Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38936799

RESUMEN

Myotis davidii cystatin A (MdCSTA), a stefin A-like from the Chinese native bat species M. davidii, was expressed as a recombinant protein and functionally characterized as a strong inhibitor of the cysteine proteases papain, human cathepsins L and B and the tick cathepsin L-like BmCL1. Despite the highly conserved amino acid sequences among stefins A from different vertebrates, MdCSTA presents a Methionine-2 residue at the N-terminal region and the second binding loop (pos 73-79) that differs from human stefin A (HsCSTA) and might be related to the lower inhibition constant (Ki) value presented by this inhibitor in comparison to human stefin A inhibition to cathepsin B. Therefore, to investigate the importance of these variable regions in cathepsin B inhibition, recombinant stefins A MdCSTA and HsCSTA containing mutations at the second amino acid residue and second binding loop were expressed and evaluated in kinetic assays. Enzymatic inhibition assays with cathepsin B revealed that switching the amino acid residues at position 2 and second binding loop region between bat and human CSTAs improved the HsCSTA's and reduced MdCSTA's inhibitory activity. Additionally, molecular docking analysis estimated lower energy values for the complex between MdCSTA-cathepsin B, in comparison to human CSTA-cathepsin B, while the mutants presented intermediate values, suggesting that other regions might contribute to the higher inhibitory activity against cathepsin B by MdCSTA. In conclusion, MdCSTA, the first bat's stefin A-like inhibitor to be functionally characterized, presented a higher inhibitory activity against cathepsin B in comparison to the human inhibitor, which is partially related to the glutamine-rich second binding loop and Met-2. Further structural analysis should be performed to elucidate potential inhibitor effects on cysteine proteinases.


Asunto(s)
Catepsina B , Quirópteros , Cistatina A , Animales , Humanos , Catepsina B/metabolismo , Catepsina B/química , Catepsina B/genética , Catepsina B/antagonistas & inhibidores , Cistatina A/metabolismo , Cistatina A/química , Cistatina A/genética , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Catepsina L/metabolismo , Catepsina L/química , Catepsina L/genética , Catepsina L/antagonistas & inhibidores , Cinética , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Cisteína Proteinasa/metabolismo
2.
Protein J ; 31(8): 674-80, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22965555

RESUMEN

The Abelmoschus esculentus (Malvaceae) plant originated in Africa and has spread across a number of tropic countries, including northeastern Brazil. The plant has been used to treat various disorders, such as cancer, microbial infections, hypoglycemia, constipation, urine retention and inflammation. The lectin of A. esculentus (AEL) was isolated by precipitation with ammonium sulfate at a saturation level of 30/60 and purified by ion exchange chromatography (Sephacel-DEAE). The electrophoresis (SDS-PAGE) profile of the AEL showed two protein bands of apparent molecular mass of approximately 15.0 and 21.0 kDa. The homogenity of the protein was confirmed by electrospray mass spectrometry (ESI-MS), which revealed the presence of a 10.29-kDa monomer and a 20.58-kDa dimer. The AEL exhibits agglutinating activity against rabbit (74.41 UH/mP) and human type ABO erythrocytes (21.00 UH/mP). This activity does not require the presence of divalent cations and is specifically inhibited by lactose, fructose and mannose. The intravenous treatment with 0.01, 0.1 and 1 mg/kg of AEL inhibited the paw edema elicited by carrageenan by approximately 15, 22 and 44 %, respectively, but not that induced by dextran. In addition, treatment with 0.1, 1 and 10 mg/kg of AEL also inhibited the abdominal writhing induced by acetic acid by approximately 52, 57 and 69 %, respectively. In conclusion, AEL is a new lectin with a molecular mass of 20.0 kDa, which is -composed of a 10.291-Da monomer and a 20.582-kDa dimer, that exhibits anti-inflammatory, antinociceptive and hemagglutinating activities. In addition, the lectin hemagglutinating property is both metallo-independent and associated with the lectin domain.


Asunto(s)
Abelmoschus/química , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Lectinas de Plantas/aislamiento & purificación , Lectinas de Plantas/farmacología , Ácido Acético , Analgésicos/química , Análisis de Varianza , Animales , Antiinflamatorios/química , Metabolismo de los Hidratos de Carbono , Carragenina/efectos adversos , Edema/inducido químicamente , Agregación Eritrocitaria/efectos de los fármacos , Femenino , Pruebas de Hemaglutinación , Humanos , Inflamación/inducido químicamente , Masculino , Ratones , Dimensión del Dolor/efectos de los fármacos , Lectinas de Plantas/química , Conejos , Ratas , Ratas Wistar , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA