Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Magn Reson Chem ; 57(9): 548-557, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30658005

RESUMEN

The health benefits of black tea have been linked to polyphenol metabolites that target specific modes of action in the human body. A major bottleneck in unravelling the underlying mechanisms is the preparative isolation of these metabolites, which hampers their structural elucidation and assessment of in vitro bioactivity. A solid phase extraction (SPE)-preparative liquid chromatography (prepLC)-MS-LC-MS-NMR workflow was implemented for preparative isolation of conjugated valerolactone metabolites of catechin-based polyphenols from urine of black tea consumers. First, the urine was cleaned and preconcentrated using an SPE method. Subsequently, the clean urine concentrate was injected on a preparative LC column, and conjugated valerolactones were obtained by MS-guided collection. Reconstituted fractions were further separated on an analytical LC column, and valerolactone fractions were collected in an MS-guided manner. These were reconstituted in methanol-d4 and identified and quantified using 1D and 2D homo- and hetereonuclear NMR experiments (at a field strength of 14.1 T), in combination with mass spectrometry. This resulted in the full spectral 1 H and 13 C NMR assignments of five conjugated valerolactones. These metabolites were collected in quantities of 8-160 µg and purities of 70-91%. The SPE-prepLC-MS-LC-MS-NMR workflow is suitable for isolating metabolites that occur at sub-µM concentrations in a complex biofluid such as urine. The workflow also provides an alternative for cumbersome and expensive de novo synthesis of tea metabolites for testing in bioactivity assays or for use as authentic analytical standards for quantification by mass spectrometry.


Asunto(s)
Lactonas/orina , Polifenoles/orina , Té/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Cromatografía Líquida de Alta Presión , Bases de Datos de Compuestos Químicos , Humanos , Espectroscopía de Protones por Resonancia Magnética , Extracción en Fase Sólida , Té/metabolismo
2.
Anal Bioanal Chem ; 404(8): 2349-61, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22932811

RESUMEN

NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has been developed using automated solid-phase extraction (SPE) combined with NMR metabolite profiling. SPE-NMR of urine resulted in three fractions with complementary and reproducible sub-profiles. The sub-profile from the wash fraction (100 % water) contained polar metabolites; that from the first eluted fraction (10 % methanol-90 % water) semi-polar metabolites; and that from the second eluted fraction (100 % methanol) aromatic metabolites. The method was validated by analysis of urine samples collected from a crossover human nutritional intervention trial in which healthy volunteers consumed capsules containing a polyphenol-rich mixture of red wine and grape juice extract (WGM), the same polyphenol mixture dissolved in a soy drink (WGM_Soy), or a placebo (PLA), over a period of five days. Consumption of WGM clearly increased urinary excretion of 4-hydroxyhippuric acid, hippuric acid, 3-hydroxyphenylacetic acid, homovanillic acid, and 3-(3-hydroxyphenyl)-3-hydroxypropionic acid. However, there was no difference between the excreted amounts of these metabolites after consumption of WGM or WGM_Soy, indicating that the soy drink is a suitable carrier for WGM polyphenols. Interestingly, WGM_Soy induced a significant increase in excretion of cis-aconitate compared with WGM and PLA, suggesting a higher demand on the tricarboxylic acid cycle. In conclusion, SPE-NMR metabolite sub-profiling is a reliable and improved method for quantification and identification of metabolites in urine to discover dietary effects and markers of phytochemical exposure.


Asunto(s)
Espectroscopía de Resonancia Magnética/normas , Extracción en Fase Sólida/normas , Urinálisis/métodos , Orina/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/orina , Hipuratos/metabolismo , Hipuratos/orina , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
3.
Anal Chem ; 84(16): 7263-71, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22827565

RESUMEN

In dietary polyphenol exposure studies, annotation and identification of urinary metabolites present at low (micromolar) concentrations are major obstacles. To determine the biological activity of specific components, it is necessary to have the correct structures and the quantification of the polyphenol-derived conjugates present in the human body. We present a procedure for identification and quantification of metabolites and conjugates excreted in human urine after single bolus intake of black or green tea. A combination of a solid-phase extraction (SPE) preparation step and two high pressure liquid chromatography (HPLC)-based analytical platforms was used, namely, accurate mass fragmentation (HPLC-FTMS(n)) and mass-guided SPE-trapping of selected compounds for nuclear magnetic resonance spectroscopy (NMR) measurements (HPLC-TOFMS-SPE-NMR). HPLC-FTMS(n) analysis led to the annotation of 138 urinary metabolites, including 48 valerolactone and valeric acid conjugates. By combining the results from MS(n) fragmentation with the one-dimensional (1D)-(1)H NMR spectra of HPLC-TOFMS-SPE-trapped compounds, we elucidated the structures of 36 phenolic conjugates, including the glucuronides of 3',4'-di- and 3',4',5'-trihydroxyphenyl-γ-valerolactone, three urolithin glucuronides, and indole-3-acetic acid glucuronide. We also obtained 26 h-quantitative excretion profiles for specific valerolactone conjugates. The combination of the HPLC-FTMS(n) and HPLC-TOFMS-SPE-NMR platforms results in the efficient identification and quantification of less abundant phenolic conjugates down to nanomoles of trapped amounts of metabolite corresponding to micromolar metabolite concentrations in urine.


Asunto(s)
Ingestión de Líquidos , Fenol/química , Fenol/orina , Té/química , Urinálisis/métodos , Cromatografía Líquida de Alta Presión , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Fenol/metabolismo , Extracción en Fase Sólida , Tilidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA