Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Control Release ; 376: 167-183, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39384154

RESUMEN

The clinical use of immunostimulatory polyinosinic:polycytidylic acid (pIC) for cancer therapy has been notably limited by its low tumor accumulation and poor cytosolic delivery to activate innate immune sensors. Here, we report a liponanogel (LNG)-based platform to address these challenges. The immunostimulatory LNG consists of an ionizable lipid shell coating a nanogel made of hyaluronic acid (HA), Mn2+ and pIC, which is denoted as LNG-Mn-pIC (LMP). The protonation of internal HA within acidic endosomes increases the endosomal membrane permeability and facilitates the cytosolic delivery of pIC. Moreover, Mn2+, previously reported to activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, synergizes with pIC to activate innate immune cells. Remarkably, intravenously injected LMP significantly induces tumor vasculature disruption and tumor cell apoptosis in an innate immune activation-dependent manner, facilitating the LMP delivery into tumors and leading to enhanced antitumor immunity that potently inhibits or even completely regresses the established tumors. In summary, this immunostimulatory LNG platform not only serves as a useful tool to uncover the immune activation-enhanced drug delivery profile but also represents a broadly applicable platform for effective cancer immunotherapy.

2.
Int J Nanomedicine ; 19: 8769-8778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220196

RESUMEN

Introduction: The tumor microenvironment (TME) of pancreatic cancer is highly immunosuppressive and characterized by a large number of cancer-associated fibroblasts, myeloid-derived suppressor cells, and regulatory T cells. Stimulator of interferon genes (STING) is an endoplasmic reticulum receptor that plays a critical role in immunity. STING agonists have demonstrated the ability to inflame the TME, reduce tumor burden, and confer anti-tumor activity in mouse models. 2'3' cyclic guanosine monophosphate adenosine monophosphate (2'3'-cGAMP) is a high-affinity endogenous ligand of STING. However, delivering cGAMP to antigen-presenting cells and tumor cells within the cytosol remains challenging due to membrane impermeability and poor stability. Methods: In this study, we encapsulated 2'3'-cGAMP in a lipid nanoparticle (cGAMP-LNP) designed for efficient cellular delivery. We assessed the properties of the nanoparticles using a series of in-vitro studies designed to evaluate their cellular uptake, cytosolic release, and minimal cytotoxicity. Furthermore, we examined the nanoparticle's anti-tumor effect in a syngeneic mouse model of pancreatic cancer. Results: The lipid platform significantly increased the cellular uptake of 2'3'-cGAMP. cGAMP-LNP exhibited promising antitumor activity in the syngeneic mouse model of pancreatic cancer. Discussion: The LNP platform shows promise for delivering exogenous 2'3'-cGAMP or its derivatives in cancer therapy.


Asunto(s)
Proteínas de la Membrana , Nanopartículas , Nucleótidos Cíclicos , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Nanopartículas/química , Nanopartículas/administración & dosificación , Nucleótidos Cíclicos/farmacología , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/farmacocinética , Nucleótidos Cíclicos/administración & dosificación , Proteínas de la Membrana/agonistas , Ratones , Línea Celular Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos C57BL , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Liposomas/química , Liposomas/farmacología , Liposomas/farmacocinética , Liposomas/administración & dosificación
3.
Adv Drug Deliv Rev ; 212: 115387, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964543

RESUMEN

Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Proteínas , Humanos , Péptidos/administración & dosificación , Péptidos/química , Proteínas/administración & dosificación , Animales , Orgánulos/metabolismo
4.
Antibodies (Basel) ; 13(2)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38804305

RESUMEN

Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody was serendipitously discovered, which eventually localizes to the cytosol of target cells. Functional characterization revealed that the tested antibody has beneficial cytosol-penetrating capabilities and can deliver cargo proteins (up to 70 kDa) to the cytosol. To achieve tumor-specific cell targeting and cargo delivery through conditional activation of the cell-penetrating antibody in the tumor microenvironment, a single-chain Fc fragment (scFv) and a VL domain were isolated as masking units. Several in vitro assays demonstrated that fusing the masking protein with a cleavable linker to the cell penetration antibody results in the inactivation of antibody cell binding and internalization. Removal of the mask via MMP-9 protease cleavage, a protease that is frequently overexpressed in the tumor microenvironment (TME), led to complete regeneration of binding and cytosol-penetrating capabilities. Masked and conditionally activated cytosol-penetrating antibodies have the potential to serve as a modular platform for delivering protein cargoes addressing intracellular targets in tumor cells.

5.
Angew Chem Int Ed Engl ; 62(38): e202304692, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37283024

RESUMEN

Currently, the clinical application of protein/peptide therapeutics is mainly limited to the modulation of diseases in extracellular spaces. Intracellular targets are hardly accessed, owing largely to the endosomal entrapment of internalized proteins/peptides. Here, we report a strategy to design and construct peptides that enable endosome-to-cytosol delivery based on an extension of the "histidine switch" principle. By substituting the Arg/Lys residues in cationic cell-penetrating peptides (CPPs) with histidine, we obtained peptides with pH-dependent membrane-perturbation activity. These peptides do not randomly penetrate cells like CPPs, but imitate the endosomal escape of CPPs following cellular uptake. Working with one such 16-residue peptide (hsLMWP) with high endosomal escape capacity, we engineered modular fusion proteins and achieved antibody-targeted delivery of diverse protein cargoes-including the pro-apoptotic protein BID (BH3-interacting domain death agonist) and Cre recombinase-into the cytosol of multiple cancer cell types. After extensive in vitro testing, an in vivo analysis with xenograft mice ultimately demonstrated that a trastuzumab-hsLMWP-BID fusion conferred strong anti-tumor efficacy without apparent side effects. Notably, our fusion protein features a modular design, allowing flexible applications for any antibody/cargo combination of choice. Therefore, the potential applications extend throughout life science and biomedicine, including gene editing, cancer treatment, and immunotherapy.


Asunto(s)
Péptidos de Penetración Celular , Histidina , Humanos , Ratones , Animales , Histidina/metabolismo , Espacio Extracelular/metabolismo , Endosomas/metabolismo , Citosol/metabolismo , Péptidos de Penetración Celular/química , Anticuerpos/metabolismo
6.
ACS Nano ; 17(11): 10496-10510, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37184402

RESUMEN

Autologous cancer vaccines constructed by nonproliferative whole tumor cells or tumor lysates together with appropriate adjuvants represent a promising strategy to suppress postsurgical tumor recurrence. Inspired by the potency of cytosolic double-stranded DNA (dsDNA) in initiating anticancer immunity by activating the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, we herein report the concise synthesis of a cGAS-STING agonist through dsDNA-templated biomineralization growth of calcium carbonate (CaCO3) microparticles. The yielded DNA@CaCO3 can activate the intracellular cGAS-STING pathway of dendritic cells (DCs) by promoting endosomal escape of dsDNA, triggering their maturation and activation as a potent immune stimulator. Upon intratumoral injection, DNA@CaCO3 can reverse the immunosuppressive tumor microenvironment by simultaneously provoking innate and adaptive antitumor immunity, thereby effectively suppressing the growth of murine CT26 and B16-F10 tumors in mice. Furthermore, via CaCO3-based biomineralization of complete tumor lysates, we constructed a personalized autologous cancer vaccine with intrinsic cGAS-STING activation capacity that could provoke tumor-specific immune responses to not only delay the growth of challenged tumors but also synergize with anti-PD-1 immunotherapy to suppress postsurgical tumor recurrence. This study highlights a CaCO3-based biomineralization method to prepare autologous cancer vaccines in a concise manner, which is promising for personalized immunotherapy and clinical translation.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Ratones , Animales , Biomineralización , Recurrencia Local de Neoplasia , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , ADN , Neoplasias/terapia , Inmunoterapia/métodos , Microambiente Tumoral
7.
ACS Nano ; 17(5): 4315-4326, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36802503

RESUMEN

Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.


Asunto(s)
Neumonía , Polímeros , Animales , Ratones , ARN Interferente Pequeño , Polímeros/metabolismo , ARN Bicatenario/metabolismo , Endosomas/metabolismo , Neumonía/terapia , Neumonía/metabolismo
8.
Nano Lett ; 23(5): 1904-1913, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36801829

RESUMEN

Cancer vaccines have received tremendous attention in cancer immunotherapy due to their capability to induce a tumor-specific immune response. However, their effectiveness is compromised by the insufficient spatiotemporal delivery of antigens and adjuvants in the subcellular level to induce a robust CD8+ T cell response. Herein, a cancer nanovaccine G5-pBA/OVA@Mn is prepared through multiple interactions of manganese ions (Mn2+), benzoic acid (BA)-modified fifth generation polyamidoamine (G5-PAMAM) dendrimer, and the model protein antigen ovalbumin (OVA). In the nanovaccine, Mn2+ not only exerts a structural function to assist OVA loading as well as its endosomal escape, but works as an adjuvant of stimulator of interferon genes (STING) pathway. These collaboratively facilitate the orchestrated codelivery of OVA antigen and Mn2+ into cell cytoplasm. Vaccination with G5-pBA/OVA@Mn not only shows a prophylactic effect, but also significantly inhibits growth against B16-OVA tumors, indicating its great potential for cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Humanos , Animales , Ratones , Manganeso , Antígenos , Adyuvantes Inmunológicos/uso terapéutico , Neoplasias/terapia , Inmunoterapia , Ratones Endogámicos C57BL , Nanopartículas/química , Células Dendríticas
9.
Ultrason Sonochem ; 92: 106262, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36512940

RESUMEN

Cancer gene therapy by small-interfering RNAs (siRNAs) holds great promise but is impeded by a low cytoplasmic delivery efficiency. The past two decades have witnessed many efforts that are dedicated to discover biomaterials in order to increase cellular uptake efficiency of siRNAs. However, less attention has been paid to the lysosomal trapping dilemma that greatly restricts gene silencing outcomes. Herein, to address this challenge, we developed a sono-controllable strategy for ultrasound-promoted cytosolic siRNA delivery. A hybrid nanoassembly (HNA) was prepared via electrostatic self-assembly of a siRNA and a nona-arginine modified with protoporphyrin IX that is a sonosensitizer. After cellular uptake and exposure to sono-irradiation, HNA generated singlet oxygen to facilitate the lysosomal escape of siRNA to knock down anti-apoptotic Bcl-2 in the cytoplasm. We showed that the colocalization ratios between siRNA and the lysosome decreased from 91 % to 33 % post sono-irradiation; meanwhile, the gene silencing efficacy increased from 46 % to 68 % at 300 nM of HNA. Furthermore, sonodynamic therapy was achieved by the sonosensitizer under ultrasound irradiation, which combined gene therapy to eradicate cancer cells, resulting in a cell death rate of 82 %. This study thus presents a novel ultrasonic approach for effective cytoplasmic delivery of siRNAs and combinational sono-gene therapy of cancer.


Asunto(s)
Silenciador del Gen , Neoplasias , ARN Interferente Pequeño/genética , Neoplasias/genética , Neoplasias/terapia
10.
Nano Lett ; 22(24): 9805-9814, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36520534

RESUMEN

The light-induced force and convection can be enhanced by the collective effect of electrons (superradiance and red shift) in high-density metallic nanoparticles, leading to macroscopic assembly of target molecules. We here demonstrate application of the light-induced assembly for drug delivery system with enhancement of cell membrane accumulation and penetration of biofunctional molecules including cell-penetrating peptides (CPPs) with superradiance-mediated photothermal convection. For induction of photothermal assembly around targeted living cells in cell culture medium, infrared continuous-wave laser light was focused onto high-density gold-particle-bound glass bottom dishes exhibiting plasmonic superradiance or thin gold-film-coated glass bottom dishes. In this system, the biofunctional molecules can be concentrated around the targeted living cells and internalized into them only by 100 s laser irradiation. Using this simple approach, we successfully achieved enhanced cytosolic release of the CPPs and apoptosis induction using a pro-apoptotic domain with a very low peptide concentration (nM level) by light-induced condensation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas del Metal , Línea Celular Tumoral , Luz , Oro/química
11.
Cancers (Basel) ; 14(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35681615

RESUMEN

Extracellular vesicles (EVs) are cell-derived lipid membrane capsules that can deliver functional molecules, such as nucleic acids, to target cells. Currently, the application of EVs is limited because of the difficulty of loading cargo into EVs. We constructed hybrid EVs by the fusion of liposomes and insect cell-derived EVs expressing recombinant programmed cell death 1 (PD-1) protein and baculoviral fusogenic glycoprotein gp64, and evaluated delivery of the model cargo molecule, Texas Red-labeled dextran (TR-Dex), into the cytosol. When PD-1 hybrid EVs were added to HeLa cells, the intracellular uptake of the hybrid EVs was increased compared with hybrid EVs without PD-1. After cellular uptake, the PD-1 hybrid EVs were shown to be localized to late endosomes or lysosomes. The results of fluorescence resonance energy transfer (FRET) indicated that membrane fusion between the hybrid EVs and organelles had occurred in the acidic environment of the organelles. When TR-Dex-loaded liposomes were fused with the PD-1 EVs, confocal laser scanning microscopy indicated that TR-Dex was distributed throughout the cells, which suggested that endosomal escape of TR-Dex, through membrane fusion between the hybrid EVs and acidic organelles, had occurred. These engineered PD-1 hybrid EVs have potential as delivery carriers for biopharmaceuticals.

12.
Mol Cancer ; 21(1): 102, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459256

RESUMEN

BACKGROUND: Redirecting pre-existing virus-specific cytotoxic CD8+ T lymphocytes (CTLs) to tumors by simulating a viral infection of the tumor cells has great potential for cancer immunotherapy. However, this strategy is limited by lack of amenable method for viral antigen delivery into the cytosol of target tumors. Here, we addressed the limit by developing a CD8+ T cell epitope-delivering antibody, termed a TEDbody, which was engineered to deliver a viral MHC-I epitope peptide into the cytosol of target tumor cells by fusion with a tumor-specific cytosol-penetrating antibody. METHODS: To direct human cytomegalovirus (CMV)-specific CTLs against tumors, we designed a series of TEDbodies carrying various CMV pp65 antigen-derived peptides. CMV-specific CTLs from blood of CMV-seropositive healthy donors were expanded for use in in vitro and in vivo experiments. Comprehensive cellular assays were performed to determine the presentation mechanism of TEDbody-mediated CMV peptide-MHC-I complex (CMV-pMHCI) on the surface of target tumor cells and the recognition and lysis by CMV-specific CTLs. In vivo CMV-pMHCI presentation and antitumor efficacy of TEDbody were evaluated in immunodeficient mice bearing human tumors. RESULTS: TEDbody delivered the fused epitope peptides into target tumor cells to be intracellularly processed and surface displayed in the form of CMV-pMHCI, leading to disguise target tumor cells as virally infected cells for recognition and lysis by CMV-specific CTLs. When systemically injected into tumor-bearing immunodeficient mice, TEDbody efficiently marked tumor cells with CMV-pMHCI to augment the proliferation and cytotoxic property of tumor-infiltrated CMV-specific CTLs, resulting in significant inhibition of the in vivo tumor growth by redirecting adoptively transferred CMV-specific CTLs. Further, combination of TEDbody with anti-OX40 agonistic antibody substantially enhanced the in vivo antitumor activity. CONCLUSION: Our study offers an effective technology for MHC-I antigen cytosolic delivery. TEDbody may thus have utility as a therapeutic cancer vaccine to redirect pre-existing anti-viral CTLs arising from previously exposed viral infections to attack tumors.


Asunto(s)
Infecciones por Citomegalovirus , Neoplasias , Animales , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus/terapia , Citosol , Epítopos , Humanos , Inmunoterapia/métodos , Ratones , Péptidos , Linfocitos T Citotóxicos
13.
Pharm Res ; 39(6): 1197-1204, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35297498

RESUMEN

PURPOSE: Cytosolic delivery of proteins accesses intracellular targets for chemotherapy and immunomodulation. Current delivery systems utilize inefficient endosomal pathways of uptake and escape that lead to degradation of delivered cargo. Cationic poly(oxanorbornene)imide (PONI) polymers enable highly efficient cytosolic delivery of co-engineered proteins, but aggregation and denaturation in solution limits shelf life. In the present study we evaluate polymer-protein nanocomposite vehicles as candidates for lyophilization and point-of-care resuspension to provide a transferrable technology for cytosolic protein delivery. METHODS: Self-assembled nanocomposites of engineered poly(glutamate)-tagged (E-tagged) proteins and guanidinium-functionalized PONI homopolymers were generated, lyophilized, and stored for 2 weeks. After reconstitution and delivery, cytosolic access of E-tagged GFP cargo (GFPE15) was assessed through diffuse cytosolic and nuclear fluorescence, and cell killing with chemotherapeutic enzyme Granzyme A (GrAE10). Efficiency was quantified between freshly prepared and lyophilized samples. RESULTS: Reconstituted nanocomposites retained key structural features of freshly prepared assemblies, with minimal loss of material. Cytosolic delivery (> 80% efficiency of freshly prepared nanocomposites) of GFPE15 was validated in several cell lines, with intracellular access validated and quantified through diffusion into the nucleus. Delivery of GrAE10 elicited significant tumorigenic cell death. Intracellular access of cytotoxic protein was validated through cell viability. CONCLUSION: Reconstituted nanocomposites achieved efficient cytosolic delivery of protein cargo and demonstrated therapeutic applicability with delivery of GrAE10. Overall, this strategy represents a versatile and highly translatable method for cytosolic delivery of proteins.


Asunto(s)
Polímeros , Proteínas , Citosol/metabolismo , Endosomas/metabolismo , Liofilización , Polímeros/química , Proteínas/química
14.
Pharm Res ; 39(6): 1181-1195, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35229237

RESUMEN

While delivery of chemotherapeutics to cancer cells by nanomedicines can improve therapeutic outcomes, many fail due to the low drug loading (DL), poor cellular uptake and endosomal entrapment. This study investigated the potential to overcome these limitations using pH-sensitive liposomes (PSL) empowered by the use of calcium acetate. An acidic dinitrobenzamide mustard prodrug SN25860 was used as a model drug, with non pH-sensitive liposomes (NPSL) as a reference. Calcium acetate as a remote loading agent allowed to engineer PSL- and NPSL-SN25860 with DL of > 31.1% (w/w). The IC50 of PSL-SN25860 was 21- and 141-fold lower than NPSL and free drug, respectively. At 48 h following injection of PSL-SN25860, NPSL-SN25860 and the free drug, drug concentrations in EMT6-nfsB murine breast tumors were 56.3 µg/g, 6.76 µg/g and undetectable (< 0.015 µg/g), respectively (n = 3). Meanwhile, the ex vivo tumor clonogenic assay showed 9.1%, 19.4% and 42.7% cell survival in the respective tumors. Live-cell imaging and co-localization analysis suggested endosomal escape was accomplished by destabilization of PSL followed by release of Ca2+ in endosomes allowing induction of a proton sponge effect. Subsequent endosomal rupture was observed approximately 30 min following endocytosis of PSL containing Ca2+. Additionally, calcium in liposomes promoted internalization of both PSL and NPSL. Taken together, this study demonstrated multifaceted functions of calcium acetate in promoting drug loading into liposomes, cellular uptake, and endosomal escape of PSL for efficient cytoplasmic drug delivery. The results shed light on designing nano-platforms for cytoplasmic delivery of various therapeutics.


Asunto(s)
Liposomas , Neoplasias , Animales , Calcio , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Endosomas , Concentración de Iones de Hidrógeno , Liposomas/farmacología , Ratones , Protones
15.
ACS Nano ; 15(5): 8267-8282, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33915044

RESUMEN

Cytosolic delivery of small interfering RNA (siRNA) remains challenging, and a profound understanding of the cellular uptake and intracellular processing of siRNA delivery systems could greatly improve the development of siRNA-based therapeutics. Here, we show that caveolae-mediated endocytosis (CvME) accounts for the robust siRNA delivery of mannose-modified trimethyl chitosan-cysteine/tripolyphosphate nanoparticles (MTC/TPP NPs) to macrophages by circumventing lysosomes. We show that the Golgi complex and ER are key organelles required for the efficient delivery of siRNA to macrophages in which the siRNA accumulation positively correlates with its silencing efficiency (r = 0.94). We also identify syntaxin6 and Niemann-Pick type C1 (NPC1) as indispensable regulators for MTC/TPP NPs-delivered siRNA into macrophages both in vitro and in vivo. Syntaxin6 and NPC1 knockout substantially decrease the cellular uptake and gene silencing of the siRNA delivered in MTC/TPP NPs in macrophages, which result in poor therapeutic outcomes for mice bearing acute hepatic injury. Our results suggest that highly efficient siRNA delivery can be achieved via CvME, which would give ideas for designing optimal delivery vectors to facilitate the clinical translation of siRNA drugs.


Asunto(s)
Caveolas , Nanopartículas , Animales , Endocitosis , Macrófagos/metabolismo , Ratones , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Colloids Surf B Biointerfaces ; 203: 111760, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33872827

RESUMEN

The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/uso terapéutico , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Distribución Tisular
17.
Small ; 17(17): e2006970, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33719177

RESUMEN

As a stimulator of interferon gene (STING), cyclic dinucleotide activates a broad cellular immune response for anti-cancer immunotherapy (CIT). However, the inherent of instability of 2' 3'-cyclic-GMP-AMP (cGAMP) with poor cellular targeting, rapid clearance, and inefficient transport to the cytoplasm seriously hinders cGAMP potency. Here, a thiolated and Mn2+ coordinated cyclic dinucleotide nanovaccine (termed as Mn-cGAMP NVs) to enable direct cytosolic co-delivery of cGAMP and Mn2+ to potentiate the antitumor immune response is presented. In the NVs, the fixation cGAMP with Mn2+ ions not only improve its stability, but also potentiate the activation of STING. Meanwhile, the presence of polysulfides on the NVs surface allowed direct cytosolic delivery while avoiding degradation. In this way, the production of cytokines for activating T cells immunity is greatly elevated, which in turn suppressed the primary and distal tumors growth through long-term immune memory and led to long-term survival of poorly immunogenic B16F10 melanoma mice. Moreover, by further combining with anti-PD-L1 monoclonal antibody, synergistic T cells antitumor immune response is elicited. This work offers a promising strategy to enhance the potency of cGAMP, holding a considerable potential for CIT applications.


Asunto(s)
Proteínas de la Membrana , Nucleótidos Cíclicos , Animales , Citosol , Inmunoterapia , Ratones
18.
Adv Sci (Weinh) ; 8(6): 2003504, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33747739

RESUMEN

Although tumor-specific neoantigen-based cancer vaccines hold tremendous potential, it still faces low cross-presentation associated with severe degradation via endocytosis pathway. Herein, a thiolated nano-vaccine allowing direct cytosolic delivery of neoantigen and Toll like receptor 9 agonist CpG-ODN is developed. This approach is capable of bypassing the endo-/lysosome degradation, increasing uptake and local concentration of neoantigen and CpG-ODN to activate antigen-presenting cells, significantly strengthening the anti-cancer T-cell immunity. In vivo immunization with thiolated nano-vaccine enhanced the lymph organ homing and promoted the antigen presentation on dendritic cells, effectively inhibited tumor growth, and significantly prolonged the survival of H22-bearing mice. Strikingly, further combination of the thiolated nano-vaccine with anti-programmed cell death protein-1 antibody (αPD-1) could efficiently reverse immunosuppression and enhance response rate of tumors, which led to enhanced tumor elimination, complete prevention of tumor re-challenge, and long-term survival above 150 d. Collectively, a versatile methodology to design cancer vaccines for strengthening anti-cancer T-cell immunity in solid tumors is presented, which could be further remarkably enhanced by combining with immune checkpoint inhibitors.

19.
Pharmaceutics ; 13(2)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578893

RESUMEN

Achieving intracellular delivery of protein therapeutics within cells remains a significant challenge. Although custom formulations are available for some protein therapeutics, the development of non-toxic delivery systems that can incorporate a variety of active protein cargo and maintain their stability, is a topic of great relevance. This study utilized ionic polyphosphazenes (PZ) that can assemble into supramolecular complexes through non-covalent interactions with different types of protein cargo. We tested a PEGylated graft copolymer (PZ-PEG) and a pyrrolidone containing linear derivative (PZ-PYR) for their ability to intracellularly deliver FITC-avidin, a model protein. In endothelial cells, PZ-PYR/protein exhibited both faster internalization and higher uptake levels than PZ-PEG/protein, while in cancer cells both polymers achieved similar uptake levels over time, although the internalization rate was slower for PZ-PYR/protein. Uptake was mediated by endocytosis through multiple mechanisms, PZ-PEG/avidin colocalized more profusely with endo-lysosomes, and PZ-PYR/avidin achieved greater cytosolic delivery. Consequently, a PZ-PYR-delivered anti-F-actin antibody was able to bind to cytosolic actin filaments without needing cell permeabilization. Similarly, a cell-impermeable Bax-BH3 peptide known to induce apoptosis, decreased cell viability when complexed with PZ-PYR, demonstrating endo-lysosomal escape. These biodegradable PZs were non-toxic to cells and represent a promising platform for drug delivery of protein therapeutics.

20.
Chemistry ; 27(14): 4670-4675, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33368712

RESUMEN

Cytosolic protein delivery remains elusive. The inability of most proteins to cross the cellular membrane is a huge hurdle. Here we explore the unique photothermal properties of gold nanorods (AuNRs) to trigger cytosolic delivery of proteins. Both partners, protein and AuNRs, are modified with a protease-resistant cell-penetrating peptide with nuclear targeting properties to induce internalization. Once internalized, spatiotemporal control of protein release is achieved by near-infrared laser irradiation in the safe second biological window. Importantly, catalytic amounts of AuNRs are sufficient to trigger cytosolic protein delivery. To the best of our knowledge, this is the first time that AuNRs with their maximum of absorption in the second biological window are used to deliver proteins into the intracellular space. This strategy represents a powerful tool for the cytosolic delivery of virtually any class of protein.


Asunto(s)
Nanopartículas del Metal , Nanotubos , Línea Celular Tumoral , Oro , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA