Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
1.
Exp Eye Res ; : 110120, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389443

RESUMEN

Uveal Melanoma (UM) is the most common primary intraocular malignancy in adults. Although rare, it is a deadly tumor, with a long-term prognosis of death occurring in more than 50% of the cases. It is characterized by frequent (∼80%) driver mutations in GNAQ and GNA11 genes, both of which are activated by cysteinyl leukotriene receptors (CYSLTRs). CYSLTR1 is upregulated and participated in the progression of several cancers. In the present study, we sought to determine the expression levels of CYSLTR1 in 31 human UM specimens and cell lines (3 primary and 1 metastatic), and its role in the proliferation and viability of these cells by analyzing cell metabolic activity, cell confluence and apoptosis levels. We show that all analyzed UM specimens and cells expressed CYSLTR1 at high levels. Notably, the pharmacological blockage of this receptor, using the inverse agonist MK571, reduced the growth and metabolic activity, and increased the apoptotic cell death of all analyzed UM cell lines. We provide evidence that CYSLTR1 is expressed in human UM and plays a significant role in UM progression behavior. Our data highlight the potential beneficial effects of targeting CYSLTR1 in the control of UM progression.

2.
Sci Rep ; 14(1): 22296, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333189

RESUMEN

(-)-Epigallocatechin-3-gallate (EGCG) is reported to have benefits for the treatment of Alzheimer's disease by binding with acetylcholinesterase (AChE) to enhance the cholinergic neurotransmission. Organophosphorus pesticides (OPs) inhibited AChE and damaged the nervous system. This study investigated the combined effects of EGCG and OPs on AChE activities in vitro & vivo. The results indicated that EGCG significantly reversed the inhibition of AChE caused by OPs. In vitro, EGCG reactived AChE in three group tubes incubated for 110 min, and in vivo, it increased the relative activities of AChE from less than 20% to over 70% in brain and vertebral of zebrafish during the exposure of 34 h. The study also proposed the molecular interaction mechanisms through the reactive kinetics and computational analyses of density functional theory, molecular docking, and dynamic modeling. These analyses suggested that EGCG occupied the key residues, preventing OPs from binding to the catalytic center of AChE, and interfering with the initial affinity of OPs to the central active site. Hydrogen bonding, conjugation, and steric interactions were identified as playing important roles in the molecular interactions. The work suggests that EGCG antagonized the inhibitions of OPs on AChE activities and potentially offered the neuroprotection against the induced damage.


Asunto(s)
Acetilcolinesterasa , Catequina , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Plaguicidas , Pez Cebra , Catequina/análogos & derivados , Catequina/farmacología , Catequina/química , Catequina/metabolismo , Animales , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Plaguicidas/farmacología , Plaguicidas/química , Plaguicidas/metabolismo , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/química , Compuestos Organofosforados/metabolismo , Cinética
3.
Brain Sci ; 14(9)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39335351

RESUMEN

Tobacco consumption in schizophrenia (SCHZ) patients is highly prevalent. Data support the occurrence of sequential events during comorbidity establishment, and both smoking first, SCHZ second and SCHZ first, smoking second sequences have been proposed. To investigate whether these two possibilities lead to distinct outcomes of comorbidity, we used a phencyclidine-induced SCHZ model and nicotine exposure as a surrogate of smoking. C57Bl/6 mice were submitted to a protocol that either began with 4 days of phencyclidine exposure or 4 days of nicotine exposure. This period was followed by 5 days of combined phencyclidine + nicotine exposure. Locomotor sensitization and pre-pulse inhibition (PPI) were assessed due to their well-known associations with SCHZ as opposed to rearing, an unrelated behavior. Nicotine priming potentiated phencyclidine-evoked sensitization. However, nicotine exposure after SCHZ modeling did not interfere with phencyclidine's effects. In the PPI test, nicotine after SCHZ modeling worsened the phencyclidine-evoked deficiency in males. In contrast, nicotine priming had no effects. Regarding rearing, nicotine priming failed to interfere with phencyclidine-mediated inhibition. Similarly, phencyclidine priming did not modify nicotine-mediated inhibition. The present results indicate that the sequence, either SCHZ-first or nicotine-first, differentially impacts comorbidity outcomes, a finding that is relevant for the identification of mechanisms of nicotine interference in the neurobiology of SCHZ.

4.
Mol Pharm ; 21(10): 4924-4946, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39214595

RESUMEN

This study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses. CIP released from TAH-NPs displayed a sustained release profile over 72 h. The in vitro antibacterial activity studies revealed that CIP-loaded TAH-NPs exhibited enhanced antibacterial efficacy and efflux pump inhibitory activity. Specifically, they showed a 3-fold increase in biofilm eradication activity against MRSA and a 2-fold increase against P. aeruginosa compared to bare CIP. Time-killing assays demonstrated complete bacterial clearance within 8 h of treatment with CIP-loaded TAH-NPs. In vitro DPPH scavenging and anti-inflammatory investigations confirmed the ability of the prepared hybrid nanosystem to neutralize reactive oxygen species (ROS) and modulate LPS-induced inflammatory responses. Collectively, these results suggest that CIP-loaded TAH-NPs may serve as an innovative nanocarrier for the effective and targeted delivery of antibiotics against bacterial-induced sepsis.


Asunto(s)
Antibacterianos , Ciprofloxacina , Portadores de Fármacos , Nanopartículas , Sepsis , Taninos , Taninos/química , Taninos/farmacología , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Humanos , Portadores de Fármacos/química , Ciprofloxacina/farmacología , Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Nanopartículas/química , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Lipopolisacáridos , Liberación de Fármacos , Biomimética/métodos , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Polifenoles
5.
Prog Brain Res ; 288: 35-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39168558

RESUMEN

Caffeine is an alkaloid obtained from plants and is one of the most consumptive drug in the form of chocolate, coffee and beverages. The potential impact of caffeine within CNS can be easily understood by mechanism of action-antagonism of adenosine receptor, calcium influx, inhibits phosphodiesterases. Adenosine a neuromodulator for adenosine receptors, which are abundantly expressed within the central nervous system. Caffeine antagonized the adenosine receptor, hence stimulate expression of dopamine. It plays pivotal role in many metabolic pathways within the brain and nervous system, it reduced the amyloid-ß-peptide (Aß) accumulation, downregulation of tau protein phosphorylation, stimulate cholinergic neurons and inhibits the acetylcholinestrase (AChE). It also possess antioxidant and antiapoptotic activity. Caffeine act as nutraceutical product, improves mental health. It contains antioxidants, vitamins, minerals and dietary supplements, by reducing the risk factor of several neurodegenerations including Alzheimer's disease, migraine, gallstone, cancer, Huntington's disease and sclerosis. This act as a stimulant and have capability to increase the effectiveness of certain pain killer. Beside positive affects, over-consumption of caffeine leads to negative impact: change in sleep pattern, hallucinations, high blood pressure, mineral loss and even heartburn. This chapter highlights pros and cons of caffeine consumption.


Asunto(s)
Cafeína , Cafeína/farmacología , Humanos , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Receptores Purinérgicos P1/metabolismo
6.
Huan Jing Ke Xue ; 45(8): 4860-4869, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168702

RESUMEN

The prevalence of selenium-cadmium (Se-Cd) symbiosis in soils of geologically high background areas directly affects the safe utilization of Se-rich land resources. To investigate the migration and accumulation characteristics and bio-effectiveness of Se-Cd in the soil-crop system in typical geological high background areas of Southwest China and to realize the safe use of natural Se-rich land resources in geological high background areas, we collected 84 samples of agricultural crops (maize) and their supporting root systems and analyzed the Se-Cd content and physicochemical properties. Se-Cd accumulation characteristics, influencing factors, and bio-effectiveness of the soil-crop system were evaluated using geostatistics, bioenrichment factors, and geographic detectors. The results showed that the Se-Cd content in the study area was significantly higher than the background value of the soil in the whole country and in Yunnan Province. Influenced by the geological background, secondary enrichment in the process of soil formation, and agricultural activities, the accumulation and enrichment characteristics of Se in the root soil varied from no enrichment to slightly enriched, and the occurrence form was dominated by the residue state. The accumulation index of soil Cd was mainly in the medium pollution level, and the occurrence form was mainly in the residual state and the combined state of iron and manganese. The Se-enrichment rate of crop seeds reached 98.8% (DB 50/T 524-2013 standard), and the average value of bioconcentration factor was 5.8%. The exceeding rate of Cd content in crop seeds was only 1.19% (GB 2762-2022 standard), and the average value of Cd bioconcentration factor was 2.11%, so the ecological risk of heavy metal Cd in crop seeds was relatively low. In the Se-Cd symbiosis area under geological background, the weak alkaline environment of the soil could effectively reduce the bioavailability of Cd in crop seeds, and the Se-rich soil could inhibit the uptake of Cd by the crops to a certain extent. Correlation analysis showed that the migration and accumulation of Se and Cd from soil to crop seeds in the soil-crop system were affected by the elemental accumulation pattern and the physical and chemical properties (pH) of the soil, and at the same time, there was a certain synergistic-antagonistic effect between Se and Cd in the soil-crop system. Correlation analysis showed that the migration and accumulation of Se and Cd from soil to crop seeds in the soil-crop system was influenced by the occurrence of elements, soil physicochemical properties (pH), and other factors, and there was also a certain synergistic-antagonistic interaction between Se and Cd in the soil-crop system.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39172542

RESUMEN

CONTEXT: About 30% of patients with active acromegaly experience paradoxically increased growth hormone (GH) secretion during the diagnostic oral glucose tolerance test (OGTT). Endogenous glucose-dependent insulinotropic polypeptide (GIP) is implicated in this paradoxical secretion. OBJECTIVE: We used the GIP receptor (GIPR) antagonist GIP(3-30)NH2 to test the hypothesis that GIP mediates this paradoxical response when GIPR is abundantly expressed in somatotropinomas. DESIGN, PATIENTS, SETTING, INTERVENTIONS: 25 treatment-naïve patients with acromegaly were enrolled. Each patient underwent one OGTT during simultaneous placebo infusion and one OGTT during a GIP(3-30)NH2 infusion. Blood samples were drawn at baseline and regularly after infusions to measure GH. We assessed pituitary adenoma size by magnetic resonance imaging and GIPR expression by immunohistochemistry on resected somatotropinomas. For mechanistic confirmation, we applied in vitro and ex vivo approaches. MAIN OUTCOME MEASURE: The effect of GIP(3-30)NH2 on paradoxical GH secretion during OGTT as a measure of GIP involvement. RESULTS: In four of seven patients with paradoxical GH secretion, GIP(3-30)NH2 infusion completely abolished the paradoxical response (P = 0.0003). Somatotrophs were available from three of four of these patients, all showing abundant GIPR expression. Adenoma size did not differ between patients with and without paradoxical GH secretion. CONCLUSIONS: Of 25 patients with acromegaly, seven had paradoxical GH secretion during OGTT, and pharmaceutical GIPR blockade abolished this secretion in four. Corresponding somatotroph adenomas abundantly expressed GIPR, suggesting a therapeutic target in this subpopulation of patients. In vitro and ex vivo analyses confirmed the role of GIP and the effects of the antagonist.

8.
Toxicology ; 508: 153928, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39153657

RESUMEN

Deoxynivalenol (DON) is a kind of widespread traditional Fusarium mycotoxins in the environment, and its intestinal toxicity has received considerable attention. Recently, the emerging Fusarium mycotoxin enniatins (ENNs) have also been shown to frequently coexist with DON in animal feed and food with large consumption. However, the mechanism of intestinal damage caused by the two mycotoxins co-exposure remains unclear. In this study, Caco-2 cell line was used to investigate the combined toxicity and potential mechanisms of four representative ENNs (ENA, ENA1, ENB, and ENB1) and DON. The results showed that almost all mixed groups showed antagonistic effects, particularly ENB at 1/4 IC50 (CI = 6.488). Co-incubation of ENNs mitigated the levels of signaling molecule levels disrupted by DON, including reactive oxygen species (ROS), calcium mobilization (Ca2+), adenosine triphosphate (ATP). The differentially expressed genes (DEGs) between the mixed and ENB groups were significantly enriched in the Ras/PI3K/Akt signaling pathway, including 28 up-regulated genes and 40 down-regulated genes. Quantitative real-time PCR further confirmed the lower expression of apoptotic gene in the mixed group, thereby reducing the cytotoxic effects caused by DON exposure. This study emphasizes that co-exposure of ENNs and DON reduces cytotoxicity by regulating the Ras/PI3K/Akt signaling pathway. Our results provide the first comprehensive evidence about the antagonistic toxicity of ENNs and DON on Caco-2 cells, and new insights into mechanisms investigated by transcriptomics.


Asunto(s)
Depsipéptidos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Tricotecenos , Proteínas ras , Tricotecenos/toxicidad , Humanos , Células CACO-2 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Depsipéptidos/toxicidad , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Especies Reactivas de Oxígeno/metabolismo , Intestinos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
9.
Cureus ; 16(6): e61996, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38983984

RESUMEN

Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa (sLea). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology. They have been implicated in the pathology of diverse inflammatory disorders, and several selectin antagonists have been tested clinically. E-selectin plays a unique role in leukocyte activation, making it an attractive target for intervention, for example, in sickle cell disease (SCD). This review summarizes selectin biology and pathology, structure and ligand binding, and selectin antagonists that have reached clinical testing with an emphasis on E-selectin.

10.
J Environ Manage ; 367: 122003, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39083937

RESUMEN

Peanut (Arachis hypogaea L.) plant has a high requirement for calcium (Ca) during its growth and development, and possesses the ability to accumulate cadmium (Cd) from soil. However, the precise mechanisms underlying the antagonistic effects between Ca and Cd remain unclear. This study aimed to explore the dynamic changes in Cd accumulation in peanut seedlings by varying the Ca-to-Cd concentration ratio (CRCa/Cd) from 250 to 3500. Additionally, the influence of ion channel competition and cell wall fixation in the root on Cd accumulation in peanuts was explored by analyzing Cd chemical forms, subcellular distribution, pectin content, and Cd2+ fluxes using a non-invasive micro-test technique (NMT). The findings revealed that Cd accumulation in peanut seedlings was significantly lower when the CRCa/Cd was higher than 2000. In the Ca-pretreated seedlings (cell wall fixation treatment), Cd content in the shoots and roots decreased by 18.9% and 25.0%, respectively, compared with the simultaneous exposure to Ca and Cd (ion channel competition treatment). Cd2+ influx in peanut roots decreased by 55.8% in the Ca-pretreated group. However, increasing the competitive strength of Ca2+ and Cd2+ did not affect Cd2+ influx under normal Ca conditions (>2 mM Ca). Meanwhile, Ca pretreatment significantly increased Cd distribution in the root cell wall, pectate, and protein-binding forms, while significantly reducing Cd distribution in root soluble components and inorganic Cd forms. The pectin content in the roots increased by 128% and 226% in the Ca and Cd simultaneous exposure treatment and Ca pretreatment, respectively. These results suggest that Ca pretreatment enhanced Cd retention in the root cell wall. Overall, exogenous Ca effectively mitigated Cd accumulation in peanut plants when the CRCa/Cd was below 2000, and Ca2+ channels partially facilitate the entry of Cd2+ into peanut roots. Under normal Ca supply conditions, exogenous Ca reduced Cd accumulation in peanuts primarily through root cell wall fixation rather than ion channel competition. Our findings provide insights into the mechanism by which Ca alleviates the uptake and transfer of Cd in peanuts.


Asunto(s)
Arachis , Cadmio , Calcio , Cadmio/metabolismo , Arachis/metabolismo , Calcio/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Suelo/química
11.
Bioessays ; 46(9): e2400056, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39072829

RESUMEN

X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.


Asunto(s)
Centrómero , Cromosomas Humanos X , Meiosis , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Ratones , Centrómero/genética , Cromosomas Humanos X/genética , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Prevalencia , Inactivación del Cromosoma X/genética
13.
Biomolecules ; 14(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38927054

RESUMEN

Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels.


Asunto(s)
Cadmio , Zinc , Humanos , Cadmio/toxicidad , Cadmio/metabolismo , Zinc/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Animales , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Metalotioneína/metabolismo
14.
Environ Toxicol Chem ; 43(8): 1855-1869, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38864594

RESUMEN

It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L-1 of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L-1 of Cd), cell size (0.025-0.100 mg L-1 of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L-1 of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F0/Fv]) were only affected at 0.5 mg L-1 of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;43:1855-1869. © 2024 SETAC.


Asunto(s)
Cadmio , Microalgas , Níquel , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua , Níquel/toxicidad , Cadmio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Microalgas/efectos de los fármacos , Chlorophyceae/efectos de los fármacos , Clorofila A , Clorofila/metabolismo
15.
Brain Res Bull ; 215: 110996, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38857832

RESUMEN

Glioblastoma is the most aggressive and lethal primary brain malignancy with limited treatment options and poor prognosis. Self-renewing glioblastoma cancer stem cells (GSCs) facilitate tumour progression, resistance to conventional treatment and tumour recurrence. GSCs are resistant to standard treatments. There is a need for novel treatment alternatives that effectively target GSCs. The purinergic P2X receptor 7 (P2X7R) is expressed in glioblastomas and has been implicated in disease pathogenesis. However, the roles of P2X7R have not been comprehensively elucidated in conventional treatment-resistant GSCs. This study characterised P2X7R channel and pore function and investigated the effect of pharmacological P2X7R inhibition in GSCs. Immunofluorescence and live cell fluorescent dye uptake experiments revealed P2X7R expression, and channel and pore function in GSCs. Treatment of GSCs with the P2X7R antagonist, AZ10606120 (AZ), for 72 hours significantly reduced GSC numbers, compared to untreated cells. When compared with the effect of the first-line conventional chemotherapy, temozolomide (TMZ), GSCs treated with AZ had significantly lower cell numbers than TMZ-treated cultures, while TMZ treatment alone did not significantly deplete GSC numbers compared to the control. AZ treatment also induced significant lactate dehydrogenase release by GSCs, indicative of treatment-induced cytotoxic cell death. There were no significant differences in the expression of apoptotic markers, Annexin V and cleaved caspase-3, between AZ-treated cells and the control. Collectively, this study reveals for the first time functional P2X7R channel and pore in GSCs and significant GSC depletion following P2X7R inhibition by AZ. These results indicate that P2X7R inhibition may be a novel therapeutic alternative for glioblastoma, with effectiveness against GSCs resistant to conventional chemotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células Madre Neoplásicas , Antagonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Temozolomida , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Humanos , Receptores Purinérgicos P2X7/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Temozolomida/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Piridinas/farmacología , Apoptosis/efectos de los fármacos , Adamantano/análogos & derivados , Aminoquinolinas
16.
Environ Sci Technol ; 58(24): 10494-10503, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833413

RESUMEN

Fluorene-9-bisphenol (BHPF) is an emerging contaminant. Presently, there is no report on its interaction with G protein-coupled estrogen receptor 1 (GPER). By using an integrated toxicity research scenario that combined theoretical study with experimental methods, BHPF was found to inhibit the GPER-mediated effect via direct receptor binding. Molecular dynamics simulations found that Trp2726.48 and Glu2756.51 be the key amino acids of BHPF binding with GPER. Moreover, the calculation indicated that BHPF was a suspected GPER inhibitor, which neither can activate GPER nor is able to form water channels of GPER. The role of two residues was successfully verified by following gene knockout and site-directed mutagenesis assays. Further in vitro assays showed that BHPF could attenuate the increase in intracellular concentration of free Ca2+ induced by G1-activated GPER. Besides, BHPF showed an enhanced cytotoxicity compared with G15, indicating that BHPF might be a more potent GPER inhibitor than G15. In addition, a statistically significant effect on the mRNA level of GPER was observed for BHPF. In brief, the present study proposes that BHPF be a GPER inhibitor, and its GPER molecular recognition mechanism has been revealed, which is of great significance for the health risk and assessment of BHPF.


Asunto(s)
Apoptosis , Humanos , Apoptosis/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Línea Celular Tumoral , Fluorenos , Fenoles/farmacología , Fenoles/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Estrógenos/metabolismo
17.
Viruses ; 16(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793630

RESUMEN

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Asunto(s)
ADN Viral , Herpesvirus Humano 8 , Inmunidad Innata , Transducción de Señal , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , ADN Viral/metabolismo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/metabolismo , Sarcoma de Kaposi/virología , Nucleotidiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Animales , Proteínas de la Membrana/metabolismo , Proteínas Nucleares , Fosfoproteínas
18.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732105

RESUMEN

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Asunto(s)
Apoptosis , Bortezomib , Mitocondrias , Mieloma Múltiple , Especies Reactivas de Oxígeno , Tigeciclina , Bortezomib/farmacología , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Tigeciclina/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Mitofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos
19.
Clin Sci (Lond) ; 138(11): 635-644, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785409

RESUMEN

The endothelin family of peptides has long been recognized as a physiological regulator of diverse biological functions and mechanistically involved in various disease states, encompassing, among others, the cardiovascular system, the kidney, and the nervous system. Pharmacological blockade of the endothelin system, however, has encountered strong obstacles in its entry into the clinical mainstream, having obtained only a few proven indications until recently. This translational gap has been attributable predominantly to the relevant side effects associated with endothelin receptor antagonism (ERA), particularly fluid retention. Of recent, however, an expanding understanding of the pathophysiological processes involving endothelin, in conjunction with the development of new antagonists of endothelin receptors or adjustment of their doses, has driven a flourish of new clinical trials. The favorable results of some of them have extended the proven indications for ET targeting to a variety of clinical conditions, including resistant arterial hypertension and glomerulopathies. In addition, on the ground of strong preclinical evidence, other studies are ongoing to test the potential benefits of ERA in combination with other treatments, such as sodium-glucose co-transporter 2 inhibition in fluid retentive states or anti-cancer therapies in solid tumors. Furthermore, antibodies providing long-term blockade of endothelin receptors are under testing to overcome the short half-life of most small molecule endothelin antagonists. These efforts may yet bring new life to the translation of endothelin targeting strategies in clinical practice.


Asunto(s)
Antagonistas de los Receptores de Endotelina , Endotelinas , Humanos , Antagonistas de los Receptores de Endotelina/uso terapéutico , Endotelinas/metabolismo , Animales , Receptores de Endotelina/metabolismo
20.
Endocrinology ; 165(6)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38643482

RESUMEN

Annual breast cancer (BCa) deaths have declined since its apex in 1989 concomitant with widespread adoption of hormone therapies that target estrogen receptor alpha (ERα), the prominent nuclear receptor expressed in ∼80% of BCa. However, up to ∼50% of patients who are ER+ with high-risk disease experience post endocrine therapy relapse and metastasis to distant organs. The vast majority of BCa mortality occurs in this setting, highlighting the inadequacy of current therapies. Genomic abnormalities to ESR1, the gene encoding ERα, emerge under prolonged selective pressure to enable endocrine therapy resistance. These genetic lesions include focal gene amplifications, hotspot missense mutations in the ligand binding domain, truncations, fusions, and complex interactions with other nuclear receptors. Tumor cells utilize aberrant ERα activity to proliferate, spread, and evade therapy in BCa as well as other cancers. Cutting edge studies on ERα structural and transcriptional relationships are being harnessed to produce new therapies that have shown benefits in patients with ESR1 hotspot mutations. In this review we discuss the history of ERα, current research unlocking unknown aspects of ERα signaling including the structural basis for receptor antagonism, and future directions of ESR1 investigation. In addition, we discuss the development of endocrine therapies from their inception to present day and survey new avenues of drug development to improve pharmaceutical profiles, targeting, and efficacy.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Mutación , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Femenino , Animales , Antineoplásicos Hormonales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA