Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1387133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966215

RESUMEN

Introduction: Endocrine disrupting chemicals (EDCs) are known to interfere with endocrine homeostasis. Their impact on the adrenal cortex and steroidogenesis has not yet been sufficiently elucidated. This applies in particular to the ubiquitously available bisphenols A (BPA), F (BPF), and S (BPS). Methods: NCI-H295R adrenocortical cells were exposed to different concentrations (1nM-1mM) of BPA, BPF, BPS, and an equimolar mixture of them (BPmix). After 72 hours, 15 endogenous steroids were measured using LC-MS/MS. Ratios of substrate and product of CYP-regulated steps were calculated to identify most influenced steps of steroidogenesis. mRNA expression of steroidogenic enzymes was determined by real-time PCR. Results: Cell viability remained unaffected at bisphenol concentrations lower than 250 µM. All tested bisphenols and their combination led to extensive alterations in the quantified steroid levels. The most profound fold changes (FC) in steroid concentrations after exposure to BPA (>10µM) were seen for androstenedione, e.g. a 0.37±0.11-fold decrease at 25µM (p≤0.0001) compared to vehicle-treated controls. For BPF, levels of 17-hydroxyprogesterone were significantly increased by 25µM (FC 2.57±0.49, p≤0.001) and 50µM (FC 2.65±0.61, p≤0.0001). BPS treatment led to a dose-dependent decrease of 11-deoxycorticosterone at >1µM (e.g. FC 0.24±0.14, p≤0.0001 at 10µM). However, when combining all three bisphenols, additive effects were detected: e.g. 11-deoxycortisosterone was decreased at doses >10µM (FC 0.27±0.04, p≤0.0001, at 25µM), whereas 21-deoxycortisol was increased by 2.92±0.20 (p≤0.01) at 10µM, and by 3.21±0.45 (p≤0.001) at 50µM. While every measured androgen (DHEA, DHEAS, androstenedione, testosterone, DHT) was lowered in all experiments, estradiol levels were significantly increased by BPA, BPF, BPS, and BPmix (e.g. FC 3.60±0.54, p≤0.0001 at 100µM BPF). Calculated substrate-product ratios indicated an inhibition of CYP17A1-, and CYP21A2 mediated conversions, whereas CYP11B1 and CYP19A1 showed higher activity in the presence of bisphenols. Based on these findings, most relevant mRNA expression of CYP genes were analysed. mRNA levels of StAR, CYP11B1, and CYP17A1 were significantly increased by BPF, BPS, and BPmix. Discussion: In cell culture, bisphenols interfere with steroidogenesis at non-cytotoxic levels, leading to compound-specific patterns of significantly altered hormone levels. These results justify and call for additional in-vivo studies to evaluate effects of EDCs on adrenal gland functionality.


Asunto(s)
Corteza Suprarrenal , Compuestos de Bencidrilo , Disruptores Endocrinos , Fenoles , Plastificantes , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Humanos , Disruptores Endocrinos/toxicidad , Corteza Suprarrenal/efectos de los fármacos , Corteza Suprarrenal/metabolismo , Corteza Suprarrenal/citología , Plastificantes/toxicidad , Esteroides/biosíntesis , Sulfonas/farmacología , Supervivencia Celular/efectos de los fármacos
2.
Cancer Commun (Lond) ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973634

RESUMEN

Boron neutron capture therapy (BNCT) is a cancer treatment modality based on the nuclear capture and fission reactions that occur when boron-10, a stable isotope, is irradiated with neutrons of the appropriate energy to produce boron-11 in an unstable form, which undergoes instantaneous nuclear fission to produce high-energy, tumoricidal alpha particles. The primary purpose of this review is to provide an update on the first drug used clinically, sodium borocaptate (BSH), by the Japanese neurosurgeon Hiroshi Hatanaka to treat patients with brain tumors and the second drug, boronophenylalanine (BPA), which first was used clinically by the Japanese dermatologist Yutaka Mishima to treat patients with cutaneous melanomas. Subsequently, BPA has become the primary drug used as a boron delivery agent to treat patients with several types of cancers, specifically brain tumors and recurrent tumors of the head and neck region. The focus of this review will be on the initial studies that were carried out to define the pharmacokinetics and pharmacodynamics of BSH and BPA and their biodistribution in tumor and normal tissues following administration to patients with high-grade gliomas and their subsequent clinical use to treat patients with high-grade gliomas. First, we will summarize the studies that were carried out in Japan with BSH and subsequently at our own institution, The Ohio State University, and those of several other groups. Second, we will describe studies carried out in Japan with BPA and then in the United States that have led to its use as the primary drug that is being used clinically for BNCT. Third, although there have been intense efforts to develop new and better boron delivery agents for BNCT, none of these have yet been evaluated clinically. The present report will provide a guide to the future clinical evaluation of new boron delivery agents prior to their clinical use for BNCT.

3.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826193

RESUMEN

The progression of fatty liver disease to non-alcoholic steatohepatitis (NASH) is a leading cause of death in humans. Lifestyles and environmental chemical exposures can increase the susceptibility of humans to NASH. In humans, the presence of bisphenol A (BPA) in urine is associated with fatty liver disease, but whether ancestral BPA exposure leads to the activation of human NAFLD-NASH-associated genes in the unexposed descendants is unclear. In this study, using medaka fish as an animal model for human NAFLD, we investigated the transcriptional signatures of human NAFLD-NASH and their associated roles in the pathogenesis of the liver of fish who were not directly exposed but their ancestors were exposed to BPA during embryonic and perinatal development three generations prior. Comparison of bulk RNA-Seq data of the liver in BPA lineage male and female medaka with publicly available human NAFLD-NASH patient data revealed transgenerational alterations in the transcriptional signature of human NAFLD-NASH in medaka liver. Twenty percent of differentially expressed genes (DEGs) were upregulated in both human NAFLD patients and medaka. Specifically in females, among the total shared DEGs in the liver of BPA lineage fish and NAFLD patient groups, 27.69% DEGs were downregulated and 20% DEGs were upregulated. Off all DEGs, 52.31% DEGs were found in ancestral BPA-lineage females, suggesting that NAFLD in females shared majority of human NAFLD gene networks. Pathway analysis revealed beta-oxidation, lipoprotein metabolism, and HDL/LDL-mediated transport processes linked to downregulated DEGs in BPA lineage males and females. In contrast, the expression of genes encoding lipogenesis-related proteins was significantly elevated in the liver of BPA lineage females only. BPA lineage females exhibiting activation of myc, atf4, xbp1, stat4, and cancerous pathways, as well as inactivation of igf1, suggest their possible association with an advanced NAFLD phenotype. The present results suggest that gene networks involved in the progression of human NAFLD and the transgenerational NAFLD in medaka are conserved and that medaka can be an excellent animal model to understand the development and progression of liver disease and environmental influences in the liver.

4.
Quant Imaging Med Surg ; 14(6): 4177-4188, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38846276

RESUMEN

Background: Boron neutron capture therapy (BNCT) stands out as a propitious anti-cancer modality. 18F-boronophenylalanine positron emission tomography (BPA-PET) holds the potential to ascertain the concentration of BPA within the tumor, enabling meticulous treatment planning and outcome evaluation. However, no studies have been conducted on comparing the outcomes of those treated with BNCT to those who did not undergo this therapy. This study endeavors to analyze the correlation between BPA-PET and BNCT in the context of malignant brain tumors, and assess the survival outcomes following BNCT. Methods: A cohort study was performed on patients who underwent BPA-PET between February 2017 and April 2022 in our hospital. Patients were stratified into two groups: those subjected to BNCT (Group 1) and those not (Group 2). The tumor to normal tissue (T/N) ratio derived from BPA-PET was set at 2.5. The findings were scrutinized based on clinical follow-up. Student's t-test and Chi-squared test were employed to discern differences between the groups. A cumulative survival curve was constructed employing the Kaplan-Meier method. Differences were considered statistically significant at P<0.05. Results: In total, 116 patients with T/N ratios obtained from BPA-PET were enrolled. BNCT was administered to 58 patients, while mortality was observed in 100 patients. The median overall survival (OS) for the two groups was 8.5 and 6.0 months, respectively. The cumulative OS exhibited no significant discrepancy between the two groups, nor in their T/N ratios. Within Group 1, 44 out of 58 (75.9%) patients exhibited T/N ratios exceeding 2.5. Excluding 3 patients who expired within 3 months, 55 out of 58 patients were evaluated for response after BNCT. The objective response rate (ORR) was 30.9%. Patients achieving ORR displayed substantially higher survival rates compared to those without (median OS 13.5 vs. 8.3 months, P=0.0021), particularly when T/N ratio exceeded 2.5 (median OS 14.8 vs. 9.0 months, P=0.0199). Conclusions: BNCT does not appear indispensable for prolonging the survival of patients afflicted with malignant brain tumors. Nevertheless, it proves advantageous when ORR is attained, a condition closely linked to the values of T/N ratio derived from BPA-PET.

6.
J Colloid Interface Sci ; 669: 1006-1014, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38759591

RESUMEN

Reducing iron by hydroxylamine (HA) can promote the generation of reactive oxygen species (ROS) in the Fenton reaction and play a crucial role in the degradation of organic pollutants. However, the performance of this system at wider environmental thresholds is still not sufficiently understood, especially in the highly alkaline environments resulting from human activities. Here, we assessed the impact of solution pH on organic pollutant degradation by goethite with the addition of HA and H2O2. The solid phase variation and ROS generation were analyzed using Mössbauer spectroscopy, X-ray absorption near edge structure spectroscopy, and electron paramagnetic resonance analysis. This study found that under alkaline conditions, the system can continuously scavenge organic pollutants through oxygen-mediated generation of free radicals. At lower pH levels, organic pollutant decomposition, exemplified by the breakdown of bisphenol A (BPA), is primarily driven by the Fenton reaction facilitated by iron. As pH increases, hydroxyl radical (•OH) production decreases, accompanied by decreased BPA removal efficiency. However, the removal efficiency of BPA increased significantly at pH > 9. At pH 12, the removal of BPA exceeded that of the acidic condition after one hour, which is consistent with observations in soil system studies. Unlike the Fenton reaction, which is not sensitive to oxygen content, the removal of BPA under alkaline conditions occurs only under aerobic conditions. H2O2 is hardly involved in the reaction, and the depletion of HA becomes a critical factor in the decomposition of BPA. Importantly, in contrast to acidic conditions, where the dramatic decomposition of BPA occurs mainly in the first 10 min, the decomposition of BPA under alkaline conditions continued to occur over the 2 h of observation until complete removal. For natural systems, the remediation of pollutants depends more on the active time of ROS than on their reactivity. Therefore, this idea can reference pollution remediation strategies in anthropogenically disturbed environments.

7.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704108

RESUMEN

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Asunto(s)
Estrógenos , Terapia por Ejercicio , Trastornos Mentales , Animales , Humanos , Estrógenos/metabolismo , Ejercicio Físico/fisiología , Trastornos Mentales/metabolismo , Trastornos Mentales/terapia , Receptores de Estrógenos/metabolismo , Transducción de Señal
8.
Dent Mater ; 40(7): 1025-1030, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38755042

RESUMEN

OBJECTIVES: Resin composites may release bisphenol A (BPA) due to impurities present in the monomers. However, there is a lack of knowledge regarding the leaching characteristics of BPA from resin composites. Therefore, experimental resin composites were prepared with known amounts of BPA. The objective of this study was (1) to determine which amount of BPA initially present in the material leaches out in the short term and, (2) how this release is influenced by the resin composition. METHODS: BPA (0, 0.001, 0.01, or 0.1 wt%) was added to experimental resin composites containing 60 mol% BisGMA, BisEMA(3), or UDMA, respectively, as base monomer and 40 mol% TEGDMA as diluent monomer. Polymerized samples (n = 5) were immersed at 37 °C for 7 days in 1 mL of water, which was collected and refreshed daily. BPA release was quantified with UPLC-MS/MS after derivatization with pyridine-3-sulfonyl chloride. RESULTS: Between 0.47 to 0.67 mol% of the originally added BPA eluted from the resin composites after 7 days. Similar elution trends were observed irrespective of the base monomer. Two-way ANOVA showed a significant effect of the base monomer on BPA release, but the differences were small and not consistent. SIGNIFICANCE: The released amount of BPA was directly proportional to the quantity of BPA present in the resin composite as an impurity. BPA release was mainly diffusion-based, while polymer composition seemed to play a minor role. Our results underscore the importance for manufacturers only to use monomers of the highest purity in dental resin composites to avoid unnecessary BPA exposure in patients.


Asunto(s)
Compuestos de Bencidrilo , Resinas Compuestas , Fenoles , Fenoles/análisis , Fenoles/química , Compuestos de Bencidrilo/química , Resinas Compuestas/química , Ensayo de Materiales , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Poliuretanos/química , Ácidos Polimetacrílicos/química , Metacrilatos/química , Metacrilatos/análisis , Polietilenglicoles/química , Polimerizacion
9.
Toxicol In Vitro ; 98: 105849, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772494

RESUMEN

Concerns over Bisphenol A (BPA) and its substitute, Bisphenol S (BPS), have led to innovative exploration due to potential adverse health effects. BPS, replacing BPA in some regions to avoid toxic impacts, remains insufficiently studied. Besides this, the organ-on-a-chip technology emerges as a transformative solution in drug discovery and chemiclas toxicity testing, minimizing costs and aligning with ethical standards by reducing reliance on animal models, by integrating diverse tissues and dynamic cell environments enhances precision in predicting organ function. Here, we employ a 3-organ-on-a-chip microfluidic device with skin, intestine, and liver cultures to assess the effects of BPA and BPS via topical and oral administration. Our evaluation focused on gene markers associated with carcinogenicity, systemic toxicity, and endocrine disruption. BPA exhibited expected absorption profiles, causing liver injury and genetic modulation in related pathways. BPS, a safer alternative, induced adverse effects on gene expression, particularly in topical absorption, with distinct absorption patterns. Our findings underscore the urgency of addressing BPA and BPS toxicity concerns, highlighting the crucial role of organ-on-a-chip technology in understanding associated health risks. The study promotes the organ-on-a-chip methodology as a valuable tool for safe drug development and disease treatments, offering a novel liver toxicity screening alternative to traditional animal tests. This contributes to advancing comprehension of the biological effects of these compounds, fostering improved safety assessments in human health.


Asunto(s)
Compuestos de Bencidrilo , Dispositivos Laboratorio en un Chip , Hígado , Fenoles , Piel , Sulfonas , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Sulfonas/toxicidad , Animales , Piel/efectos de los fármacos , Piel/metabolismo , Humanos , Intestinos/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Pruebas de Toxicidad/métodos , Sistemas Microfisiológicos
10.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1558090

RESUMEN

Dental composite resins may release bisphenol-A or similar molecules affecting patient health and the environment. This study measured bisphenol-A release from three commonly used in patients composite resins (Filtek™ Z350 XT, Filtek™ P60, Filtek™ Bulk Fill) immersed in three liquid mediums (artificial saliva, 0.001 M lactic acid and 15% ethanol) and assessed the changes in the surface micromorphology.The released BPA was measured by HPLC at basal time (t=0), 1 h, 1 d, 7 d and 30 d. Topographic analysis of specimens was performed by scanning electron microscopy (SEM). The data were analyzed using one-way ANOVA and Tukey post-hoc test (P < 0.05). BPA in solution increased significantly in the three DCRs immersed in 0.001 M lactic acid at all times. SEM micrographs of the specimen in 0.001 M lactic acid disclosed more structural defects than others. The surface of the three composite resins was morphologically affected by their immersion in all solutions. SEM evidenced that the dental materials underwent erosion and cracks with filler particles protruding from the surface. The morphological changes in tested dental materials produced by exposure to these solutions are potentially dangerous to patients by causing caries, infections, and partial loss of dental material.

11.
Environ Res ; 252(Pt 2): 118966, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640992

RESUMEN

OBJECTIVE: To evaluate the association between exposure to plastic-related endocrine-disrupting chemicals (EDCs), specifically Bisphenol A (BPA), Phthalates, Cadmium, and Lead, and the risk of estrogen-dependent diseases (EDDs) such as polycystic ovary syndrome (PCOS), endometriosis, or endometrial cancer by conducting a meta-analysis of relevant studies. METHODS: PubMed, Web of Science, and Cochrane Library databases were used for literature retrieval of articles published until the 21st of April 2023. Literature that evaluated the association between BPA, phthalates, cadmium, and/or lead exposure and the risk of PCOS, endometriosis, or endometrial cancer development or exacerbation were included in our analysis. STATA/MP 17.0 was used for all statistical analyses. RESULTS: Overall, 22 articles were included in our meta-analysis with a total of 83,641 subjects all of whom were females aged between 18 and 83 years old. The overall effect size of each study was as follows: endometriosis risk in relation to BPA exposure ES 1.82 (95% CI; 1.50, 2.20). BPA and PCOS risk ES 1.61 (95% CI; 1.39, 1.85). Phthalate metabolites and endometriosis risk; MBP ES 1.07 (95% CI; 0.86, 1.33), MEP ES 1.05 (95% CI; 0.87, 1.28), MEHP ES 1.15 (95% CI; 0.67, 1.98), MBzP ES 0.97 (95% CI; 0.63, 1.49), MEOHP ES 1.87 (95% CI; 1.21, 2.87), and MEHHP ES 1.98 (95% CI; 1.32, 2.98). Cadmium exposure and endometrial cancer risk ES 1.14 (95% CI; 0.92, 1.41). Cadmium exposure and the risk of endometriosis ES 2.54 (95% CI; 1.71, 3.77). Lead exposure and the risk of endometriosis ES 1.74 (95% CI; 1.13, 2.69). CONCLUSION: Increased serum, urinary, or dietary concentration of MBzP and MEHP in women is significantly associated with endometriosis risk. Increased cadmium concentration is associated with endometrial cancer risk.


Asunto(s)
Disruptores Endocrinos , Neoplasias Endometriales , Endometriosis , Humanos , Femenino , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/efectos adversos , Endometriosis/inducido químicamente , Endometriosis/epidemiología , Neoplasias Endometriales/inducido químicamente , Neoplasias Endometriales/epidemiología , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/epidemiología , Adulto , Fenoles/toxicidad , Fenoles/efectos adversos , Adulto Joven , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/efectos adversos , Plásticos , Ácidos Ftálicos/orina , Ácidos Ftálicos/toxicidad , Persona de Mediana Edad , Cadmio/toxicidad , Cadmio/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Adolescente , Contaminantes Ambientales , Estrógenos , Anciano , Plomo/sangre , Plomo/toxicidad , Anciano de 80 o más Años
12.
Artículo en Inglés | MEDLINE | ID: mdl-38482076

RESUMEN

Background: Fecal occult blood tests (FOBT) are inappropriately used in patients with melena, hematochezia, coffee ground emesis, iron deficiency anemia, and diarrhea. The use of FOBT for reasons other than screening for colorectal cancer is considered low-value and unnecessary. Methods: Quality Improvement Project that utilized education, Best Practice Advisory (BPA) and modification of order sets in the electronic health record (EHR). The interventions were done in a sequential order based on the Plan-Do-Study-Act (PDSA) method. An annotated run chart was used to analyze the collected data. Results: Education and Best Practice Advisory within the EHR led to significant reduction in the use of FOBT in the ED. The interventions eventually led to a consensus and removal of FOBT from the order set of the EHR for patients in the ED and hospital units. Conclusions: The use of electronic BPA, education and modification of order sets in the EHR can be effective at de-implementing unnecessary tests and procedures like FOBT in the ED and hospital units.

13.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473752

RESUMEN

Gliomas represent the most common and lethal category of primary brain tumors. Bisphenol A (BPA), a widely recognized endocrine disruptor, has been implicated in the progression of cancer. Despite its established links to various cancers, the association between BPA and glioma progression remains to be clearly defined. This study aimed to shed light on the impact of BPA on glioma cell proliferation and overall tumor progression. Our results demonstrate that BPA significantly accelerates glioma cell proliferation in a time- and dose-dependent manner. Furthermore, BPA has been found to enhance the invasive and migratory capabilities of glioma cells, potentially promoting epithelial-mesenchymal transition (EMT) characteristics within these tumors. Employing bioinformatics approaches, we devised a risk assessment model to gauge the potential glioma hazards associated with BPA exposure. Our comprehensive analysis revealed that BPA not only facilitates glioma invasion and migration but also inhibits apoptotic processes. In summary, our study offers valuable insights into the mechanisms by which BPA may promote tumorigenesis in gliomas, contributing to the understanding of its broader implications in oncology.


Asunto(s)
Glioma , Humanos , Línea Celular Tumoral , Compuestos de Bencidrilo/farmacología , Fenoles/farmacología
14.
Environ Toxicol ; 39(5): 3264-3273, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459623

RESUMEN

Bisphenol A (BPA) is a substance that can harm the environment and human health by interfering with the normal functioning of the body's hormonal system. It is commonly found in various plastic-based products such as cosmetics, canned foods, beverage containers, and medical equipment and as well as it can also be absorbed by inhalation. There have been limited studies on the effects of BPA on lung fibroblasts, and it is still unclear how high levels of BPA can impact respiratory system cells, particularly the lungs and trachea. In this research, we aimed to investigate the cell cycle disruption potential of BPA on respiratory system cells by examining healthy trachea and lung cells together for the first time. The findings indicated that BPA exposure can alter the healthy cells' morphology, leading to reduced cellular viability that has been assessed by MTT and SRB assays. BPA treatment was able to activate caspase3 as expected, which could cause apoptosis in treated cells. Although the highest dose of BPA did not increase the apoptotic rate of rat trachea cells, it remarkably caused them to become necrotic (52.12%). In addition to quantifying the induction of apoptosis and necrosis by BPA, cell cycle profiles were also determined using flow cytometry. Thereby, BPA treatment unexpectedly inhibited the cell cycle's progression by causing G2/M cell cycle arrest in both lung and tracheal cells, which hindered cell proliferation. The findings of the study suggested that exposure to BPA could lead to serious respiratory problems, even respiratory tract cancers via alterations in the cell cycle.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Fenoles , Ratas , Animales , Humanos , Muerte Celular , Proliferación Celular , Compuestos de Bencidrilo/toxicidad , Puntos de Control de la Fase G2 del Ciclo Celular , Sistema Respiratorio
15.
Chemosphere ; 356: 141802, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556183

RESUMEN

The paper presents the results of studying the efficiency of the bisphenol A transformation in water exposed to ultraviolet radiation and a high-energy-pulse-electron beam (e-beam). It has been shown that in both cases, degradation of dissolved bisphenol A occurs, accompanied by an increase in the absorption coefficient in the wavelength region of more than 300 nm. After exposure, products were recorded that fluoresced in the region of more than λ = 400 nm. The fluorescent transformation product of bisphenol A in water (λ = 425 nm) was maximum formatted after an KrCl excilamp irradiated, and under the action of an e-beam, the accumulation of this product was minimal. Under e-beam radiation (170 keV) the efficiency of bisphenol A (1 mM) removal reached 97%. The data obtained allow us to develop ideas about photolysis and radiolysis in natural water systems when knowledge about targeted and optimal conditions for the degradation of bisphenol A is needed.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua , Compuestos de Bencidrilo/química , Fenoles/química , Contaminantes Químicos del Agua/química , Electrones , Purificación del Agua/métodos
16.
J Hazard Mater ; 469: 134098, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522198

RESUMEN

To investigate the efficacy of epigallocatechin gallate (EGCG) and its underlying mechanism in preventing bisphenol-A-induced metabolic disorders, in this study, a mice model of metabolic disorders induced by BPA was developed to investigate the efficacy and mechanism of EGCG using microbiomes and metabolomics. The results showed that EGCG reduced body weight, liver weight ratio, and triglyceride and total cholesterol levels in mice by decreasing the mRNA expression of genes related to fatty acid synthesis (Elov16) and cholesterol synthesis (CYP4A14) and increasing the mRNA expression of genes related to fatty acid oxidation (Lss) and cholesterol metabolism (Cyp7a1). In addition, EGCG normalized BPA-induced intestinal microbial dysbiosis. Metabolic pathway analysis showed that low-dose EGCG was more effective than high-dose EGCG at affecting the biosynthesis of L-cysteine, glycerophosphorylcholine, and palmitoleic acid. These results provide specific data and a theoretical basis for the risk assessment of BPA and the utilization of EGCG.


Asunto(s)
Compuestos de Bencidrilo , Catequina/análogos & derivados , Enfermedades Metabólicas , Fenoles , Ratones , Animales , Colesterol , ARN Mensajero , Ácidos Grasos
17.
Heliyon ; 10(2): e24388, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298688

RESUMEN

To examine the impact of ginger volatile oil (GVO) on the growth of MDA-MB-231 breast cancer cells in the presence of bisphenol A (BPA) by modulating the diversity of gut microbiota. METHODS: MDA-MB-231 breast cancer cells were injected subcutaneously into the right armpit of female BALB/c Nude (nu/nu) mice to create a triple negative breast cancer model. Thirty nude mice were randomly divided into 5 groups: control group (distilled water every day), BPA control group (distilled PEG-400+ DMSO + cyclodextrin every day), BPA + GVO (0.25 mL/kg) group, BPA + GVO (0.5 mL/kg) group, BPA + GVO (1 mL/kg) group, 6 mice in each group; The drug was given by gavage once a day for 4 weeks. At the end of the experiment, the changes of tumor mass and tumor volume were observed and compared in 5 groups of tumor-bearing mice. High-throughput sequencing (16S rRNA) was used to detect the changes of gut microflora in each group. RESULTS: The volume and weight of breast cancer decreased in the low, medium and high dose groups of GVO. Among them, the difference between the high-dose group and the BPA group reached a significant level (P < 0.05). The species and abundance of gut flora decreased following BPA treatment, but increased after combined treatment of BPA with GVO. In the tumor control group, the ratio of Firmicutes(F) and Bacteroidea(B) respectively was 0.10:0.79 at the phylum level, while the ratio of BPA group further decreased (0.04:0.88). After feeding GVO, the number of Firmicutes and Bacteroidea increased, the F/B ratio increased, and the level of Lactobacillus and alistipes increased. In the BPA and GVO treatment group, the predominant gut microflora functions are cell membrane biogenesis, carbohydrate transport and metabolism. This is followed by amino acid transport and metabolism, and transcription function. After GVO administration, the Gram-positive bacteria (G+) ratio had an increasing trend and the Gram-negative bacteria (G-)ratio had a decreasing trend. CONCLUSION: The species and abundance of gut flora decreased following BPA treatment, but increased after combined treatment of BPA with GVO.

18.
Mol Biol Rep ; 51(1): 271, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302795

RESUMEN

BACKGROUND: Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity. METHODS: Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. RESULTS: The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment. CONCLUSION: The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.


Asunto(s)
Bombesina , Interleucina-6 , Fenoles , Humanos , Bombesina/farmacología , Medios de Cultivo Condicionados/farmacología , Interleucina-6/genética , Interleucina-6/farmacología , Compuestos de Bencidrilo/toxicidad , Inflamación/inducido químicamente , Inflamación/genética , Hígado/metabolismo , Proliferación Celular , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADN
19.
Environ Pollut ; 345: 123549, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38350536

RESUMEN

Bisphenol A (BPA) is a very important chemical from the commercial perspective. Many useful products are made from it, so its production is increasing day by day. It is widely known that Bisphenol A (BPA) and its analogs are present in the environment and that they enter our body through various routes on a daily basis as we use things made of this chemical in our daily lives. BPA has already been reported to be an endocrine disruptor. Studies have shown that BPA binds strongly to the human estrogen-related receptor gamma (ERRγ) and is an important target of it. This study seeks to understand how it interacts with ERRγ. Molecular docking of BPA and its analogs with ERRγ was performed, and estradiol was taken as a reference. Then, physico-chemical and toxicological analysis of BPA compounds was performed. Subsequently, the dynamic behavior of ERRγ and ERRγ-BPA compound complexes was studied by molecular dynamics simulations over 500 ns, and using this simulated data, their binding energies were again calculated using the MM-PBSA method. We observed that the binding affinity of BPA and its analogs was much higher than that of estradiol, and apart from being toxic, they can be easily absorbed in our body as their physicochemical properties are similar to those of oral medicines. Therefore, this study facilitates the understanding of the structure-activity relationship of ERRγ and BPA compounds and provides information about the key amino acid residues of ERRγ that interact with BPA compounds, which can be helpful to design competitive inhibitors so that we can interrupt the interaction of BPA with ERRγ. In addition, it provides information on BPA and its analogs and will also be helpful in developing new therapeutics.


Asunto(s)
Disruptores Endocrinos , Fenoles , Humanos , Receptores de Estrógenos/metabolismo , Simulación del Acoplamiento Molecular , Compuestos de Bencidrilo/química , Estradiol , Estrógenos
20.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397050

RESUMEN

Complement component 4 binding protein α (C4BPA) is an immune gene which is responsible for the complement regulation function of C4BP by binding and inactivating the Complement component C4b (C4b) component of the classical Complement 3 (C3) invertase pathway. Our previous findings revealed that C4BPA was differentially expressed by comparing the transcriptome in high-fat and low-fat bovine mammary epithelial cell lines (BMECs) from Chinese Holstein dairy cows. In this study, a C4BPA gene knockout BMECs line model was constructed via using a CRISPR/Cas9 system to investigate the function of C4BPA in lipid metabolism. The results showed that levels of triglyceride (TG) were increased, while levels of cholesterol (CHOL) and free fatty acid (FFA) were decreased (p < 0.05) after knocking out C4BPA in BMECs. Additionally, most kinds of fatty acids were found to be mainly enriched in the pathway of the biosynthesis of unsaturated fatty acids, linoleic acid metabolism, fatty acid biosynthesis, and regulation of lipolysis in adipocyte. Meanwhile, the RNA-seq showed that most of the differentially expressed genes (DEGs) are related to PI3K-Akt signaling pathway. The expressions of 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 (HMGCS1), Carnitine Palmitoyltransferase 1A (CPT1A), Fatty Acid Desaturase 1 (FADS1), and Stearoyl-Coenzyme A desaturase 1 (SCD1) significantly changed when the C4BPA gene was knocked out. Collectively, C4BPA gene, which is an immune gene, played an important role in lipid metabolism in BMECs. These findings provide a new avenue for animal breeders: this gene, with multiple functions, should be reasonably utilized.


Asunto(s)
Complemento C4 , Metabolismo de los Lípidos , Fosfatidilinositol 3-Quinasas , Animales , Bovinos , Femenino , Complemento C4/metabolismo , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genética , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA