 µg/rat) on PHA568487 (α7 nicotinic acetylcholine receptor agonist, icv)-induced prolongation of intercontraction intervals. PHA568487 administration at a lower dose (0.3 nmol/rat, icv) had no significant effect on intercontraction intervals, while under pre-treatment with GYY4137 (3 nmol/rat icv), PHA568487 (0.3 nmol/rat, icv) significantly prolonged intercontraction intervals. PHA568487 at a higher dose (1 nmol/rat, icv) induced intercontraction interval prolongation, and the PHA568487-induced prolongation was significantly suppressed by AOAA (10 µg/rat, icv). The AOAA-induced suppression of the PHA568487-induced intercontraction interval prolongation was negated by supplementing H2S via GYY4137 at a lower dose (1 nmol/rat, icv) in the brain. GYY4137 or AOAA alone showed no significant effect on intercontraction intervals at each dose used in this study. These findings suggest a possible involvement of brain H2S in inhibiting the rat micturition reflex induced by activation of brain α7 nicotinic acetylcholine receptors.


Asunto(s)
Sulfuro de Hidrógeno , Receptores Nicotínicos , Ratas , Masculino , Animales , Micción , Receptor Nicotínico de Acetilcolina alfa 7 , Sulfuro de Hidrógeno/farmacología , Ratas Wistar , Encéfalo/metabolismo , Reflejo , Receptores Nicotínicos/metabolismo
2.
Nitric Oxide ; 127: 54-63, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35918055

RESUMEN

Cyclophosphamide (CYP), a broad-spectrum anticancer drug, causes serious side effects, such as haemorrhagic cystitis (HC). Hydrogen sulfide (H2S), an endogenous gasotransmitter, has physiological properties, including anti-inflammation, anti-oxidation, and neuromodulation. In this study, we investigated the effects of NaHS (H2S donor) pretreatment on bladder dysfunction in CYP-treated rats. Male Wistar rats were intraperitoneally pretreated with NaHS (3 or 10 µmol/kg) or vehicle once daily for 7 days before cystometry, and CYP (150 mg/kg) or saline was intraperitoneally administered 2 days before cystometry. After cystometry, the bladder tissues were collected for haematoxylin and eosin staining. In some rats, capsaicin (CAP), which can desensitise CAP-sensitive afferent nerves, was subcutaneously injected at 125 mg/kg 4 days before cystometry. CYP reduced intercontraction intervals (ICI) and bladder compliance (Comp) and increased the number of non-voiding contractions (NVCs) compared with the saline-treated control group. NaHS pretreatment dose-dependently improved the CYP-induced these changes. In bladder tissues, CYP increased histological scores of neutrophil infiltration, haemorrhage, and oedema, while NaHS had no effect on these CYP-induced changes. CAP showed a tendency to suppress CYP-induced changes in ICI. NaHS-induced improvement in CYP-induced changes in urodynamic parameters were not detected in CAP-treated rats. These findings suggest that NaHS pretreatment prevented bladder dysfunction in CYP-treated rats by suppressing CAP-sensitive bladder afferent nerves, but not by suppressing bladder inflammation. Therefore, H2S represents a new candidate as a protective drug for bladder dysfunction induced by HC, a side effect of CYP chemotherapy.


Asunto(s)
Cistitis , Sulfuro de Hidrógeno , Animales , Ciclofosfamida/efectos adversos , Cistitis/inducido químicamente , Cistitis/tratamiento farmacológico , Cistitis/prevención & control , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Masculino , Ratas , Ratas Wistar , Vejiga Urinaria
3.
Int J Urol ; 29(8): 897-904, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35582850

RESUMEN

OBJECTIVES: To investigate the effects of pretreatment with 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate on bladder dysfunction in cyclophosphamide-induced hemorrhagic cystitis in rats. METHODS: Male Wistar rats (340-460 g) were pretreated with vehicle or with 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (100/157 or 300/471 mg/kg/day, po) once daily for 7 days before cystometry. Saline or cyclophosphamide (150 mg/kg, ip) was administered 2 days before cystometry. Cystometry was performed under urethane anesthesia (0.8 g/kg, ip) via a catheter inserted into the bladder. After cystometry, bladder tissues were collected to perform hematoxylin and eosin staining for pathological evaluation (neutrophil infiltration, edema, and bleeding scores), and for enzyme-linked immunosorbent assay and real-time polymerase chain reaction for investigating tissue levels of myeloperoxidase, and mRNA levels of haem oxygenase-1 as a cytoprotective molecule. RESULTS: Compared to controls, cyclophosphamide induced a shorter intercontraction interval, lower bladder compliance, increased number of non-voiding contractions, and increased pathological scores and myeloperoxidase expression in the bladder. Pretreatment with 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (300/471 mg/kg/day) significantly improved cyclophosphamide-induced intercontraction interval shortening and increases in number of non-voiding contractions and neutrophil infiltration/bleeding scores and enhanced haem oxygenase-1 expression in the bladder. In addition, cyclophosphamide-induced decreases in bladder compliance and increases in myeloperoxidase were not detected with 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate pretreatment. CONCLUSIONS: Pretreatment with 5-aminolevulinic acid expects protective effects on bladder dysfunction in cyclophosphamide-induced hemorrhagic cystitis by improving inflammatory changes in bladder tissues perhaps via up-regulation of haem oxygenase-1.


Asunto(s)
Ácido Aminolevulínico , Cistitis , Ácido Aminolevulínico/efectos adversos , Animales , Ciclofosfamida/efectos adversos , Cistitis/inducido químicamente , Cistitis/prevención & control , Masculino , Peroxidasa/metabolismo , Peroxidasa/farmacología , Ratas , Ratas Wistar , Vejiga Urinaria/patología
4.
Biochem Biophys Res Commun ; 607: 54-59, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35366544

RESUMEN

Corticotropin-releasing factor (CRF), a representative stress-related neuropeptide, in the central nervous system reportedly both facilitates and suppresses the micturition, therefore, roles of central CRF in regulation of the micturition are still controversial. In this study, we investigated (1) effects of intracerebroventricularly (icv)-administered CRF on the micturition, and (2) brain CRF receptor subtypes (CRFR1/CRFR2) and glutamatergic receptors (NMDA/AMPA subtypes) involved in the CRF-induced effects in male Wistar rats under urethane anesthesia. Intercontraction intervals (ICI), and maximal voiding pressure (MVP), were evaluated by continuous cystometry 45 min before CRF administration or intracerebroventricular pretreatment with other drugs as follows and 3 h after CRF administration. Single-voided volume (Vv), post-voiding residual volume (Rv), bladder capacity (BC), and voiding efficiency (VE) were evaluated by single cystometry 60 min before CRF administration and 60-120 min after the administration. Icv-administered CRF reduced ICI, Vv, and BC without changing MVP, Rv, or VE. The CRF-induced ICI reduction was attenuated by icv-pretreated CP154526 (CRFR1 antagonist), MK-801 (NMDA receptor antagonist), and DNQX (AMPA receptor antagonist), but not by K41498 (CRFR2 antagonist). These results indicate that stimulation of brain CRFR1 can be involved in facilitation of the rat micturition via brain NMDA/AMPA receptors.


Asunto(s)
Receptores de Hormona Liberadora de Corticotropina , Micción , Animales , Encéfalo , Hormona Liberadora de Corticotropina/farmacología , Masculino , N-Metilaspartato/farmacología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato
5.
Biochem Biophys Res Commun ; 548: 84-90, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33636639

RESUMEN

Brain nicotinic acetylcholine receptors (nAChRs) reportedly suppress the micturition, but the mechanisms responsible for this suppression remain unclear. We previously reported that intracerebroventricularly administered (±)-epibatidine (non-selective nAChR agonist) activated the sympatho-adrenomedullary system, which can affect the micturition. Therefore, we investigated (1) whether intracerebroventricularly administered (±)-epibatidine-induced effects on the micturition were dependent on the sympatho-adrenomedullary system, and (2) brain nAChR subtypes involved in the (±)-epibatidine-induced effects in urethane-anesthetized male Wistar rats. Plasma noradrenaline and adrenaline (catecholamines) were measured just before and 5 min after (±)-epibatidine administration. Evaluation of urodynamic parameters, intercontraction intervals (ICI) and maximal voiding pressure (MVP) by cystometry was started 1 h before (±)-epibatidine administration or intracerebroventricular pretreatment with other drugs and continued 1 h after (±)-epibatidine administration. Intracerebroventricularly administered (±)-epibatidine elevated plasma catecholamines and prolonged ICI without affecting MVP, and these changes were suppressed by intracerebroventricularly pretreated mecamylamine (non-selective nAChR antagonist). Acute bilateral adrenalectomy abolished the (±)-epibatidine-induced elevation of plasma catecholamines, but had no effect on the (±)-epibatidine-induced ICI prolongation. The latter was suppressed by intracerebroventricularly pretreated methyllycaconitine (selective α7-nAChR antagonist), SR95531 (GABAA antagonist), and SCH50911 (GABAB antagonist), but not by dihydro-ß-erythroidine (selective α4ß2-nAChR antagonist). Intracerebroventricularly administered PHA568487 (selective α7-nAChR agonist) prolonged ICI without affecting MVP, similar to (±)-epibatidine. These results suggest that stimulation of brain α7-nAChRs suppresses the rat micturition through brain GABAA/GABAB receptors, independently of the sympatho-adrenomedullary outflow modulation.


Asunto(s)
Encéfalo/metabolismo , Receptores de GABA/metabolismo , Micción , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Médula Suprarrenal/efectos de los fármacos , Médula Suprarrenal/metabolismo , Adrenalectomía , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Epinefrina/sangre , Masculino , Contracción Muscular/efectos de los fármacos , Norepinefrina/sangre , Piridinas/farmacología , Ratas Wistar , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo
6.
Int J Urol ; 28(4): 459-465, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33403726

RESUMEN

OBJECTIVES: To investigate whether a response to hydrogen sulfide donors (GYY4137 and sodium hydrosulfide) and the endogenous hydrogen sulfide system (hydrogen sulfide level and expression of cysteine aminotransferase, cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase) in the spontaneously hypertensive rat bladder differ with age, we compared the responses of hydrogen sulfide donors to micturition and bladder relaxation, and the endogenous hydrogen sulfide system in the bladder of 18-week versus 12-week-old spontaneously hypertensive rats. METHODS: GYY4137 was intravesically administered and cystometry was performed in anesthetized rats. The responses of sodium hydrosulfide were evaluated in carbachol-mediated precontracted bladder strips. Bladder hydrogen sulfide levels and expression levels of each enzyme were investigated using the methylene blue method and Western blotting, respectively. RESULTS: GYY4137 treatment significantly prolonged intercontraction intervals only in 12-week-old rats. Sodium hydrosulfide-induced bladder relaxation was significantly attenuated in the strips of 18-week-old rats compared with that in 12-week-old rats. In the bladder dome, significant increases in hydrogen sulfide levels and in the expression of cystathionine ß-synthase, 3-mercaptopyruvate sulfurtransferase, and cysteine aminotransferase were observed in 18-week-old rats compared with 12-week-old rats. However, cystathionine γ-lyase bands were not detected in bladder tissues of either group. CONCLUSIONS: Bladder relaxation induced by hydrogen sulfide may be attenuated in spontaneously hypertensive rats in an age-dependent manner.


Asunto(s)
Sulfuro de Hidrógeno , Animales , Ratas , Ratas Endogámicas SHR , Vejiga Urinaria , Micción
7.
Nitric Oxide ; 104-105: 44-50, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891752

RESUMEN

We recently reported that hydrogen sulfide (H2S) is a possible relaxation factor in the rat bladder. However, there is no available information about the roles of central H2S in the micturition reflex, so we investigated the effects of centrally administered GYY4137 (H2S donor) and AOAA (H2S synthesis inhibitor) on the micturition reflex in urethane-anesthetized (0.8 g/kg, ip) male Wistar rats. Cystometry was performed before and after the administration of GYY4137 (3 or 10 nmol/rat, icv) or AOAA (30 or 100 µg/rat, icv). In some rats, SR95531 (GABAA receptor antagonist, 0.1 nmol/rat, icv) or SCH50911 (GABAB receptor antagonist, 0.1 nmol/rat, icv) was administered 30 min before GYY4137 administration (10 nmol/rat, icv). Centrally administered GYY4137 dose-dependently prolonged the intercontraction intervals (ICI) without altering maximum voiding pressure (MVP). On the other hand, centrally administered AOAA dose-dependently shortened ICI without altering MVP. The AOAA (30 µg/rat, icv)-induced ICI shortening was reversed in the central presence of GYY4137 (10 nmol/rat, icv). Centrally pretreated SR95531 or SCH50911 significantly attenuated the GYY4137 (10 nmol/rat, icv)-induced prolongation of ICI, respectively. These findings suggest that endogenous brain H2S can inhibit the rat micturition reflex via both GABAA and GABAB receptors in the brain.


Asunto(s)
Encéfalo/metabolismo , Sulfuro de Hidrógeno/metabolismo , Receptores de GABA/metabolismo , Reflejo/efectos de los fármacos , Micción/efectos de los fármacos , Ácido Aminooxiacético/farmacología , Animales , Masculino , Morfolinas/farmacología , Contracción Muscular/fisiología , Compuestos Organotiofosforados/farmacología , Ratas Wistar , Vejiga Urinaria/fisiología
8.
Int Urol Nephrol ; 51(9): 1507-1515, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31289981

RESUMEN

PURPOSE: To compare hydrogen sulfide (H2S)-induced relaxation on the bladder between normotensive and spontaneously hypertensive rat (SHR), we evaluated the effects of H2S donors (GYY4137 and NaHS) on the micturition reflex and on the contractility of bladder tissues. We also investigated the content of H2S and the expression levels of enzymes related to H2S biosynthesis [cystathionine ß-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (MPST), and cysteine aminotransferase (CAT)] in the bladder. METHODS: Eighteen-week-old male normotensive Wistar rats and SHRs were used. Under urethane anesthesia, the effects of intravesically instilled GYY4137 (10-8, 10-7 and 10-6 M) on the micturition reflex were evaluated by cystometry. The effects of NaHS (1 × 10-8-3 × 10-4 M) were evaluated on carbachol (10-5 M)-induced pre-contracted bladder strips. Tissue H2S content was measured by the methylene blue method. The expression levels of these enzymes were investigated by Western blot. RESULTS: GYY4137 significantly prolonged intercontraction intervals in Wistar rats, but not in SHRs. NaHS-induced relaxation on pre-contracted bladder strips was significantly attenuated in SHRs compared with Wistar rats. The H2S content in the bladder of SHRs was significantly higher than that of Wistar rats. CBS, MPST and CAT were detected in the bladder of Wistar rats and SHRs. The expression levels of MPST in the SHR bladder were significantly higher than those in the Wistar rat bladder. CONCLUSION: H2S-induced bladder relaxation in SHRs is impaired, thereby resulting in a compensatory increase of the H2S content in the SHR bladder.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Hipertensión/fisiopatología , Relajación Muscular/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/fisiopatología , Animales , Masculino , Ratas Endogámicas SHR , Ratas Wistar , Micción/efectos de los fármacos
9.
Neurourol Urodyn ; 37(8): 2519-2526, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30095194

RESUMEN

AIMS: To clarify the roles of hydrogen sulfide (H2 S), an endogenous gasotransmitter, in the rat bladder and prostate, we investigated the distribution of enzymes related to H2 S biosynthesis (cystathionine ß-synthase [CBS], cystathionine γ-lyase [CSE], 3-mercaptopyruvate sulfurtransferase [MPST], cysteine aminotransferase [CAT], and D-amino acid oxidase [DAO]) and the content of H2 S. We also investigated the effects of H2 S donors (NaHS and GYY4137) on the contractility of both tissues and on micturition. METHODS: The distribution of these enzymes was investigated by real-time PCR, Western blot, and immunohistochemistry. Tissue H2 S content was measured by the methylene blue method. The effects of NaHS (1 × 10-9 to 3 × 10-4 M) were evaluated on carbachol (10-5 M)-induced pre-contracted bladder strips, and on noradrenaline (10-5 M)-induced pre-contracted prostate strips, which were pretreated with propranolol (10-6 M). In addition, in urethane-anesthetized male Wistar rats, the effects of intravesically instilled GYY4137 (10-8 , 10-7 , and 10-6 M) on micturition were evaluated by cystometry. RESULTS: MPST and CAT were detected in the bladder and prostate, CBS was only detected in the prostate, while CSE and DAO were not detected in both tissues. Immunoreactivity of these enzymes was mainly detected in the urothelium and smooth muscle layer of the bladder and in the prostate glandular epithelium. H2 S was detected in both tissues. NaHS dose-dependently induced relaxation of pre-contracted bladder and prostate strips. Intravesically instilled GYY4137 significantly prolonged intercontraction intervals. CONCLUSIONS: It is possible that H2 S can function as an endogenous relaxation factor in the rat bladder and prostate.


Asunto(s)
Sulfuro de Hidrógeno , Relajación Muscular/fisiología , Próstata/fisiología , Vejiga Urinaria/fisiología , Antagonistas Adrenérgicos beta/farmacología , Animales , Carbacol/farmacología , Sulfuro de Hidrógeno/farmacología , Masculino , Morfolinas/farmacología , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Norepinefrina/farmacología , Compuestos Organotiofosforados/farmacología , Parasimpaticomiméticos/farmacología , Propranolol/farmacología , Ratas , Ratas Wistar , Simpatomiméticos/farmacología , Micción/efectos de los fármacos
10.
Br J Pharmacol ; 175(19): 3758-3772, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007012

RESUMEN

BACKGROUND AND PURPOSE: We have demonstrated that i.c.v.-administered (±)-epibatidine, a nicotinic ACh receptor (nAChR) agonist, induced secretion of noradrenaline and adrenaline (catecholamines) from the rat adrenal medulla with dihydro-ß-erythroidin (an α4ß2 nAChR antagonist)-sensitive brain mechanisms. Here, we examined central mechanisms for the (±)-epibatidine-induced responses, focusing on brain NOS and NO-mediated mechanisms, soluble GC (sGC) and protein S-nitrosylation (a posttranslational modification of protein cysteine thiol groups), in urethane-anaesthetized (1.0 g·kg-1 , i.p.) male Wistar rats. EXPERIMENTAL APPROACH: (±)-Epibatidine was i.c.v. treated after i.c.v. pretreatment with each inhibitor described below. Then, plasma catecholamines were measured electrochemically after HPLC. Immunoreactivity of S-nitrosylated cysteine (SNO-Cys) in α4 nAChR subunit (α4)-positive spinally projecting neurones in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of adrenomedullary outflow) after i.c.v. (±)-epibatidine administration was also investigated. KEY RESULTS: (±)-Epibatidine-induced elevation of plasma catecholamines was significantly attenuated by L-NAME (non-selective NOS inhibitor), carboxy-PTIO (NO scavenger), BYK191023 [selective inducible NOS (iNOS) inhibitor] and dithiothreitol (thiol-reducing reagent), but not by 3-bromo-7-nitroindazole (selective neuronal NOS inhibitor) or ODQ (sGC inhibitor). (±)-Epibatidine increased the number of spinally projecting PVN neurones with α4- and SNO-Cys-immunoreactivities, and this increment was reduced by BYK191023. CONCLUSIONS AND IMPLICATIONS: Stimulation of brain nAChRs can induce elevation of plasma catecholamines through brain iNOS-derived NO-mediated protein S-nitrosylation in rats. Therefore, brain nAChRs (at least α4ß2 subtype) and NO might be useful targets for alleviation of catecholamines overflow induced by smoking.


Asunto(s)
Médula Suprarrenal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico/antagonistas & inhibidores , Piridinas/farmacología , Receptores Nicotínicos/metabolismo , Médula Suprarrenal/metabolismo , Animales , Encéfalo/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Catecolaminas/sangre , Catecolaminas/metabolismo , Infusiones Intraventriculares , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Piridinas/administración & dosificación , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA