Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Comp Med ; 74(4): 255-262, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38849202

RESUMEN

This research aims to establish an experimental surgical model for access to the renal pedicle and kidney and to determine renal length measurement via the kidney/aorta ratio (K/AO) using ultrasound. Fifteen swine underwent ventral median celiotomy with a supraumbilical transverse incision to access the right and left renal pedicles and induce renal ischemia-reperfusion injury (IRR). The kidneys were evaluated using ultrasonography to standardize renal length, aortic diameter, and the K/AO. Assessment was performed at 2 time points: 1 h before and 24 h after the surgery to induce IRR. Blood and urine samples were collected to assess renal function. Histologic evaluation of kidney fragments was also conducted. The proposed abdominal cavity access method proved to be highly efficient for exposing the right and left renal pedicles and inducing IRR. Serum levels of urea, creatinine, calcium, and phosphorus, as well as levels of the urinary protein/urinary creatinine ratio and urinary GGT, did not show significant differences. Acute kidney injury was confirmed through histopathology. The mean lengths of the right and left kidneys were 82.63 and 87.64 mm, respectively. The values of the right and left K/AO were 9.81 and 10.38, respectively. There was no statistically significant difference in the K/AO ratio before and after IRR. The proposed surgical model allowed surgical intervention on the renal pedicles without intra- or postoperative complications. Furthermore, the K/AO could be measured through ultrasonography, establishing a reference for healthy animals.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Riñón , Daño por Reperfusión , Ultrasonografía , Animales , Lesión Renal Aguda/patología , Riñón/patología , Riñón/diagnóstico por imagen , Porcinos , Daño por Reperfusión/patología , Daño por Reperfusión/veterinaria , Aorta/diagnóstico por imagen , Aorta/patología , Femenino
2.
Anim Reprod ; 20(4): e20230071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148927

RESUMEN

The Brazilian Buriti oil presents low extraction costs and relevant antioxidant properties. Thus, this work aimed to analyze Buriti oil biomaterial (BB), within its physicochemical properties, biocompatibility and cellular integration, with the purpose to the use as a growth matrix for Goat Wharton's jelly mesenchymal stem cells. Biomaterials were produced from Buriti oil polymer (Mauritia flexuosa), for it's characterization were performed Infrared Region Spectroscopy (FTIR) and Thermogravimetric Analysis (TG and DTG). The biointegration was analyzed by Scanning Electron Microscopy (SEM) and histological techniques. In order to investigate biocompatibility, MTT (3-(4,5-dimetil-2-tiazolil)-2,5-difenil-2H-tetrazólio) test and hemolytic activity tests were performed. The activation capacity of immune system cellswas measured by phagocytic capacity assay and nitric oxide synthesis . The BB presented an amorphous composition, with high thermal stability and high water expansion capacity, a surface with micro and macropores, and good adhesion of Wharton's jelly mesenchymal stem cells (MSCWJ). We verified the absence of cytotoxicity and hemolytic activity, in addition, BB did not stimulate the activation of macrophages. Proving to be a safe material for direct cultivation and also for manufacturing of compounds used for in vivo applications.

3.
Oxid Med Cell Longev ; 2020: 6470574, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695258

RESUMEN

In vitro senescence of multipotent cells has been commonly associated with DNA damage induced by oxidative stress. These changes may vary according to the sources of production and the studied lineages, which raises questions about the effect of growing time on genetic stability. This study is aimed at evaluating the evolution of genetic stability, viability, and oxidative stress of bone marrow mesenchymal stem cells (MSCBMsu) and renal progenitor cells of the renal cortex (RPCsu) of swine (Sus scrofa domesticus) in culture passages. P2, P5, and P9 were used for MSCBMsu and P1, P2, and P3 for RPCsu obtained by thawing. The experimental groups were submitted to MTT, apoptosis and necrosis assays, comet test, and reactive substance measurements of thiobarbituric acid (TBARS), nitrite, reduced glutathione (GSH), and catalase. The MTT test curve showed a mean viability of 1.14 ± 0.62 and 1.12 ± 0.54, respectively, for MSCBMsu and RPCsu. The percentages of MSCBMsu and RPCsu were presented, respectively, for apoptosis, an irregular and descending behavior, and necrosis, ascending and irregular. The DNA damage index showed higher intensity among the MSCBMsu in the P5 and P9 passages (p < 0.05). In the TBARS evaluation, there was variation among the lines of RPCsu and MSCBMsu, presenting the last most significant variations (p < 0.05). In the nitrite values, we identified only among the lines, in the passages P1 and P2, with the highest averages displayed by the MSCBMsu lineage (p < 0.05). The measurement of antioxidant system activity showed high standards, identifying differences only for GSH values, in the RPCsu lineage, in P3 (p < 0.05). This study suggests that the maintenance of cell culture in the long term induces lower regulation of oxidative stress, and RPCsu presents higher genetic stability and lower oxidative stress than MSCBMsu during in vitro expansion.


Asunto(s)
Células de la Médula Ósea/fisiología , Riñón/fisiología , Células Madre Mesenquimatosas/fisiología , Células Madre/fisiología , Animales , Catalasa/metabolismo , Técnicas de Cultivo de Célula , Proliferación Celular , Células Cultivadas , Inestabilidad Genómica , Glutatión/metabolismo , Riñón/citología , Trasplante de Células Madre Mesenquimatosas , Estrés Oxidativo , Sus scrofa , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
4.
Zygote ; 28(1): 65-71, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31735191

RESUMEN

This study aims to develop an in vitro co-culture system of in situ goat preantral follicles with bone marrow-derived mesenchymal stem cells (BM-MSC), evaluating the influence of these cells on follicular growth, rate of activation and morphologically normal follicles. Fragments of ovarian cortex were cultured for 1 or 7 days in the presence of BM-MSC (BM-MSC+) and absence of BM-MSC (BM-MSC-). Histological sections of the fragments were analysed and data were obtained regarding morphological classification, survival rate of morphologically normal follicles and rate of follicular activation. Culture medium on days 1 and 7 was also sampled for nitrite concentration and reduced glutathione activity. There was a reduction (P < 0.05) in the percentage of morphologically normal follicles in the BM-MSC+ compared with the fresh control only on the seventh day of culture. When comparing treatments, on the seventh day of culture, a higher rate of morphologically normal preantral follicles was observed in BM-MSC+ (P < 0.05). In both treatments, primordial and developing follicle rates were similar to the fresh control (P > 0.05). When comparing treatments with each other, as well as with the fresh control, no differences were observed in follicular diameter (P > 0.05) or nitrite concentration (P > 0.05). The concentration of reduced glutathione was lower on the seventh day of co-culture in both treatments (P < 0.05). In conclusion, co-culture had no influence on follicular or oocyte development. However, it was critical to maintain the survival of preantral follicles during 7 days of culture.


Asunto(s)
Células Madre Mesenquimatosas/citología , Oocitos/citología , Oogénesis , Folículo Ovárico/citología , Animales , Células Cultivadas , Femenino , Cabras , Células Madre Mesenquimatosas/fisiología , Oocitos/fisiología , Folículo Ovárico/fisiología
5.
Tissue Cell ; 54: 47-54, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30309509

RESUMEN

Cell replacement through neural stem cells has been a promising alternative therapy for neurodegenerative diseases. It was evaluated the possible protect and/or prevent role of neurospheres in experimental models of epilepsy by the use of biomarkers of oxidative stress and histopathological analysis. After 1 h of the epileptic inductions by pilocarpine, pentylenotetrazole and picrotoxin, rats were infused with a suspension of 2 × 106 cells/0.25 mL, marked with Qtracker® 655, via caudal vein. In the control group epilepsy was not induced, but received the cell infusion under the same conditions of other groups. After 30 days, the rats were euthanized, and the removal of the brain was proceeded to later perform the assays oxidative stress and histopathology analysis. Thiobarbituric acid and nitrite levels were elevated in epileptic groups treated with neurospheres, and the levels of reduced glutathione, superoxide dismutase and catalase were reduced when compared to non-treated groups. The performance of oxidative enzymes from pilocarpine group treated with neurospheres showed slight increase. Histopathological evaluation observed distribution of neurospheres throughout the brain tissue, with viable cells and in process of differentiation in the pilocarpine group, but with differentiation and regeneration compromised in epilepsy by picrotoxin and pentylenetetrazole due to a microenvironment of oxidative stress. Neural stem cell therapy has a promising potential for protection in the pilocarpine epilepsy model, suggesting that the antioxidant system of neurospheres could reduce oxidative damage generated by seizure.


Asunto(s)
Células-Madre Neurales/trasplante , Estrés Oxidativo/fisiología , Convulsiones/fisiopatología , Trasplante de Células Madre/métodos , Animales , Encéfalo/fisiopatología , Convulsivantes/toxicidad , Femenino , Masculino , Pilocarpina/toxicidad , Ratas , Ratas Wistar , Convulsiones/inducido químicamente
6.
PeerJ ; 6: e4656, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736332

RESUMEN

BACKGROUND: Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. METHODS: Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. RESULTS: The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs' bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. CONCLUSION: The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering.

7.
Microsc Res Tech ; 75(10): 1376-82, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22648857

RESUMEN

Stem cells are present in the adult tissues of most diverse species. Bone marrow is recognized to be the most exploited site to obtain stem cells and cell progenitors. The objective of the present study was to characterize hematopoietic progenitor (HP) morphology and analyze the performance of adherent cell progenitors (ACPs) cultivated in vitro from black-rumped agouti bone marrow (Dasyprocta prymnolopha). Bone marrow aspirates were obtained from tibia crest and used to prepare histological slides and identify cell morphology. Cells were also scattered on culture plates for later isolation, expansion, and quantification. Smears obtained from bone marrow demonstrated HPs at different stages of maturity. In culture, these cells showed fibroblastoid morphology and a strong tendency to form colonies, demonstrated by the presence of cell aggregates, cytoplasmic elongations lying side by side. An 80% cell confluence was observed at 18 days in culture and progressive reduction in the percentage of nonadherent mononuclear cells. After eight passes, a mean cell viability of 96.07% was observed, from a pool of 1.6 × 10(7) cells (ACP). Thirteen 25-cm(2) culture bottles were trypsinized, resuspended in freezing medium, stored in 14 criotubes at a concentration of 1 × 10(6) cells per milliliter, and placed in liquid nitrogen at -196°C. Agouti bone marrow demonstrated high plasticity, moreover different HP lines, and a population of adherent cells demonstrated morphology similar to mesenchymal stem cells in culture.


Asunto(s)
Roedores , Animales , Médula Ósea , Supervivencia Celular , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Microscopía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA