Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microorganisms ; 10(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144419

RESUMEN

Chronic hepatitis B virus infection is the dominant cause of hepatocellular carcinoma, the main cause of cancer death. HBx protein, a multifunctional protein, is essential for pathogenesis development; however, the underlying mechanisms are not fully understood. The complexity of the system itself, and the intricate interplay of many factors make it difficult to advance in understanding the mechanisms underlying these processes. The most obvious solution is to use simpler systems by reducing the number of interacting factors. Yeast cells are particularly suitable for studying the relationships between oxidative stress, mitochondrial dynamics (mitochondrial fusion and fragmentation), and mitochondrial dysfunction involved in HBx-mediated pathogenesis. For the first time, genetically modified yeast, Y. lipolytica, was created, expressing the hepatitis B virus core protein HBx, as well as a variant fused with eGFP at the C-end. It was found that cells expressing HBx experienced stronger oxidative stress than the control cells. Oxidative stress was alleviated by preincubation with the mitochondria-targeted antioxidant SkQThy. Consistent with these data, in contrast to the control cells (pZ-0) containing numerous mitochondrial forming a mitochondrial reticulum, in cells expressing HBx protein, mitochondria were fragmented, and preincubation with SkQThy partially restored the mitochondrial reticulum. Expression of HBx had a significant influence on the bioenergetic function of mitochondria, making them loosely coupled with decreased respiratory rate and reduced ATP formation. In sum, the first highly promising yeast model for studying the impact of HBx on bioenergy, redox-state, and dynamics of mitochondria in the cell and cross-talk between these parameters was offered. This fairly simple model can be used as a platform for rapid screening of potential therapeutic agents, mitigating the harmful effects of HBx.

2.
Biochim Biophys Acta Bioenerg ; 1861(8): 148210, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32305410

RESUMEN

An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK3) was synthesized. However, MitoK3 did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action. Here we synthesized 1,4-naphthoquinone conjugated with alkyltriphenylphosphonium (SkQN) as a prototype of mitochondria-targeted prooxidant, and its redox properties, interactions with isolated mitochondria, yeast cells and various human cell lines were investigated. According to electrochemical measurements, SkQN was more active redox agent and, due to the absence of methyl group in the naphthoquinone ring, more reactive as electrophile than MitoK3. SkQN (but not MitoK3) stimulated hydrogen peroxide production in isolated mitochondria. At low concentrations, SkQN stimulated state 4 respiration in mitochondria, decreased membrane potential, and blocked ATP synthesis, being more efficient uncoupler of oxidative phosphorylation than MitoK3. In yeast cells, SkQN decreased cell viability and induced oxidative stress and mitochondrial fragmentation. SkQN killed various tumor cells much more efficiently than MitoK3. Since many tumors are characterized by increased oxidative stress, the use of new mitochondria-targeted prooxidants may be a promising strategy for anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Naftoquinonas/farmacología , Especies Reactivas de Oxígeno/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Naftoquinonas/química , Fosforilación Oxidativa/efectos de los fármacos , Oxígeno/metabolismo , Compuestos de Fósforo/química , Especies Reactivas de Oxígeno/química
3.
Oxid Med Cell Longev ; 2020: 8956504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32104543

RESUMEN

Benzalkonium chloride (BAC) is currently the most commonly used antimicrobial preservative in ophthalmic solutions, nasal sprays, and cosmetics. However, a large number of clinical and experimental investigations showed that the topical administration of BAC-containing eye drops could cause a variety of ocular surface changes, from ocular discomfort to potential risk for future glaucoma surgery. BAC-containing albuterol may increase the risk of albuterol-related systemic adverse effects. BAC, commonly present in personal care products, in cosmetic products can induce irritation and dose-dependent changes in the cell morphology. The cationic nature of BAC (it is a quaternary ammonium) suggests that one of the major targets of BAC in the cell may be mitochondria, the only intracellular compartment charged negatively. However, the influence of BAC on mitochondria has not been clearly understood. Here, the effects of BAC on energy parameters of rat liver mitochondria as well as on yeast cells were examined. BAC, being a "weaker" uncoupler, potently inhibited respiration in state 3, diminished the mitochondrial membrane potential, caused opening of the Ca2+/Pi-dependent pore, blocked ATP synthesis, and promoted H2O2 production by mitochondria. BAC triggered oxidative stress and mitochondrial fragmentation in yeast cells. BAC-induced oxidative stress in mitochondria and yeast cells was almost totally prevented by the mitochondria-targeted antioxidant SkQ1; the protective effect of SkQ1 on mitochondrial fragmentation was only partial. Collectively, these data showed that BAC acts adversely on cell bioenergetics (especially on ATP synthesis) and mitochondrial dynamics and that its prooxidant effect can be partially prevented by the mitochondria-targeted antioxidant SkQ1.


Asunto(s)
Compuestos de Benzalconio/farmacología , Mitocondrias Hepáticas/metabolismo , Animales , Antioxidantes/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo
4.
J Mol Biol ; 389(5): 846-62, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19393666

RESUMEN

Bacterial pentaheme cytochrome c nitrite reductases (NrfAs) are key enzymes involved in the terminal step of dissimilatory nitrite reduction of the nitrogen cycle. Their structure and functions are well studied. Recently, a novel octaheme cytochrome c nitrite reductase (TvNiR) has been isolated from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens. Here we present high-resolution crystal structures of the apoenzyme and its complexes with the substrate (nitrite) and the inhibitor (azide). Both in the crystalline state and in solution, TvNiR exists as a stable hexamer containing 48 hemes-the largest number of hemes accommodated within one protein molecule known to date. The subunit of TvNiR consists of two domains. The N-terminal domain has a unique fold and contains three hemes. The catalytic C-terminal domain hosts the remaining five hemes, their arrangement, including the catalytic heme, being identical to that found in NrfAs. The complete set of eight hemes forms a spatial pattern characteristic of other multiheme proteins, including structurally characterized octaheme cytochromes. The catalytic machinery of TvNiR resembles that of NrfAs. It comprises the lysine residue at the proximal position of the catalytic heme, the catalytic triad of tyrosine, histidine, and arginine at the distal side, channels for the substrate and product transport with a characteristic gradient of electrostatic potential, and, finally, two conserved Ca(2+)-binding sites. However, TvNiR has a number of special structural features, including a covalent bond between the catalytic tyrosine and the adjacent cysteine and the unusual topography of the product channels that open into the void interior space of the protein hexamer. The role of these characteristic structural features in the catalysis by this enzyme is discussed.


Asunto(s)
Proteínas Bacterianas/química , Citocromos a1/química , Citocromos c1/química , Ectothiorhodospiraceae/enzimología , Nitrato Reductasas/química , Estructura Cuaternaria de Proteína , Secuencia de Aminoácidos , Azidas/metabolismo , Cristalografía por Rayos X , Hemo/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nitritos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
5.
FEMS Yeast Res ; 8(5): 685-96, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18625026

RESUMEN

The Na(+)-coupled, high-affinity Pho89 plasma membrane phosphate transporter in Saccharomyces cerevisiae has so far been difficult to study because of its low activity and special properties. In this study, we have used a pho84Deltapho87Deltapho90Deltapho91Delta quadruple deletion strain of S. cerevisiae devoid of all transporter genes specific for inorganic phosphate, except for PHO89, to functionally characterize Pho89 under conditions where its expression is hyperstimulated. Under these conditions, the Pho89 protein is strongly upregulated and is the sole high-capacity phosphate transporter sustaining cellular acquisition of inorganic phosphate. Even if Pho89 is synthesized in cells grown at pH 4.5-8.0, the transporter is functionally active under alkaline conditions only, with a K(m) value reflecting high-affinity properties of the transporter and with a transport rate about 100-fold higher than that of the protein in a wild-type strain. Even under these hyperexpressive conditions, Pho89 is unable to sense and signal extracellular phosphate levels. In cells grown at pH 8.0, Pho89-mediated phosphate uptake at alkaline pH is cation-dependent with a strong activation by Na(+) ions and sensitivity to carbonyl cyanide m-chlorophenylhydrazone. The contribution of H(+)- and Na(+)-coupled phosphate transport systems in wild-type cells grown at different pH values was quantified. The contribution of the Na(+)-coupled transport system to the total cellular phosphate uptake activity increases progressively with increasing pH.


Asunto(s)
Dosificación de Gen , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Eliminación de Gen , Concentración de Iones de Hidrógeno , Cinética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sodio/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Desacopladores/farmacología
6.
Biosci Rep ; 24(2): 117-26, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15628666

RESUMEN

Energy status of the novel alkalitolerant Yarrowia lipolytica yeast strain grown at alkaline conditions (pH 9.7) was examined. Cells grown under such severe conditions were found to preserve high respiratory activity. The oxidative phosphorylation system dominated in the energy budget of the cell. A procedure was specially design to isolate tightly coupled mitochondria from yeast cells grown at alkaline conditions. The isolated mitochondrial preparations met known criteria of physiological intactness, as inferred from their ability to maintain distinctive state 4-3 respiration transition upon addition of ADP, high respiratory rates, good respiratory control values, and ADP/O ratios close to the theoretically expected maxima for the substrates used.


Asunto(s)
Metabolismo Energético , Yarrowia/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Respiración de la Célula , Concentración de Iones de Hidrógeno , Cinética , Potenciales de la Membrana , Mitocondrias/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Consumo de Oxígeno , Yarrowia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA