Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Angiogenesis ; 27(1): 67-89, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37695358

RESUMEN

FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Live-imaging of temporally controlled sFLT1 release from the endoplasmic reticulum showed clathrin-dependent sFLT1 trafficking at the Golgi into secretory vesicles that then trafficked to the plasma membrane. Depletion of STX6 altered vessel sprouting in 3D, suggesting that endothelial cell sFLT1 secretion influences proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.


Asunto(s)
Células Endoteliales , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Animales , Células Endoteliales/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Clatrina/metabolismo , Pez Cebra/metabolismo
2.
Int Immunopharmacol ; 117: 109786, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36812671

RESUMEN

Since clinical revascularization techniques of coronary or peripheral artery disease (CAD/PAD) focus on macrovessels of the heart, the microcirculatory compartment largely goes unnoticed. However, cardiovascular risk factors not only drive large vessel atherosclerosis, but also microcirculatory rarefaction, an instance unmet by current therapeutic schemes. Angiogenic gene therapy has the potential to reverse capillary rarefaction, but only if the disease-causing inflammation and vessel-destabilization are addressed. This review summarizes the current knowledge with regard to capillary rarefaction due to cardiovascular risk factors. Moreover, the potential of Thymosin ß4 (Tß4) and its downstream signal, myocardin-related transcription factor-A (MRTF-A), to counteract capillary rarefaction are discussed.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Rarefacción Microvascular , Timosina , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Timosina/uso terapéutico , Microcirculación , Factores de Riesgo , Factores de Riesgo de Enfermedad Cardiaca
3.
Hypertension ; 80(5): 901-911, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36748474

RESUMEN

Drugs acting by inhibition of the angiogenic action of VEGF (vascular endothelial growth factor) have become major instruments in the treatment of cancer. The downside of their favorable effects in cancer treatment is their frequent cardiovascular side effects. The most consistent finding thus far on the cardiovascular side effects of VEGF inhibitors is the high incidence of hypertension. In this short review, we discuss the evidence that hypertension occurring during VEGF inhibitor treatment is caused by microvascular rarefaction. After a review of the role of VEGF in microvascular growth and differentiation, we present evidence from studies in experimental models of hypertension as well as clinical studies on the microvascular network changes during and after VEGF inhibitor treatment.


Asunto(s)
Hipertensión , Rarefacción Microvascular , Neoplasias , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Rarefacción Microvascular/inducido químicamente , Rarefacción Microvascular/complicaciones , Rarefacción Microvascular/tratamiento farmacológico , Factores de Crecimiento Endotelial Vascular , Neoplasias/tratamiento farmacológico , Inhibidores de la Angiogénesis/efectos adversos
4.
Front Chem ; 9: 688446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262894

RESUMEN

Labeling biomolecules with fluorescent labels is an established tool for structural, biochemical, and biophysical studies; however, it remains underused for small peptides. In this work, an amino acid bearing a 3-hydroxychromone fluorophore, 2-amino-3-(2-(furan-2-yl)-3-hydroxy-4-oxo-4H-chromen-6-yl)propanoic acid (FHC), was incorporated in a known hexameric antimicrobial peptide, cyclo[RRRWFW] (cWFW), in place of aromatic residues. Circular dichroism spectropolarimetry and antibacterial activity measurements demonstrated that the FHC residue perturbs the peptide structure depending on labeling position but does not modify the activity of cWFW significantly. FHC thus can be considered an adequate label for studies of the parent peptide. Several analytical and imaging techniques were used to establish the activity of the obtained labeled cWFW analogues toward animal cells and to study the behavior of the peptides in a multicellular organism. The 3-hydroxychromone fluorophore can undergo excited-state intramolecular proton transfer (ESIPT), resulting in double-band emission from its two tautomeric forms. This feature allowed us to get insights into conformational equilibria of the labeled peptides, localize the cWFW analogues in human cells (HeLa and HEK293) and zebrafish embryos, and assess the polarity of the local environment around the label by confocal fluorescence microscopy. We found that the labeled peptides efficiently penetrated cancerous cells and localized mainly in lipid-containing and/or other nonpolar subcellular compartments. In the zebrafish embryo, the peptides remained in the bloodstream upon injection into the cardinal vein, presumably adhering to lipoproteins and/or microvesicles. They did not diffuse into any tissue to a significant extent during the first 3 h after administration. This study demonstrated the utility of fluorescent labeling by double-emission labels to evaluate biologically active peptides as potential drug candidates in vivo.

5.
Nat Commun ; 11(1): 5319, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087700

RESUMEN

Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries. Endothelial enlargement requires the GEF1 domain of the guanine nucleotide exchange factor Trio and activation of Rho-GTPases Rac1 and RhoG in the cell periphery, inducing F-actin cytoskeleton remodeling, myosin based tension at junction regions and focal adhesions. Activation of Trio in developing arteries in vivo involves precise titration of the Vegf signaling strength in the arterial wall, which is controlled by the soluble Vegf receptor Flt1.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Remodelación Vascular/fisiología , Animales , Animales Modificados Genéticamente , Tamaño de la Célula , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Modelos Cardiovasculares , Factor de Crecimiento Placentario/genética , Factor de Crecimiento Placentario/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Remodelación Vascular/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/fisiología
6.
Hum Gene Ther ; 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28726522

RESUMEN

Viral vectors have been frequently used in a variety of preclinical animal models to deliver genetic constructs into tissues. Among the vectors used, adeno-associated viral vectors (AAVs) may be targeted to specific tissues, depending on the serotype used. Moreover, they show robust expression for prolonged periods of time and have a low immunogenic potential. Furthermore, AAVs, unlike other vector systems, only display a low rate of genomic integration. However, to ensure efficient transgene production, expression is typically driven by constitutively active promoters, such as the cytomegalovirus (CMV) promoter. Tetracyclin responsive promoters represent a promising alternative to unregulated promoters. The present study compares AAVs encoding either constitutively active CMV or tet-off promoter regions in the preclinical models of hindlimb and chronic myocardial ischemia. Therapeutically, mediators regulating vessel maturation, specifically thymosin beta 4 (Tß4) and the downstream signaling molecule myocardin-related transcription factor A (MRTF-A) as well as the endothelial activator angiopoietin-2 (Ang2) were overexpressed via AAVs using both promotors. In the model of rabbit hindlimb ischemia, temporary (tet-off) expression of Tß4 improved capillary density, collateralization, and perfusion in the ischemic hindlimb, with no detectable difference to constitutive Tß4 overexpression. Similarly, constitutive overexpression of MRTF-A alone was able to improve capillarization, collateralization and perfusion. Temporary expression of Ang2 for 7 days further increased capillary density and pericyte coverage compared with MRTF-A alone, without further improving collateralization or perfusion. In the pig model of chronic myocardial ischemia constitutive expression of Tß4 for 4 weeks induced capillary and collateral growth similarly to a pulsed expression (2 day expression per week for 3 weeks). Taken together these findings demonstrate for two models of preclinical interventions that temporary gene expression may lead to similar results as constitutive expression, highlighting the potential of controlled temporary gene expression for induction of vascular growth as a therapeutic approach.

7.
Nat Commun ; 8: 13991, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071661

RESUMEN

Formation of organ-specific vasculatures requires cross-talk between developing tissue and specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1 restricting Vegfaa-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes sprout invasion into the neural tube. On loss of neuronal flt1, ectopic sprouts emanate from veins involving special angiogenic cell behaviours including nuclear positioning and a molecular signature distinct from primary arterial or secondary venous sprouting. Manipulation of arteriovenous identity or Notch signalling established that ectopic sprouting in flt1 mutants requires venous endothelium. Conceptually, our data suggest that spinal cord vascularization proceeds from veins involving two-tiered regulation of neuronal sFlt1 and Vegfaa via a novel sprouting mode.


Asunto(s)
Neuronas/fisiología , Médula Espinal/embriología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/embriología , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Embrión no Mamífero/citología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Mutación , Neovascularización Fisiológica , Receptores Notch/genética , Receptores Notch/metabolismo , Médula Espinal/irrigación sanguínea , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Venas/metabolismo , Proteínas de Pez Cebra/genética
8.
EMBO J ; 35(9): 924-41, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-26856890

RESUMEN

Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo-spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel-specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, suggesting that niche blood vessels regulate NSC differentiation at least in part by providing oxygen. Consistent herewith, hypoxia-inducible factor (HIF)-1α levels controlled the switch of NSC expansion to differentiation. Finally, we provide evidence that high glycolytic activity of NSCs is required to prevent their precocious differentiation in vivo Thus, blood vessel function is required for efficient NSC differentiation in the developing cerebral cortex by providing oxygen and possibly regulating NSC metabolism.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Corteza Cerebral/embriología , Glucólisis , Hipoxia , Neovascularización Fisiológica , Células-Madre Neurales/fisiología , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Ratones , Oxígeno/metabolismo
9.
Nat Commun ; 5: 3970, 2014 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24910328

RESUMEN

Gradual occlusion of coronary arteries may result in reversible loss of cardiomyocyte function (hibernating myocardium), which is amenable to therapeutic neovascularization. The role of myocardin-related transcription factors (MRTFs) co-activating serum response factor (SRF) in this process is largely unknown. Here we show that forced MRTF-A expression induces CCN1 and CCN2 to promote capillary proliferation and pericyte recruitment, respectively. We demonstrate that, upon G-actin binding, thymosin ß4 (Tß4), induces MRTF translocation to the nucleus, SRF-activation and CCN1/2 transcription. In a murine ischaemic hindlimb model, MRTF-A or Tß4 promotes neovascularization, whereas loss of MRTF-A/B or CCN1-function abrogates the Tß4 effect. We further show that, in ischaemic rabbit hindlimbs, MRTF-A as well as Tß4 induce functional neovascularization, and that this process is inhibited by angiopoietin-2, which antagonizes pericyte recruitment. Moreover, MRTF-A improves contractile function of chronic hibernating myocardium of pigs to a level comparable to that of transgenic pigs overexpressing Tß4 (Tß4tg). We conclude that MRTF-A promotes microvessel growth (via CCN1) and maturation (via CCN2), thereby enabling functional improvement of ischaemic muscle tissue.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Proteína 61 Rica en Cisteína/metabolismo , Transactivadores/fisiología , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/metabolismo , Hibernación , Miembro Posterior/irrigación sanguínea , Isquemia/metabolismo , Isquemia/fisiopatología , Ratones , Contracción Miocárdica , Conejos , Porcinos
10.
Hypertension ; 62(3): 592-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23817492

RESUMEN

Microvascular rarefaction increases vascular resistance and pressure in systemic arteries and is a hallmark of fixed essential hypertension. Preventing rarefaction by activation of angiogenic processes could lower blood pressure. Endothelial tip cells in angiogenic sprouts direct branching of microvascular networks; the process is regulated by microRNAs, particularly the miR-30 family. We investigated the contribution of miR-30 family members in arteriolar branching morphogenesis via delta-like 4 (Dll4)-Notch signaling in a zebrafish model. The miR-30 family consists of 5 members (miR-30a-e). Loss-of-function experiments showed that only miR-30a reduced growth of intersegmental arterioles involving impaired tip cell function. Overexpression of miR-30a stimulated tip cell behavior resulting in augmented branching of intersegmental arterioles. In vitro and in vivo reporter assays showed that miR-30a directly targets the Notch ligand Dll4, a key inhibitor of tip cell formation. Coadministration of a Dll4 targeting morpholino in miR-30a morphants rescued the branching defects. Conversely, conditional overexpression of Notch intracellular domain restored arteriolar branching in miR-30a gain-of-function embryos. In human endothelial cells, loss of miR-30a increased DLL4 protein levels, activated Notch signaling as indicated in Notch reporter assays, and augmented Notch downstream effector, HEY2 and EFNB2 (ephrin-B2), expression. In spheroid assays, miR-30a loss- and gain-of-function affected tip cell behavior, consistent with miR-30a targeting Dll4. Our data suggest that miR-30a stimulates arteriolar branching by downregulating endothelial Dll4 expression, thereby controlling endothelial tip cell behavior. These findings could have relevance to the rarefaction process and, therefore, to hypertension.


Asunto(s)
Arteriolas/metabolismo , Forma de la Célula/fisiología , Células Endoteliales/metabolismo , MicroARNs/metabolismo , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Comunicación Celular/fisiología , Células Endoteliales/citología , Efrina-B2/genética , Efrina-B2/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Pez Cebra
11.
Angiogenesis ; 16(4): 921-37, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23881168

RESUMEN

Notch is an intercellular signaling pathway related mainly to sprouting neo-angiogenesis. The objective of our study was to evaluate the angiogenic mechanisms involved in the vascular augmentation (sprouting/intussusception) after Notch inhibition within perfused vascular beds using the chick area vasculosa and MxCreNotch1(lox/lox) mice. In vivo monitoring combined with morphological investigations demonstrated that inhibition of Notch signaling within perfused vascular beds remarkably induced intussusceptive angiogenesis (IA) with resultant dense immature capillary plexuses. The latter were characterized by 40 % increase in vascular density, pericyte detachment, enhanced vessel permeability, as well as recruitment and extravasation of mononuclear cells into the incipient transluminal pillars (quintessence of IA). Combination of Notch inhibition with injection of bone marrow-derived mononuclear cells dramatically enhanced IA with 80 % increase in vascular density and pillar number augmentation by 420 %. Additionally, there was down-regulation of ephrinB2 mRNA levels consequent to Notch inhibition. Inhibition of ephrinB2 or EphB4 signaling induced some pericyte detachment and resulted in up-regulation of VEGFRs but with neither an angiogenic response nor recruitment of mononuclear cells. Notably, Tie-2 receptor was down-regulated, and the chemotactic factors SDF-1/CXCR4 were up-regulated only due to the Notch inhibition. Disruption of Notch signaling at the fronts of developing vessels generally results in massive sprouting. On the contrary, in the already existing vascular beds, down-regulation of Notch signaling triggered rapid augmentation of the vasculature predominantly by IA. Notch inhibition disturbed vessel stability and led to pericyte detachment followed by extravasation of mononuclear cells. The mononuclear cells contributed to formation of transluminal pillars with sustained IA resulting in a dense vascular plexus without concomitant vascular remodeling and maturation.


Asunto(s)
Neovascularización Patológica/fisiopatología , Receptores Notch/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Trasplante de Médula Ósea , Quimiocina CXCL12/biosíntesis , Quimiocina CXCL12/genética , Embrión de Pollo , Regulación de la Expresión Génica , Leucocitos Mononucleares/trasplante , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/prevención & control , Oligopéptidos/farmacología , Pericitos/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor EphB2/biosíntesis , Receptor EphB2/genética , Receptor EphB4/biosíntesis , Receptor EphB4/genética , Receptor Notch1/deficiencia , Receptor TIE-2/biosíntesis , Receptor TIE-2/genética , Receptores CXCR4/biosíntesis , Receptores CXCR4/genética , Receptores Notch/fisiología , Receptores de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Transducción de Señal/fisiología
12.
Development ; 138(10): 2111-20, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21521739

RESUMEN

Endothelial tip cells guide angiogenic sprouts by exploring the local environment for guidance cues such as vascular endothelial growth factor (VegfA). Here we present Flt1 (Vegf receptor 1) loss- and gain-of-function data in zebrafish showing that Flt1 regulates tip cell formation and arterial branching morphogenesis. Zebrafish embryos expressed soluble Flt1 (sFlt1) and membrane-bound Flt1 (mFlt1). In Tg(flt1(BAC):yfp) × Tg(kdrl:ras-cherry)(s916) embryos, flt1:yfp was expressed in tip, stalk and base cells of segmental artery sprouts and overlapped with kdrl:cherry expression in these domains. flt1 morphants showed increased tip cell numbers, enhanced angiogenic behavior and hyperbranching of segmental artery sprouts. The additional arterial branches developed into functional vessels carrying blood flow. In support of a functional role for the extracellular VEGF-binding domain of Flt1, overexpression of sflt1 or mflt1 rescued aberrant branching in flt1 morphants, and overexpression of sflt1 or mflt1 in controls resulted in short arterial sprouts with reduced numbers of filopodia. flt1 morphants showed reduced expression of Notch receptors and of the Notch downstream target efnb2a, and ectopic expression of flt4 in arteries, consistent with loss of Notch signaling. Conditional overexpression of the notch1a intracellular cleaved domain in flt1 morphants restored segmental artery patterning. The developing nervous system of the trunk contributed to the distribution of Flt1, and the loss of flt1 affected neurons. Thus, Flt1 acts in a Notch-dependent manner as a negative regulator of tip cell differentiation and branching. Flt1 distribution may be fine-tuned, involving interactions with the developing nervous system.


Asunto(s)
Neovascularización Fisiológica , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Macrófagos/metabolismo , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Oligodesoxirribonucleótidos Antisentido/genética , Receptores Notch/metabolismo , Transducción de Señal , Solubilidad , Distribución Tisular , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
13.
Nat Rev Cancer ; 10(8): 587-93, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20631803

RESUMEN

Networks of blood vessels in normal and tumour tissues have heterogeneous structures, with widely varying blood flow pathway lengths. To achieve efficient blood flow distribution, mechanisms for the structural adaptation of vessel diameters must be able to inhibit the formation of functional shunts (whereby short pathways become enlarged and flow bypasses long pathways). Such adaptation requires information about tissue metabolic status to be communicated upstream to feeding vessels, through conducted responses. We propose that impaired vascular communication in tumour microvascular networks, leading to functional shunting, is a primary cause of dysfunctional microcirculation and local hypoxia in cancer. We suggest that anti-angiogenic treatment of tumours may restore vascular communication and thereby improve or normalize flow distribution in tumour vasculature.


Asunto(s)
Microvasos/fisiología , Neoplasias/irrigación sanguínea , Adaptación Fisiológica , Animales , Simulación por Computador , Uniones Comunicantes/fisiología , Humanos , Modelos Biológicos , Flujo Sanguíneo Regional , Transducción de Señal
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 1): 021920, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20365608

RESUMEN

It is getting increasingly evident that physical properties such as elastoviscoplastic properties of living materials are quite important for the process of tissue development, including regulation of genetic pathways. Measuring such properties in vivo is a complicated and challenging task. In this paper, we present an instrument, a scanning air puff tonometer, which is able to map point by point the viscoelastic properties of flat or gently curved soft materials. This instrument is an improved version of the air puff tonometer used by optometrists, with important modifications. The instrument allows one to obtain a direct insight into gradients of material properties in vivo. The instrument capabilities are demonstrated on substances with known elastoviscoplastic properties and several biological objects. On the basis of the results obtained, the role of the gradients of elastoviscoplastic properties is outlined for the process of angiogenesis, limb development, bacterial colonies expansion, etc. which is important for bridging the gaps in the theory of the tissue development and highlighting new possibilities for tissue engineering, based on a clarification of the role of physical features in developing biological material.


Asunto(s)
Aire , Biología/instrumentación , Manometría/métodos , Animales , Arterias/fisiología , Elasticidad , Análisis de Elementos Finitos , Humanos , Esbozos de los Miembros/fisiología , Neoplasias Hepáticas/fisiopatología , Neovascularización Fisiológica , Proteus mirabilis/fisiología , Propiedades de Superficie , Venas/fisiología , Viscosidad
15.
PLoS One ; 4(4): e5155, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19357774

RESUMEN

BACKGROUND: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. METHODS: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. PRINCIPAL FINDINGS: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF(165) to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. CONCLUSIONS/SIGNIFICANCE: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.


Asunto(s)
Cardiomiopatía Dilatada , Cardiopatías Congénitas/etiología , Corazón , Hipoxia , Animales , Apoptosis , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/terapia , Embrión de Pollo/anatomía & histología , Embrión de Pollo/efectos de los fármacos , Embrión de Pollo/metabolismo , Pollos , Conectina , Ecocardiografía , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/fisiopatología , Corazón/anatomía & histología , Corazón/embriología , Humanos , Hipoxia/complicaciones , Hipoxia/fisiopatología , Proteínas Musculares/metabolismo , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Proteínas Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Función Ventricular Izquierda
16.
Am J Obstet Gynecol ; 199(3): 254.e1-8, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18771973

RESUMEN

OBJECTIVE: The purpose of this study was to assess cardiac function and cell damage in intrauterine growth-restricted (IUGR) fetuses across clinical Doppler stages of deterioration. STUDY DESIGN: One hundred twenty appropriate-for-gestational-age and 81 IUGR fetuses were classified in stages 1/2/3 according umbilical artery present/absent/reversed end-diastolic blood flow, respectively. Cardiac function was assessed by modified-myocardial performance index, early-to-late diastolic filling ratios, cardiac output, and cord blood B-type natriuretic peptide; myocardial cell damage was assessed by heart fatty acid-binding protein, troponin-I, and high-sensitivity C-reactive protein. RESULTS: Modified-myocardial performance index, blood B-type natriuretic peptide, and early-to-late diastolic filling ratios were increased in a stage-dependent manner in IUGR fetuses, compared with appropriate-for-gestational-age fetuses. Heart fatty acid-binding protein levels were higher in IUGR fetuses at stage 3, compared with control fetuses. Cardiac output, troponin-I, and high-sensitivity C-reactive protein did not increase in IUGR fetuses at any stage. CONCLUSION: IUGR fetuses showed signs of cardiac dysfunction from early stages. Cardiac dysfunction deteriorates further with the progression of fetal compromise, together with the appearance of biochemical signs of cell damage.


Asunto(s)
Retardo del Crecimiento Fetal/fisiopatología , Corazón Fetal/fisiopatología , Miocardio/patología , Adulto , Biomarcadores/análisis , Proteína C-Reactiva/análisis , Gasto Cardíaco/fisiología , Femenino , Sangre Fetal/química , Retardo del Crecimiento Fetal/diagnóstico por imagen , Retardo del Crecimiento Fetal/epidemiología , Corazón Fetal/diagnóstico por imagen , Humanos , Miocardio/citología , Embarazo , Flujo Pulsátil , Flujo Sanguíneo Regional , Factores de Riesgo , Fumar/epidemiología , Troponina I/sangre , Ultrasonografía Doppler , Ultrasonografía Prenatal , Arterias Umbilicales/fisiopatología
17.
Cardiovasc Res ; 78(2): 232-41, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18316324

RESUMEN

The vascular system is generated and maintained by reactions of blood vessels to stimuli of several types. The basic outline of the vascular system is determined during development by genetic programming, guided by the unique temporal and spatial patterns of structural and molecular features available in the embryo. With establishment of blood flow, control of vascular development is increasingly taken over by feedback signals derived from vascular function, including blood flow and pressure, in addition to those derived from the metabolic state of the tissue. Mechanical and molecular signals also govern the post-natal structural adaptation of vascular beds in response to functional requirements, both during normal, physiological conditions (growth, exercise) and during pathophysiological conditions including ischaemic diseases and tumour growth. The orderly structure of vascular beds emerges as each vessel segment reacts to the local conditions and stimuli that it experiences, according to a common set of genetically determined responses. In this process of angioadaptation, the properties and architecture of vascular beds are determined by the continuous interplay between vascular and cellular reactions to haemodynamic and molecular signals and the functional implications of these reactions, constituting a complex feedback system. Here, studies on vascular development and adaptation in response to haemodynamic and molecular factors are integrated, with emphasis on arterial-venous network development and structural adaptation of vessels.


Asunto(s)
Arterias/metabolismo , Movimiento Celular , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Adaptación Fisiológica , Proteínas Angiogénicas/metabolismo , Animales , Arterias/embriología , Arterias/crecimiento & desarrollo , Arterias/fisiopatología , Hemodinámica , Humanos , Mecanotransducción Celular , Neovascularización Patológica/metabolismo , Neovascularización Patológica/fisiopatología , Estrés Mecánico
18.
Proc Natl Acad Sci U S A ; 104(9): 3225-30, 2007 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-17296941

RESUMEN

Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4(+/-) retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4(+/-) retinas, dll4(+/-) vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a "brake" on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.


Asunto(s)
Endotelio Vascular/embriología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Vasos Retinianos/embriología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Proteínas de Unión al Calcio , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/metabolismo , Transducción de Señal/efectos de los fármacos , Triglicéridos/farmacología , Ácido gamma-Aminobutírico/análogos & derivados , Ácido gamma-Aminobutírico/farmacología
19.
Physiology (Bethesda) ; 21: 388-95, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17119151

RESUMEN

Vascular network remodeling, angiogenesis, and arteriogenesis play an important role in the pathophysiology of ischemic cardiovascular diseases and cancer. Based on recent studies of vascular network development in the embryo, several novel aspects to angiogenesis have been identified as crucial to generate a functional vascular network. These aspects include specification of arterial and venous identity in vessels and network patterning. In early embryogenesis, vessel identity and positioning are genetically hardwired and involve neural guidance genes expressed in the vascular system. We demonstrated that, during later stages of embryogenesis, blood flow plays a crucial role in regulating vessel identity and network remodeling. The flow-evoked remodeling process is dynamic and involves a high degree of vessel plasticity. The open question in the field is how genetically predetermined processes in vessel identity and patterning balance with the contribution of blood flow in shaping a functional vascular architecture. Although blood flow is essential, it remains unclear to what extent flow is able to act on the developing cardiovascular system. There is significant evidence that mechanical forces created by flowing blood are biologically active within the embryo and that the level of mechanical forces and the type of flow patterns present in the embryo are able to affect gene expression. Here, we highlight the pivotal role for blood flow and physical forces in shaping the cardiovascular system.


Asunto(s)
Vasos Sanguíneos/embriología , Vasos Sanguíneos/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Flujo Sanguíneo Regional/fisiología , Animales , Humanos
20.
Circ Res ; 99(7): 715-22, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16946136

RESUMEN

Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.


Asunto(s)
Endotelio Vascular/metabolismo , Neovascularización Fisiológica/fisiología , Óxido Nítrico/fisiología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Secuencia de Aminoácidos , Células Cultivadas , Activación Enzimática/fisiología , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tirosina , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA