Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Brain Behav Immun ; 97: 260-274, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390806

RESUMEN

Zika virus (ZIKV) has the ability to cross placental and brain barriers, causing congenital malformations in neonates and neurological disorders in adults. However, the pathogenic mechanisms of ZIKV-induced neurological complications in adults and congenital malformations are still not fully understood. Gas6 is a soluble TAM receptor ligand able to promote flavivirus internalization and downregulation of immune responses. Here we demonstrate that there is a correlation between ZIKV neurological complications with higher Gas6 levels and the downregulation of genes associated with anti-viral response, as type I IFN due to Socs1 upregulation. Also, Gas6 gamma-carboxylation is essential for ZIKV invasion and replication in monocytes, the main source of this protein, which was inhibited by warfarin. Conversely, Gas6 facilitates ZIKV replication in adult immunocompetent mice and enabled susceptibility to transplacental infection. Our data indicate that ZIKV promotes the upregulation of its ligand Gas6, which contributes to viral infectivity and drives the development of severe adverse outcomes during ZIKV infection.


Asunto(s)
Enfermedades del Sistema Nervioso , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Ratones , Placenta , Embarazo , Replicación Viral , Infección por el Virus Zika/complicaciones
2.
Inflamm Res ; 68(6): 481-491, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30944975

RESUMEN

OBJECTIVE AND DESIGN: Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS: We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS: We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS: In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.


Asunto(s)
Citocinas/inmunología , Factores Inhibidores de la Migración de Macrófagos/inmunología , Macrófagos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Animales , Líquido del Lavado Bronquioalveolar , Factores Inhibidores de la Migración de Macrófagos/genética , Macrófagos/virología , Ratones Endogámicos BALB C , Transducción de Señal , Carga Viral
3.
PLoS One ; 10(3): e0118942, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25822523

RESUMEN

Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1ß and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , FN-kappa B/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Médula Espinal/metabolismo , Alcaloides de la Vinca/uso terapéutico , Animales , Carragenina/toxicidad , Citocinas/genética , Citocinas/metabolismo , Extremidades/fisiopatología , Glutatión/metabolismo , Hiperalgesia/metabolismo , Masculino , Ratones , Fármacos Neuroprotectores/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Superóxidos/metabolismo , Alcaloides de la Vinca/farmacología
4.
Molecules ; 20(3): 4109-23, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25749680

RESUMEN

Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 µM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 µM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment.


Asunto(s)
Acetilcisteína/análogos & derivados , Mucosa Gástrica/irrigación sanguínea , Óxido Nítrico/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Acetilcisteína/farmacología , Animales , Flujometría por Láser-Doppler , Mediciones Luminiscentes , Masculino , Nitratos/farmacología , Nitrógeno/farmacología , Ratas , Ratas Sprague-Dawley
5.
Wound Repair Regen ; 22(5): 640-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25039304

RESUMEN

The development of new methods to improve skin wound healing may affect the outcomes of a number of medical conditions. Here, we evaluate the molecular and clinical effects of topical 5-azacytidine on wound healing in rats. 5-Azacytidine decreases the expression of follistatin-1, which negatively regulates activins. Activins, in turn, promote cell growth in different tissues, including the skin. Eight-week-old male Wistar rats were submitted to 8.0-mm punch-wounding in the dorsal region. After 3 days, rats were randomly assigned to receive either a control treatment or the topical application of a solution containing 5-azacytidine (10 mM) once per day. Photo documentation and sample collection were performed on days 5, 9, and 15. Overall, 5-azacytidine promoted a significant acceleration of complete wound healing (99.7% ± 0.7.0 vs. 71.2% ± 2.8 on day 15; n = 10; p < 0.01), accompanied by up to threefold reduction in follistatin expression. Histological examination of the skin revealed efficient reepithelization and cell proliferation, as evaluated by the BrdU incorporation method. 5-Azacytidine treatment also resulted in increased gene expression of transforming growth factor-beta and the keratinocyte markers involucrin and cytokeratin, as well as decreased expression of cytokines such as tumor necrosis factor-alpha and interleukin-10. Lastly, when recombinant follistatin was applied to the skin in parallel with topical 5-azacytidine, most of the beneficial effects of the drug were lost. Thus, 5-azacytidine acts, at least in part through the follistatin/activin pathway, to improve skin wound healing in rodents.


Asunto(s)
Azacitidina/farmacología , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Folistatina/efectos de los fármacos , Piel/lesiones , Cicatrización de Heridas/efectos de los fármacos , Activinas/efectos de los fármacos , Administración Cutánea , Animales , Expresión Génica/efectos de los fármacos , Interleucina-10/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinas/efectos de los fármacos , Queratinas/metabolismo , Masculino , Precursores de Proteínas/efectos de los fármacos , Precursores de Proteínas/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
6.
Invest Ophthalmol Vis Sci ; 55(5): 2921-32, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24699383

RESUMEN

PURPOSE: Diabetic retinopathy (DR) is associated with nitrosative stress. The purpose of this study was to evaluate the beneficial effects of S-nitrosoglutathione (GSNO) eye drop treatment on an experimental model of DR. METHODS: Diabetes (DM) was induced in spontaneously hypertensive rats (SHR). Treated animals received GSNO eye drop (900 nM or 10 µM) twice daily in both eyes for 20 days. The mechanisms of GSNO effects were evaluated in human RPE cell line (ARPE-19). RESULTS: In animals with DM, GSNO decreased inducible nitric oxide synthase (iNOS) expression and prevented tyrosine nitration formation, ameliorating glial dysfunction measured with glial fibrillary acidic protein, resulting in improved retinal function. In contrast, in nondiabetic animals, GSNO induced oxidative/nitrosative stress in tissue resulting in impaired retinal function. Nitrosative stress was present markedly in the RPE layer accompanied by c-wave dysfunction. In vitro study showed that treatment with GSNO under high glucose condition counteracted nitrosative stress due to iNOS downregulation by S-glutathionylation, and not by prevention of decreased GSNO and reduced glutathione levels. This posttranslational modification probably was promoted by the release of oxidized glutathione through GSNO denitrosylation via GSNO-R. In contrast, in the normal glucose condition, GSNO treatment promoted nitrosative stress by NO formation. CONCLUSIONS: In this study, a new therapeutic modality (GSNO eye drop) targeting nitrosative stress by redox posttranslational modification of iNOS was efficient against early damage in the retina due to experimental DR. The present work showed the potential clinical implications of balancing the S-nitrosoglutathione/glutathione system in treating DR.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , S-Nitrosoglutatión/farmacología , Análisis de Varianza , Animales , Biomarcadores/metabolismo , Línea Celular , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutatión/metabolismo , Humanos , Donantes de Óxido Nítrico/uso terapéutico , Soluciones Oftálmicas/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , S-Nitrosoglutatión/uso terapéutico , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulación hacia Arriba
7.
Drug Des Devel Ther ; 7: 553-63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23843692

RESUMEN

S-Nitroso-N-acetylcysteine (SNAC) is a water soluble primary S-nitrosothiol capable of transferring and releasing nitric oxide and inducing several biochemical activities, including modulation of hepatic stellate cell activation. In this study, we evaluated the antifibrotic activity of SNAC in an animal model of nonalcoholic steatohepatitis (NASH) induced in Sprague-Dawley rats fed with a choline-deficient, high trans fat diet and exposed to diethylnitrosamine for 8 weeks. The rats were divided into three groups: SNAC, which received oral SNAC solution daily; NASH, which received the vehicle; and control, which received standard diet and vehicle. Genes related to fibrosis (matrix metalloproteinases [MMP]-13, -9, and -2), transforming growth factor ß-1 [TGFß-1], collagen-1α, and tissue inhibitors of metalloproteinase [TIMP-1 and -2] and oxidative stress (heat-shock proteins [HSP]-60 and -90) were evaluated. SNAC led to a 34.4% reduction in the collagen occupied area associated with upregulation of MMP-13 and -9 and downregulation of HSP-60, TIMP-2, TGFß-1, and collagen-1α. These results indicate that oral SNAC administration may represent a potential antifibrotic treatment for NASH.


Asunto(s)
Acetilcisteína/análogos & derivados , Hígado Graso/tratamiento farmacológico , Cirrosis Hepática Experimental/prevención & control , Acetilcisteína/metabolismo , Acetilcisteína/uso terapéutico , Animales , Inmunohistoquímica , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley
8.
J Mol Med (Berl) ; 88(4): 401-11, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20062961

RESUMEN

This study was aimed to investigate the molecular mechanisms underlying prevention of hepatic fibrosis by S-nitroso-N-acetylcysteine (SNAC), a nitric oxide donor that inhibits lipid peroxidation. Secondary biliary cirrhosis was induced by 4 weeks of common bile duct ligation (CBDL). Both sham-operated and CBDL animals received SNAC (6.0 micromol/kg/day) starting 2 weeks after surgery. SNAC treatment reduced the increase in blood enzyme activities (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), induced by CBDL. Histological changes were attenuated and there was a significant decrease in the area of liver fibrosis and in the activation of stellate cells measured by alpha-smooth muscle actin (alpha-SMA) immunostaining. The increase in TBARS concentration and hydroperoxide-induced chemiluminescence were also reduced by SNAC treatment. SNAC down-regulated expression of collagen 1 alpha, alpha-SMA, tumor necrosis factor-alpha, tumor growth factor-beta, metalloproteinase-2, metalloproteinase inhibitor 1, platelet-derived growth factor (PDGF), and PDGF receptor in CBDL rats. These effects were accompanied by inhibited activation of extracellular signal-regulated kinases, Jun amino-terminal kinases, p38 and Akt. Antifibrotic effects were more efficient than those of the free thiol NAC administered at a dose of 60 mumol/kg. In conclusion, results obtained indicate that SNAC, beyond its antioxidant capacity, exerts antifibrotic effects in rats with secondary biliary cirrhosis by down-regulating increased expression of genes and modulating intracellular signaling pathways that contribute to the accumulation of matrix proteins. Thus, SNAC may be an interesting candidate for the treatment of human fibrosis and cirrhosis.


Asunto(s)
Acetilcisteína/análogos & derivados , Fibrosis/patología , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Acetilcisteína/metabolismo , Animales , Antioxidantes/metabolismo , Inmunohistoquímica/métodos , Peroxidación de Lípido , Cirrosis Hepática/terapia , Sistema de Señalización de MAP Quinasas , Masculino , Óxido Nítrico/química , Estrés Oxidativo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA