Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Am Chem Soc ; 146(7): 4814-4821, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323566

RESUMEN

The comprehension of activity and selectivity origins of the electrooxidation of organics is a crucial knot for the development of a highly efficient energy conversion system that can produce value-added chemicals on both the anode and cathode. Here, we find that the potential-retaining trivalent nickel in NiOOH (Fermi level, -7.4 eV) is capable of selectively oxidizing various primary alcohols to carboxylic acids through a nucleophilic attack and nonredox electron transfer process. This nonredox trivalent nickel is highly efficient in oxidizing primary alcohols (methanol, ethanol, propanol, butanol, and benzyl alcohol) that are equipped with the appropriate highest occupied molecular orbital (HOMO) levels (-7.1 to -6.5 eV vs vacuum level) and the negative dual local softness values (Δsk, -0.50 to -0.19) of nucleophilic atoms in nucleophilic hydroxyl functional groups. However, the carboxylic acid products exhibit a deeper HOMO level (<-7.4 eV) or a positive Δsk, suggesting that they are highly stable and weakly nucleophilic on NiOOH. The combination (HOMO, Δsk) is useful in explaining the activity and selectivity origins of electrochemically oxidizing alcohols to carboxylic acid. Our findings are valuable in creating efficient energy conversions to generate value-added chemicals on dual electrodes.

2.
Small ; 20(2): e2306464, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658488

RESUMEN

Transition metals are excellent active sites to activate peroxymonosulfate (PMS) for water treatment, but the favorable electronic structures governing  reaction mechanism still remain elusive. Herein, the authors construct typical d-orbital configurations on iron octahedral (FeOh ) and tetrahedral (FeTd ) sites in spinel ZnFe2 O4 and FeAl2 O4 , respectively. ZnFe2 O4 (136.58 min-1 F-1 cm2 ) presented higher specific activity than FeAl2 O4 (97.47 min-1 F-1 cm2 ) for tetracycline removal by PMS activation. Considering orbital features of charge amount, spin state, and orbital arrangement by magnetic spectroscopic analysis, ZnFe2 O4 has a larger bond order to decompose PMS. Using this descriptor, high-spin FeOh is assumed to activate PMS mainly to produce nonradical reactive oxygen species (ROS) while high-spin FeTd prefers to induce radical species. This hypothesis is confirmed by the selective predominant ROS of 1 O2 on ZnFe2 O4 and O2 •- on FeAl2 O4 via quenching experiments. Electrochemical determinations reveal that FeOh has superior capability than FeTd for feasible valence transformation of iron cations and fast interfacial electron transfer. DFT calculations further suggest octahedral d-orbital configuration of ZnFe2 O4 is beneficial to enhancing Fe-O covalence for electron exchange. This work attempts to understand the d-orbital configuration-dependent PMS activation to design efficient catalysts.

3.
Nat Commun ; 14(1): 7987, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042856

RESUMEN

A thorough comprehension of the mechanism behind organic electrooxidation is crucial for the development of efficient energy conversion technology. Here, we find that trivalent nickel is capable of oxidizing organics through a nucleophilic attack and electron transfer via a nonredox process. This nonredox trivalent nickel exhibits exceptional kinetic efficiency in oxidizing organics that possess the highest occupied molecular orbital energy levels ranging from -7.4 to -6 eV (vs. Vacuum level) and the dual local softness values of nucleophilic atoms in nucleophilic functional groups, such as hydroxyls (methanol, ethanol, benzyl alcohol), carbonyls (formamide, urea, formaldehyde, glucose, and N-acetyl glucosamine), and aminos (benzylamine), ranging from -0.65 to -0.15. The rapid electrooxidation kinetics can be attributed to the isoenergetic channels created by the nucleophilic attack and the nonredox electron transfer via the unoccupied eg orbitals of trivalent nickel (t2g6eg1). Our findings are valuable in identifying kinetically fast organic electrooxidation on nonredox catalysts for efficient energy conversions.

4.
Natl Sci Rev ; 10(2): nwac200, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36817839

RESUMEN

Building up a lunar settlement is the ultimate aim of lunar exploitation. Yet, limited fuel and oxygen supplies restrict human survival on the Moon. Herein, we demonstrate the in situ resource utilization of lunar soil for extraterrestrial fuel and oxygen production, which may power up our solely natural satellite and supply respiratory gas. Specifically, the lunar soil is loaded with Cu species and employed for electrocatalytic CO2 conversion, demonstrating significant production of methane. In addition, the selected component in lunar soil (i.e. MgSiO3) loaded with Cu can reach a CH4 Faradaic efficiency of 72.05% with a CH4 production rate of 0.8 mL/min at 600 mA/cm2. Simultaneously, an O2 production rate of 2.3 mL/min can be achieved. Furthermore, we demonstrate that our developed process starting from catalyst preparation to electrocatalytic CO2 conversion is so accessible that it can be operated in an unmmaned manner via a robotic system. Such a highly efficient extraterrestrial fuel and oxygen production system is expected to push forward the development of mankind's civilization toward an extraterrestrial settlement.

5.
Dalton Trans ; 51(33): 12494-12501, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35916624

RESUMEN

The development of stable, Earth-abundant, and high-activity molecular water oxidation catalysts under acidic and neutral conditions remains a great challenge. Here, the use of N-heterocyclic carbene (NHC)-based iron(III) complex 1 {[phenyl(tris(3-methylimidazol-1-ylidene))borate]2Fe(III)}+ as a catalyst for water oxidation under acidic and neutral conditions was investigated. Two iron(II) carbene complexes, 2 {[2,6-bis(3-methylimidazolium-1-yl)pyridine]2Fe}2+ and 3 {[2,6-bis(3-methylimidazolium-1-yl)pyridine-4-carboxylic acid]2Fe}2+, were also used for comparison. A series of experiments demonstrate that complex 1 has excellent performance in terms of both catalytic activity and stability. In addition, the faradaic efficiency and turnover frequency (TOF) reach 95.0% and 2.8 s-1, respectively. An overpotential of ca. 490 mV is obtained at pH 1.5. Density functional theory (DFT) calculations indicate that dehydrogenation is the potential-determining step (PDS) in water oxidation. Complex 1 has a lower free energy barrier in this process than 2 and 3. High-valent Fe species are further proven in 1 by spectroelectrochemical measurements, which are crucial in promoting water oxidation. This study is expected to contribute to the development of homogeneous water oxidation catalysis under acidic and neutral conditions.

6.
Biomater Sci ; 10(13): 3433-3440, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35666242

RESUMEN

Photocatalytic materials absorb photons ranging from the ultraviolet to near-infrared region to initiate photocatalytic reactions and have broad application prospects in various fields. However, high-energy ionizing radiations are rarely involved in photocatalytic research. In this study, we proposed a high-energy radiation-based photocatalysis method, namely "radiocatalysis", and prepared a TiO2-coated lanthanide pyrosilicate scintillator (LnPS@TiO2) as the radiocatalytic material. The lanthanide pyrosilicate post-radiation scintillators can efficiently convert radiation energy into ultraviolet energy, which can be resonantly transferred to TiO2 to selectively generate high-yield superoxide radicals (). Compared with traditional radiotherapy, this radiocatalytic process can significantly kill cancer cells while achieving long-term DNA damage by inhibiting the DNA self-repair process. Our research expands the energy response range of photocatalysis and is expected to extend radiocatalysis to the tumor treatment field.


Asunto(s)
Elementos de la Serie de los Lantanoides , Neoplasias , ADN , Daño del ADN , Humanos , Superóxidos
7.
J Colloid Interface Sci ; 623: 205-215, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35580450

RESUMEN

Coupling with bimetallic nanoparticles (NPs) has been considered as a promising strategy to enhance photocatalytic hydrogen evolution (PHE) efficiency of semiconductor photocatalysts and simultaneously minimize the use of expensive noble metals. Herein, we firstly synthesized spherical-like ZnIn2S4 (ZIS) by a solvothermal method, and then combined with nickel/palladium (denoted as NiPd) bimetallic NPs to form NiPd bimetal/ZIS Schottky heterojunction. The chemical states of NiPd NPs were confirmed in the form of NiPd bimetal rather than Ni-Pd alloy. The detailed characterization results demonstrated that the deposition of NiPd bimetal played a major role in increasing light harvesting capacity, accelerating charge carrier (electrons and holes) separation and facilitating photogenerated electrons transfer, leading to the boosted PHE performance in NiPd-ZIS photocatalysts. By adjusting Ni:Pd molar ratio in NixPdy-ZIS photocatalysts, the desired sample of Ni3Pd7-ZIS exhibited the highest PHE efficiency (106.6 µmol/h) and apparent quantum yield (AQY) value of 40.22% at 400 nm under visible light as compared to ZIS, Ni-ZIS and Pd-ZIS. The multiple techniques were performed to deeply investigate the photogenerated charge carrier separation, transfer and recombination. The possible mechanism over Ni3Pd7-ZIS sample for boosting PHE performance was presented based on characterization results. On the whole, this work would provide some insights into the development of cost-effective and high-efficiency bimetallic cocatalyst-based photocatalysts.

8.
Bioact Mater ; 12: 97-106, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35087966

RESUMEN

The ideal photodynamic therapy (PDT) should effectively remove the primary tumor, and produce a stronger immune memory effect to inhibit the tumor recurrence and tumor metastasis. However, limited by the hypoxic and immunosuppressive microenvironment, the PDT efficiency is apparently low. Here, Chlorella (Chl.) is exploited to enhance local effect by producing oxygen to reverse hypoxia, and release adjuvants to reverse immunosuppressive microenvironment to enhance abscopal effect afterwards. Results from different animal models indicated that Chl. could enhance local effect and PDT related immune response. Ultimately, Chl. coupled PDT elicited anti-tumor effects toward established primary tumors (inhibition rate: 90%) and abscopal tumors (75%), controlled the challenged tumors (100%) and alleviated metastatic tumors (90%). This Chl. coupled PDT strategy can also produce a stronger anti-tumor immune memory effect. Overall, this Chl. coupled PDT strategy generates enhanced local tumor killing, boosts PDT-induced immune responses and promotes anti-tumor immune memory effect, which may be a great progress for realizing systemic effect of PDT.

9.
Nat Commun ; 12(1): 4747, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362922

RESUMEN

Artificial photosynthesis, light-driving CO2 conversion into hydrocarbon fuels, is a promising strategy to synchronously overcome global warming and energy-supply issues. The quaternary AgInP2S6 atomic layer with the thickness of ~ 0.70 nm were successfully synthesized through facile ultrasonic exfoliation of the corresponding bulk crystal. The sulfur defect engineering on this atomic layer through a H2O2 etching treatment can excitingly change the CO2 photoreduction reaction pathway to steer dominant generation of ethene with the yield-based selectivity reaching ~73% and the electron-based selectivity as high as ~89%. Both DFT calculation and in-situ FTIR spectra demonstrate that as the introduction of S vacancies in AgInP2S6 causes the charge accumulation on the Ag atoms near the S vacancies, the exposed Ag sites can thus effectively capture the forming *CO molecules. It makes the catalyst surface enrich with key reaction intermediates to lower the C-C binding coupling barrier, which facilitates the production of ethene.

10.
RSC Adv ; 9(57): 33558-33562, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35529117

RESUMEN

Metal-organic frameworks (MOFs) as versatile templates for preparing transition metal compounds has received wide attention. Benefiting from their diversified spatial structure and controllable chemical constituents, they have become a research hotspot in the field of electrocatalytic water splitting. Herein, Fe2Ni-MIL-88B MOF on nickel foam (Fe2Ni MOF/NF) has been prepared through a one-pot method growth process. Compared with Fe MOF/NF and Ni MOF/NF, the interaction between Fe3+ and Ni2+ in Fe2Ni MOF/NF accelerates the electron transfer through the oxygen of the ligand, leading to increased 3d orbital electron density of Ni, which enhances the activity of the oxygen evolution reaction (OER) in alkaline solution. Fe2Ni MOF/NF provides a current density of 10 mA cm-2 at a low overpotential of 222 mV, and its Tafel slope is also very small, reaching 42.39 mV dec-1. The success of the present Fe2Ni MOF/NF catalyst is attributed to the abundant active centers, the bimetallic clusters Fe2Ni-MIL-88B, the positive coupling effect between Ni and Fe metal ions in the MOF, and synergistic effect between the MOF and NF. Besides, Fe2Ni MOF/NF possesses excellent stability over 50 h of continuous operation, providing feasibility for commercial use.

11.
Nanoscale ; 10(7): 3342-3349, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29387846

RESUMEN

Meter-scale uniform g-CN nanorod (NR) arrays were directly grown on an FTO glass using an unprecedented vacuum magnetic filtered arc ion plating system for enhanced photoelectrochemical (PEC) performance. The construction of the g-CN film is based on the substrate deposition of the direct reaction of ionized carbon and nitrogen species, a gas-based bottom-up approach, distinctly different from the traditional powder deposition and thermal vapor pathways. The g-CN film exhibits obvious advantages over conventional ones in the application of PEC: (1) direct reaction of C and N species allows the formation of the g-CN without intralayer hydrogen bonds, which significantly reduces intralayer photogenerated charge carriers transfer resistance; (2) the g-CN exhibits the NR array structure and comprises considerably numerous layers stacking by stacking and vertically standing on the FTO substrate, which facilitates the photogenerated charges transfer and increases the contact area with electrolyte; (3) the robust mechanical strength of the g-CN NR film with the FTO substrate not only favors the effective charge transport but also allows long-term practical application against abrasion; (4) the gas-based bottom-up approach enables the g-CN to easily couple with, including but not limited to, TiO2 NR array to form heterostructures to further improve charge separation.

12.
Dalton Trans ; 45(4): 1359-63, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26743686

RESUMEN

Neutral nickel(ii) phthalocyanine was found to be an efficient and stable catalyst for photocatalytic H2 evolution from water when coupled with an iridium complex as the photosensitizer and triethanolamine as the sacrificial electron donor. The result shows that the Ni-N sigma bond can enhance the stability of the catalyst.


Asunto(s)
Hidrógeno/química , Indoles/química , Luz , Níquel/química , Compuestos Organometálicos/química , Agua/química , Catálisis , Etanolaminas/química , Isoindoles , Estructura Molecular , Compuestos Organometálicos/síntesis química , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química
13.
Chemphyschem ; 16(14): 2925-30, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26264140

RESUMEN

The complex [Ni(bpy)3](2+) (bpy=2,2'-bipyridine) is an active catalyst for visible-light-driven H2 production from water when employed with [Ir(dfppy)2 (Hdcbpy)] [dfppy=2-(3,4-difluorophenyl)pyridine, Hdcbpy=4-carboxy-2,2'-bipyridine-4'-carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2 -evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3 ](2+). This study may offer a new paradigm for constructing simple and noble-metal-free catalysts for photocatalytic hydrogen production.

14.
Chem Commun (Camb) ; 50(37): 4824-6, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24681812

RESUMEN

In situ grown nickel sulfide and cobalt sulfide hierarchical nanospheres on F-doped SnO2 (FTO) substrates exhibited comparable catalytic activities to sputtering Pt on the counter electrodes for dye-sensitized solar cells (DSSCs). The fresh cells with the nickel sulfide and cobalt sulfide on the counter electrodes could reach power conversion efficiencies of 6.81% and 6.59% respectively, approaching an efficiency of 6.85% based on the sputtering Pt counter electrode. Both nickel sulfide and cobalt sulfide counter electrodes could maintain the cell's relatively high performance in the long-term stability test in 504 hours.

15.
Nanoscale ; 4(11): 3490-4, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22543517

RESUMEN

Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.


Asunto(s)
Colorantes/química , Nanocables/química , Energía Solar , Acero Inoxidable/química , Compuestos de Estaño/química , Óxido de Zinc/química , Electrodos , Electrólitos/química , Nanocables/ultraestructura
16.
J Chem Phys ; 133(23): 231104, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21186850

RESUMEN

Graphene with significant and stable magnetic moment is expected to have various promising applications in electronics. The conventional way to magnetize graphene is to dope paramagnetic adsorbates onto it. However, this method usually induces fractional charge transfer, which decreases the total magnetic moment. Contrary to the conventional way and widely held point of view that diamagnetic adsorbates are weak dopants, for the first time we report our theoretical findings that doping the diamagnetic beryllium dimer on perfect diamagnetic graphene produces a stable system with a local magnetic moment as large as 1 µ(B). It is revealed that this process is realized through the spin-polarized electron transfer.

17.
J Photochem Photobiol B ; 98(3): 207-10, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20149675

RESUMEN

The increasing incidence of cancer all over the world demands new, effective and secure materials for treatment. In this paper, we propose Pt/TiO(2) nanocomposite for cancer-cell treatment because noble metal nanoparticles are supposed to enhance the photocatalytic activity of TiO(2) nanoparticles. To evaluate the cancer-cell killing effect of our Pt/TiO(2) nanocomposite, TiO(2) and Au/TiO(2) nanoparticles are also introduced. The prepared Pt/TiO(2) nanocomposite are characterized with transmission electron microscopy (TEM) and UV-vis adsorption spectra. Results of cell treatment indicate that Pt/TiO(2) nanocomposite, as extremely stable metal-semiconductor nanomaterial, can exhibit a very high photodynamic efficiency under a mild ultraviolet radiation. And our Pt/TiO(2) nanocomposite shows to be more effective in cancer-cell treatment than TiO(2) and Au/TiO(2) nanoparticles. As a result, Pt/TiO(2) nanocomposite may be supposed to have a promising application for cancer-cell treatment.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Nanoestructuras/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Platino (Metal)/uso terapéutico , Titanio/uso terapéutico , Terapia Ultravioleta/métodos , Supervivencia Celular/efectos de la radiación , Células HeLa , Humanos , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Resultado del Tratamiento
18.
J Hazard Mater ; 169(1-3): 77-87, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19398265

RESUMEN

In this study, C-N-S-tridoped titanium dioxide (TiO(2)) nanocrystals were synthesized by using a facile hydrothermal method in the presence of a biomolecule l-cysteine. This biomolecule could not only serve as the common source for the carbon, sulfur and nitrogen tridoping, but also could control the final crystal phases and morphology. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption and UV-vis diffuse reflectance spectroscopy. XPS analysis revealed that S was incorporated into the lattice of TiO(2) through substituting oxygen atoms, N might coexist in the forms of N-Ti-O and Ti-O-N in tridoped TiO(2) and most C could form a mixed layer of carbonate species deposited on the surface of TiO(2) nanoparticles. The photocatalytic activities of the samples were tested on the removal of NO at typical indoor air level in a flow system under simulated solar light irradiation. The tridoped TiO(2) samples showed much higher removal efficiency than commercial P25 and the undoped counterpart photocatalyst. The enhanced visible light photocatalytic activity of C-N-S-tridoped TiO(2) nanocrystals was explained on the basis of characterizations. The possible formation process of the monodispersed C-N-S-tridoped anatase TiO(2) nanocrystals was also proposed. This study provides a new method to prepare visible light active TiO(2) photocatalyst.


Asunto(s)
Contaminantes Atmosféricos/efectos de la radiación , Nanopartículas/química , Óxido Nítrico/efectos de la radiación , Luz Solar , Catálisis , Procesos Fotoquímicos , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA