Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cancer Ther ; 23(1): 84-91, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37774393

RESUMEN

Key defining attributes of an antibody-drug conjugate (ADC) include the choice of the targeting antibody, linker, payload, and the drug-to-antibody ratio (DAR). Historically, most ADC platforms have used the same DAR for all targets, regardless of target characteristics. However, recent studies and modeling suggest that the optimal DAR can depend on target expression level and intratumoral heterogeneity, target internalization and trafficking, and characteristics of the linker and payload. An ADC platform that enables DAR optimization could improve the success rate of clinical candidates. Here we report a systematic exploration of DAR across a wide range, by combining THIOMAB protein engineering technology with Dolasynthen, an auristatin-based platform with monomeric and trimeric variants. This approach enabled the generation of homogeneous, site-specific ADCs spanning a discrete range of DARs 2, 4, 6, 12, and 18 by conjugation of trastuzumab IgG1 THIOMAB constructs with 1, 2, or 3 engineered cysteines to monomeric or trimeric Dolasynthen. All ADCs had physicochemical properties that translated to excellent in vivo pharmacology. Following a single dose of ADCs in a HER2 xenograft model with moderate antigen expression, our data demonstrated comparable pharmacokinetics for the conjugates across all DARs and dose-dependent efficacy of all test articles. These results demonstrate that the Dolasynthen platform enables the generation of ADCs with a broad range of DAR values and with comparable physiochemical, pharmacologic, and pharmacokinetics profiles; thus, the Dolasynthen platform enables the empirical determination of the optimal DAR for a clinical candidate for a given target.


Asunto(s)
Inmunoconjugados , Humanos , Inmunoconjugados/química , Ensayos Antitumor por Modelo de Xenoinjerto , Trastuzumab/farmacología , Trastuzumab/química , Receptor ErbB-2/metabolismo , Cisteína
2.
J Med Chem ; 66(15): 10715-10733, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37486969

RESUMEN

While STING agonists have proven to be effective preclinically as anti-tumor agents, these promising results have yet to be translated in the clinic. A STING agonist antibody-drug conjugate (ADC) could overcome current limitations by improving tumor accessibility, allowing for systemic administration as well as tumor-localized activation of STING for greater anti-tumor activity and better tolerability. In line with this effort, a STING agonist ADC platform was identified through systematic optimization of the payload, linker, and scaffold based on multiple factors including potency and specificity in both in vitro and in vivo evaluations. The platform employs a potent non-cyclic dinucleotide STING agonist, a cleavable ester-based linker, and a hydrophilic PEG8-bisglucamine scaffold. A tumor-targeted ADC built with the resulting STING agonist platform induced robust and durable anti-tumor activity and demonstrated high stability and favorable pharmacokinetics in nonclinical species.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/farmacocinética , Anticuerpos Monoclonales , Antineoplásicos/farmacocinética , Neoplasias/tratamiento farmacológico
3.
Proc Natl Acad Sci U S A ; 117(19): 10541-10546, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332169

RESUMEN

Mild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes ("RDC-genes") that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome-wide DSB identification approach that captures DSBs via their ability to join to specific genomic Cas9/single-guide RNA-generated bait DSBs. In XRCC4/p53-deficient ESCs, we detected seven RDCs, all of which were in genes and two of which were robust. In contrast, in NPCs derived from these ESC lines we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ESCs provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias de Ratones/citología , Células-Madre Neurales/metabolismo , Animales , Línea Celular , Células Cultivadas , Roturas del ADN , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genes p53/genética , Genoma , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Familia de Multigenes/genética , Neurogénesis , Neuronas/citología
4.
Proc Natl Acad Sci U S A ; 115(8): 1919-1924, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432181

RESUMEN

We recently discovered 27 recurrent DNA double-strand break (DSB) clusters (RDCs) in mouse neural stem/progenitor cells (NSPCs). Most RDCs occurred across long, late-replicating RDC genes and were found only after mild inhibition of DNA replication. RDC genes share intriguing characteristics, including encoding surface proteins that organize brain architecture and neuronal junctions, and are genetically implicated in neuropsychiatric disorders and/or cancers. RDC identification relies on high-throughput genome-wide translocation sequencing (HTGTS), which maps recurrent DSBs based on their translocation to "bait" DSBs in specific chromosomal locations. Cellular heterogeneity in 3D genome organization allowed unequivocal identification of RDCs on 14 different chromosomes using HTGTS baits on three mouse chromosomes. Additional candidate RDCs were also implicated, however, suggesting that some RDCs were missed. To more completely identify RDCs, we exploited our finding that joining of two DSBs occurs more frequently if they lie on the same cis chromosome. Thus, we used CRISPR/Cas9 to introduce specific DSBs into each mouse chromosome in NSPCs that were used as bait for HTGTS libraries. This analysis confirmed all 27 previously identified RDCs and identified many new ones. NSPC RDCs fall into three groups based on length, organization, transcription level, and replication timing of genes within them. While mostly less robust, the largest group of newly defined RDCs share many intriguing characteristics with the original 27. Our findings also revealed RDCs in NSPCs in the absence of induced replication stress, and support the idea that the latter treatment augments an already active endogenous process.


Asunto(s)
Roturas del ADN de Doble Cadena , Animales , Encéfalo , Reparación del ADN , Eliminación de Gen , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Células-Madre Neurales/metabolismo , Interferencia de ARN , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA