Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Res Int ; 178: 113873, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309895

RESUMEN

Overweight and obesity are typical conditions of chronic low-intensity systemic inflammatory responses, and both have become more common in recent decades, which emphasizes the necessity for healthier diet intake. Fruits such as grapes are rich in anthocyanins, one of which is delphinidin, a promising chemopreventive agent with anti-inflammatory properties. Considering that polymorphonuclear cells (PMNs) are rapidly mobilized to tissues when the inflammatory process is initiated, this study aimed to understand the impact of grape juice intake and delphinidin on the migration properties of PMNs. Overweight women ingested 500 mL of grape juice for 28 days, and then lipid and inflammatory profiles, as well as the white blood cell count (WBC), were evaluated. Additionally, the gene expression of inflammatory markers and quantified migration molecules such as CD11/CD18, ICAM-1 and VCAM-1 were evaluated in PMNs. The influence of delphinidin-3-O-glucoside in vitro on some migration properties was also evaluated. Grape juice intake did not influence the lipid profile or affect the WBC. However, NFκB gene expression was reduced in PMNs, also reducing the circulating values of IL-8, sICAM-1, and sVCAM-1. The in vitro results demonstrated that delphinidin significantly reduced the migration potential of cells and reduced CD11-/CD18-positive cells, the gene expression of ICAM-1, and the phosphorylation and gene expression of NFκB. Additionally, delphinidin also reduced the production of IL-6, IL-8, and CCL2. Grape juice, after 28 days of intervention, influenced some properties related to cell migration, and delphinidin in vitro can modify the cell migration properties.


Asunto(s)
Vitis , Humanos , Femenino , Vitis/metabolismo , Antocianinas/análisis , Molécula 1 de Adhesión Intercelular/genética , Sobrepeso , Interleucina-8 , Bebidas/análisis , Movimiento Celular , Glucósidos/farmacología , Lípidos
2.
Inflammation ; 39(6): 1883-1891, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27565164

RESUMEN

Protein malnutrition (PM) is a major public health problem in developing countries, affecting the inflammatory response and increasing susceptibility to opportunistic infections. For this reason, an adequate nutritional intervention can improve the quality of life of patients. Glutamine (GLN) is a nonessential amino acid, but can be considered "conditionally essential" for macrophage function in stress situations, in which it plays a role in the improvement of the inflammatory response. Concerning this issue, in the current study, it was of interest to evaluate some biological aspects of peritoneal cells from a protein malnutrition (PM) mouse model challenged with lipopolysaccharide (LPS) and treated intravenously with GLN. Two-month-old male Balb/c mice were subjected to a low-protein diet (2 % protein) and stimulated intravenously with LPS 1 h prior to the injection of 0.75 mg/kg GLN. Malnourished animals showed a reduced number of total peritoneal cells. Malnourished animals stimulated with LPS or LPS plus GLN did not show differences in peritoneal cell counts; however, the control group showed increased cellularity after LPS stimulus, which was reversed after GLN injection. Further, in the animals from both groups stimulated with LPS, GLN decreased the circulating levels of TNF-α and the levels of TNF-α produced by peritoneal cells; additionally, GLN decreased the IL-10 circulating levels in the malnourished animals stimulated with LPS. In addition, peritoneal cells of the control and malnourished groups stimulated with LPS showed a negative modulation of the NFkB signaling pathway after GLN injection. In conclusion, this study shows that GLN has the capacity to reduce TNF-α synthesis as well as to act as a negative regulator of NFkB phosphorylation, leading to a positive outcome in the control of TNF-α production.


Asunto(s)
Glutamina/administración & dosificación , Desnutrición Proteico-Calórica/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Modelos Animales de Enfermedad , Glutamina/uso terapéutico , Interleucina-10/sangre , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Peritoneo/citología , Fosforilación/efectos de los fármacos , Desnutrición Proteico-Calórica/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/análisis
3.
Cytokine ; 69(2): 218-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25005154

RESUMEN

Malnutrition is a nutritional condition that can affect many aspects of the immunological response, including by decreasing cell migration and stimulating phagocytosis; the bactericidal response; changes in reactive oxygen and nitrogen species production; and the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α). This cytokine is primarily produced by macrophages and is associated with a wide range of biological activities, including inflammatory processes, growth, differentiation, and apoptosis. TNF-α acts through the activation of TNF receptors, and mainly receptor I (TNF-RI), which is responsible for most of the effects of TNF-α. This activation triggers a series of intracellular events that result in the activation of the transcription factor NF-κB. In this study, we evaluated the expression of the transcription factor NF-κB, mediated by TNF-α through TNF-RI, in a protein malnutrition (PM) model. Adult male BALB/c mice were submitted to PM, and after loss of approximately 20% of their body weight, their peritoneal macrophages were collected and cultivated with or without TNF-α. The expression of TNF-RI and proteins in its signaling pathway (TRADD, TRAF, RIP, IKK, IKB-α, pIKB-α, NF-κB, and pNF-κB) were evaluated, as well as cytokine production (IL-1α, IL-1ß, IL-6, and IL-12). The compiled results highlight that the malnourished animals presented anemia, leukopenia, and decreased peritoneal cellularity. TNF-RI expression was reduced in the malnourished animals, and NF-κB phosphorylation was also reduced, in association with reduced production of IL-1ß and IL-12. In this study, we observed aspects related to the innate immune response, and the outcome data allowed us to conclude that nutritional status interferes with the macrophage activation and the response capabilities of these cells.


Asunto(s)
Desnutrición/metabolismo , FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Proteínas Sanguíneas/metabolismo , Western Blotting , Peso Corporal/efectos de los fármacos , Antígeno CD11b/metabolismo , Proteínas en la Dieta/farmacología , Exudados y Transudados/efectos de los fármacos , Exudados y Transudados/metabolismo , Citometría de Flujo , Interleucinas/biosíntesis , Masculino , Ratones Endogámicos BALB C , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA