Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 30, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012567

RESUMEN

BACKGROUND: Most high-throughput screening (HTS) systems studying the cytotoxic effect of chimeric antigen receptor (CAR) T cells on tumor cells rely on two-dimensional cell culture that does not recapitulate the tumor microenvironment (TME). Tumor spheroids, however, can recapitulate the TME and have been used for cytotoxicity assays of CAR T cells. But a major obstacle to the use of tumor spheroids for cytotoxicity assays is the difficulty in separating unbound CAR T and dead tumor cells from spheroids. Here, we present a three-dimensional hanging spheroid plate (3DHSP), which facilitates the formation of spheroids and the separation of unbound and dead cells from spheroids during cytotoxicity assays. RESULTS: The 3DHSP is a 24-well plate, with each well composed of a hanging dripper, spheroid wells, and waste wells. In the dripper, a tumor spheroid was formed and mixed with CAR T cells. In the 3DHSP, droplets containing the spheroids were deposited into the spheroid separation well, where unbound and dead T and tumor cells were separated from the spheroid through a gap into the waste well by tilting the 3DHSP by more than 20°. Human epidermal growth factor receptor 2 (HER2)-positive tumor cells (BT474 and SKOV3) formed spheroids of approximately 300-350 µm in diameter after 2 days in the 3DHSP. The cytotoxic effects of T cells engineered to express CAR recognizing HER2 (HER2-CAR T cells) on these spheroids were directly measured by optical imaging, without the use of live/dead fluorescent staining of the cells. Our results suggest that the 3DHSP could be incorporated into a HTS system to screen for CARs that enable T cells to kill spheroids formed from a specific tumor type with high efficacy or for spheroids consisting of tumor types that can be killed efficiently by T cells bearing a specific CAR. CONCLUSIONS: The results suggest that the 3DHSP could be incorporated into a HTS system for the cytotoxic effects of CAR T cells on tumor spheroids.


Asunto(s)
Supervivencia Celular/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Quiméricos de Antígenos/genética , Esferoides Celulares , Microambiente Tumoral , Técnicas de Cultivo Tridimensional de Células , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva , Esferoides Celulares/química , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiología
2.
PLoS One ; 14(10): e0223193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31647823

RESUMEN

Microchips are widely used to separate circulating tumor cells (CTCs) from whole blood by virtues of sophisticated manipulation for microparticles. Here, we present a chip with an 8 µm high and 27.9 mm wide slit to capture cancer cells bound to 3 µm beads. Apart from a higher purity and recovery rate, the slit design allows for simplified fabrication, easy cell imaging, less clogging, lower chamber pressure and, therefore, higher throughput. The beads were conjugated with anti-epithelial cell adhesion molecules (anti-EpCAM) to selectively bind to breast cancer cells (MCF-7) used to spike the whole blood. The diameter of the cell-bead construct was in average 23.1 µm, making them separable from other cells in the blood. As a result, the cancer cells were separated from 5 mL of whole blood with a purity of 52.0% and a recovery rate of 91.1%, and also we confirmed that the device can be applicable to clinical samples of human breast cancer patients. The simple design with microslit, by eliminating any high-aspect ratio features, is expected to reduce possible defects on the chip and, therefore, more suitable for mass production without false separation outputs.


Asunto(s)
Antígenos de Neoplasias/sangre , Neoplasias de la Mama/sangre , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Neoplasias de la Mama/genética , Femenino , Humanos , Células MCF-7 , Microesferas , Lesiones Precancerosas/sangre , Lesiones Precancerosas/genética
3.
Anal Chem ; 90(21): 12909-12916, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30285432

RESUMEN

Cells were separated with the aid of a multistep spiral fractionation device, utilizing hydrodynamic forces in a spiral tubing. The spiral was fabricated using "off-the-shelf" microbore tubing, allowing for cheap and fast prototyping to achieve optimal cell separation. As a first step, a model system with 20 and 40 µm beads was used to demonstrate the effectiveness of the multistep separation device. With an initial purity of 5%, a separation purity of 83% was achieved after a two-step separation with the addition of 0.1% polyethylene glycol (PEG)-8000. Next, doxorubicin-resistant polyploid giant breast cancer cells (MDA-MB-231) were separated from doxorubicin-sensitive monoploid small breast cancer cells in the same fashion as the beads, resulting in a purity of around 40%, while maintaining a cell viability of more than 90%. Combined with basic cell analytical methods, the hydrodynamic separation principle of the device could be envisaged to be useful for a variety of cell fractionation needs in cell biology and in clinical applications.

4.
Bioengineering (Basel) ; 5(2)2018 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-29642502

RESUMEN

We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1) in a 3D tumor model. A chemo-attractant was incorporated to stimulate motility across the membrane. We validated the usefulness of the chip by tracking the motilities of the cancer cells in the system, showing them to be migrating or invading (akin to metastasis). It is shown that our system can monitor cell migration in real time, as compare to Boyden chambers, for example. Thus, the chip will be of interest to the drug-screening community as it can potentially be used to monitor the behavior of cancer cell motility, and, therefore, metastasis, in the presence of anti-cancer drugs.

5.
Regen Med ; 13(2): 233-248, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29557299

RESUMEN

Microfabrication and microfluidics contribute to the research of cellular functions of cells and their interaction with their environment. Previously, it has been shown that microfluidics can contribute to the isolation, selection, characterization and migration of cells. This review aims to provide stem cell researchers with a toolkit of microtechnology (mT) instruments for elucidating complex stem cells functions which are challenging to decipher with traditional assays and animal models. These microdevices are able to investigate about the differentiation and niche interaction, stem cells transcriptomics, therapeutic functions and the capture of their secreted microvesicles. In conclusion, microtechnology will allow a more realistic assessment of stem cells properties, driving and accelerating the translation of regenerative medicine approaches to the clinic.

6.
Nano Lett ; 14(8): 4257-62, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24998447

RESUMEN

The combination of micropillar array technology to measure cellular traction forces with super-resolution imaging allowed us to obtain cellular traction force maps and simultaneously zoom in on individual focal adhesions with single-molecule accuracy. We achieved a force detection precision of 500 pN simultaneously with a mean single-molecule localization precision of 30 nm. Key to the achievement was a two-step etching process that provided an integrated spacer next to the micropillar array that permitted stable and reproducible observation of cells on micropillars within the short working distance of a high-magnification, high numerical aperture objective. In turn, we used the technology to characterize the super-resolved structure of focal adhesions during force exertion. Live-cell imaging on MCF-7 cells demonstrated the applicability of the inverted configuration of the micropillar arrays to dynamics measurements. Forces emanated from a molecular base that was localized on top of the micropillars. What appeared as a single adhesion in conventional microscopy were in fact multiple elongated adhesions emanating from only a small fraction of the adhesion on the micropillar surface. Focal adhesions were elongated in the direction of local cellular force exertion with structural features of 100-280 nm in 3T3 Fibroblasts and MCF-7 cells. The combined measure of nanoscale architecture and force exerted shows a high level of stress accumulation at a single site of adhesion.

7.
Biosens Bioelectron ; 57: 1-9, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24534574

RESUMEN

Protein kinases control cellular functions by regulating protein phosphorylation. Monitoring protein kinase activity is essential for medical diagnosis and drug screening. Here, we present a novel microfluidic device for performing simple and versatile protein kinase assays, which utilizes a microbead-based chemosensor. An automatic mix-and-measure technique was achieved using integrated pneumatic valves. After mixing each reagent for the kinase assay, the mixture was transferred to the sensing chamber. Then, phosphorylated and fluorescence-labeled peptides were captured and detected by the chemosensor. A fluorescence signal was observed depending on the presence of the kinase. Furthermore, activities of various kinases in the cell lysate and the inhibitory effect of specific chemicals on the kinases were monitored. These results indicate that chemosensor-based microfluidic chips can be developed as a versatile kinase assay system.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Proteínas Quinasas/metabolismo , Pruebas de Enzimas/instrumentación , Diseño de Equipo , Células HeLa , Humanos , Péptidos/metabolismo , Fosforilación
8.
Biomaterials ; 31(6): 1180-90, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19889455

RESUMEN

Three-dimensional (3D) in vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in vivo conditions. In cancer research, the multi-cellular tumor spheroid (MCTS) model is an established 3D cancer model that exhibits microenvironmental heterogeneity close to that of tumors in vivo. However, the established process of MCTS formation is time-consuming and often uncontrolled. Here, we report a method for engineering MCTS using a transient inter-cellular linker which facilitates cell-cell interaction. Using C3A cells (a hepatocellular carcinoma cell line) as a model, we formed linker-engineered spheroids which grew to a diameter of 250 microm in 7 days, as compared to 16 days using conventional non-adherent culture. Seven-day old linker-engineered spheroids exhibited characteristics of mature MCTS, including spheroid morphology, gene expression profile, cell-cell interaction, extracellular matrix secretion, proliferation and oxygen concentration gradients, and cellular functions. Linker-engineered spheroids also displayed a resistance to drug penetration similar to mature MCTS, with dose-dependent extracellular accumulation of the drug. The linker-engineered spheroids thus provide a reliable accelerated 3D in vitro tumor model for drug penetration studies.


Asunto(s)
Bioensayo/métodos , Carcinoma Hepatocelular/metabolismo , Doxorrubicina/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Farmacocinética , Esferoides Celulares/metabolismo , Ingeniería de Tejidos/métodos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Humanos , Esferoides Celulares/efectos de los fármacos
9.
Biomaterials ; 29(22): 3237-44, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18455231

RESUMEN

3D microfluidic cell culture systems offer a biologically relevant model to conduct micro-scale mammalian cell-based research and applications. Various natural and synthetic hydrogels have been successfully incorporated into microfluidic systems to support mammalian cells in 3D. However, embedment of cells in hydrogels introduces operational complexity, potentially hinders mass transfer, and is not suitable for establishing cell-dense, ECM-poor constructs. We present here a gel-free method for seeding and culturing mammalian cells three-dimensionally in a microfluidic channel. A combination of transient inter-cellular polymeric linker and micro-fabricated pillar arrays was used for the in situ formation and immobilization of 3D multi-cellular aggregates in a microfluidic channel. 3D cellular constructs formed this way are relieved of hydrogel embedment for cellular support. Two mammalian cell lines (A549 and C3A) and a primary mammalian cell (bone marrow mesenchymal stem cells) were cultured in the gel-free 3D microfluidic cell culture system. The cells displayed 3D cellular morphology, cellular functions and differentiation capability, affirming the versatility of the system as a 3D cell perfusion culture platform for anchorage-dependent mammalian cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Microfluídica/métodos , Actinas/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/ultraestructura , Agregación Celular , Técnicas de Cultivo de Célula/instrumentación , Línea Celular , Supervivencia Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/ultraestructura , Microfluídica/instrumentación , Microscopía Electrónica de Rastreo , Modelos Biológicos , Ratas
10.
Lab Chip ; 7(3): 302-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17330160

RESUMEN

Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.


Asunto(s)
Microfluídica/métodos , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/ultraestructura , Técnicas de Cultivo de Célula , Hepatocitos/citología , Hepatocitos/ultraestructura , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Rastreo , Perfusión , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA