Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Cancer Radiother ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39307605

RESUMEN

PURPOSE: Since 2004, in the frame of the care pathway, our Research Unit has replied to the demand of expertise of radiation oncologists about the individual radiosensitivity of some of their patients. This procedure, called COPERNIC, is based on a skin biopsy and the radiation-induced nucleoshuttling of the ATM protein (the RIANS model), a major actor of DNA break repair and signaling. In 2016, with the first 117COPERNIC fibroblast lines, we obtained a significant correlation between the maximum number of the nuclear ATM foci, pATMmax, and the CTCAE severity grade of the post-radiotherapy tissue reactions. In this study, we propose to verify the validity of our previous findings with a new COPERNIC data subset obtained in the 2014-2024 period. MATERIALS AND METHODS: We applied a standard immunofluorescence technique to quiescent COPERNIC fibroblasts to assess, after 2Gy, the level of micronuclei, γH2AX and pATM foci. The 117 COPERNIC data published in 2016 were considered as the reference data subset. A new COPERNIC data subset composed of 133fibroblast cell lines was considered as the validating data subset. RESULTS: Our data showed that spontaneous or residual micronuclei levels, and residual γH2AX foci levels cannot predict CTCAE grades. Conversely, the linear formula linking the maximal number of pATM foci and the corresponding CTCAE grade and obtained in 2016 from the reference data subset fitted well the validating data. CONCLUSIONS: The maximal number of pATM foci appears to be one of the most reliable biomarkers for predicting post-radiotherapy radiotoxicity.

2.
Cancers (Basel) ; 16(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39123453

RESUMEN

Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.

3.
DNA Repair (Amst) ; 141: 103730, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39018963

RESUMEN

While that ROS causes DNA damage is well documented, there has been limited investigation into whether DNA damages and their repair processes can conversely induce oxidative stress. By generating a site-specific DNA double strand break (DSB) via I-SceI endonuclease expression in S. cerevisiae without damaging other cellular components, this study demonstrated that DNA repair does trigger oxidative stress. Deleting genes participating in the initiation of the resection step of homologous recombination (HR), like the MRX complex, resulted in stimulation of ROS. In contrast, deleting genes acting downstream of HR resection suppressed ROS levels. Additionally, blocking non-homologous end joining (NHEJ) also suppressed ROS. Further analysis identified Rad53 as a key player that relays DNA damage signals to alter redox metabolism in an HR-specific manner. These results suggest both HR and NHEJ can drive metabolism changes and oxidative stress, with NHEJ playing a more prominent role in ROS stimulation. Further analysis revealed a correlation between DSB-induced ROS increase and enhanced activity of NADPH oxidase Yno1 and various antioxidant enzymes. Deleting the antioxidant gene SOD1 induced synthetic lethality in HR-deficient mutants like mre11Δ and rad51Δ upon DSB induction. These findings uncover a significant interplay between DNA repair mechanisms and cellular metabolism, providing insights into understanding the side effects of genotoxic therapies and potentially aiding development of more effective cancer treatment strategies.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Estrés Oxidativo , Especies Reactivas de Oxígeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especies Reactivas de Oxígeno/metabolismo , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Reparación del ADN por Recombinación , Reparación del ADN , Recombinación Homóloga
4.
Phys Med ; 124: 103422, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981169

RESUMEN

PURPOSE: Interdisciplinary scientific communities have shown large interest to achieve a mechanistic description of radiation-induced biological damage, aiming to predict biological results produced by different radiation quality exposures. Monte Carlo track-structure simulations are suitable and reliable for the study of early DNA damage induction used as input for assessing DNA damage. This study presents the most recent improvements of a Geant4-DNA simulation tool named "dsbandrepair". METHODS: "dsbandrepair" is a Monte Carlo simulation tool based on a previous code (FullSim) that estimates the induction of early DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). It uses DNA geometries generated by the DNAFabric computational tool for simulating the induction of early single-strand breaks (SSBs) and double-strand breaks (DSBs). Moreover, the new tool includes some published radiobiological models for survival fraction and un-rejoined DSB. Its application for a human fibroblast cell and human umbilical vein endothelial cell containing both heterochromatin and euchromatin was conducted. In addition, this new version offers the possibility of using the new IRT-syn method for computing the chemical stage. RESULTS: The direct and indirect strand breaks, SSBs, DSBs, and damage complexity obtained in this work are equivalent to those obtained with the previously published simulation tool when using the same configuration in the physical and chemical stages. Simulation results on survival fraction and un-rejoined DSB are in reasonable agreement with experimental data. CONCLUSIONS: "dsbandrepair" is a tool for simulating DNA damage and repair, benchmarked against experimental data. It has been released as an advanced example in Geant4.11.2.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Método de Montecarlo , Humanos , Reparación del ADN/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN , ADN/efectos de la radiación , Simulación por Computador , Células Endoteliales de la Vena Umbilical Humana , Roturas del ADN de Cadena Simple/efectos de la radiación , Programas Informáticos
5.
Chem Biol Interact ; 399: 111149, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39032852

RESUMEN

Rhabdomyosarcoma (RMS) represents one of the most lethal soft-tissue sarcomas in children. The toxic trace element arsenic has been reported to function as a radiosensitizer in sarcomas. To investigate the role of arsenic sulfide (As4S4) in enhancing radiation sensitization in RMS, this study was conducted to elucidate its underlying mechanism in radiotherapy. The combination of As4S4 and radiotherapy showed significant inhibition in RMS cells, as demonstrated by the cell counting kit-8 (CCK-8) assay and flow cytometry. Subsequently, we demonstrated for the first time that As4S4, as well as the knockdown of NFATc3 led to double-strand break (DSB) through increased expression of RAG1. In vivo experiment confirmed that co-treatment efficiently inhibited RMS growth. Furthermore, survival analysis of a clinical cohort consisting of 59 patients revealed a correlation between NFATc3 and RAG1 expression and overall survival (OS). Cox regression analysis also confirmed the independent prognostic significance of NFATc3 and RAG1.Taken together, As4S4 enhances radiosensitivity in RMS via activating NFATc3-RAG1 mediated DSB. NFATc3 and RAG1 are potential therapeutic targets. As4S4 will hopefully serve as a prospective radio-sensitizing agent for RMS.


Asunto(s)
Arsenicales , Roturas del ADN de Doble Cadena , Factores de Transcripción NFATC , Tolerancia a Radiación , Rabdomiosarcoma , Sulfuros , Humanos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Sulfuros/farmacología , Sulfuros/uso terapéutico , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/radioterapia , Rabdomiosarcoma/patología , Rabdomiosarcoma/genética , Línea Celular Tumoral , Masculino , Femenino , Arsenicales/farmacología , Arsenicales/uso terapéutico , Animales , Tolerancia a Radiación/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Ratones , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones Desnudos , Niño , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Ratones Endogámicos BALB C
6.
Biomed Phys Eng Express ; 10(4)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38870909

RESUMEN

Background. Radiation-induced DNA damages such as Single Strand Break (SSB), Double Strand Break (DSB) and Complex DSB (cDSB) are critical aspects of radiobiology with implications in radiotherapy and radiation protection applications.Materials and Methods. This study presents a thorough investigation into the effects of protons (0.1-100 MeV/u), helium ions (0.13-100 MeV/u) and carbon ions (0.5-480 MeV/u) on DNA of human fibroblast cells using Geant4-DNA track structure code coupled with DBSCAN algorithm and Monte Carlo Damage Simulations (MCDS) code. Geant4-DNA-based simulations consider 1µm × 1µm × 0.5µm water box as the target to calculate energy deposition on event-by-event basis and the three-dimensional coordinates of the interaction location, and then DBSCAN algorithm is used to calculate yields of SSB, DSB and cDSB in human fibroblast cell. The study investigated the influence of Linear Energy Transfer (LET) of protons, helium ions and carbon ions on the yields of DNA damages. Influence of cellular oxygenation on DNA damage patterns is investigated using MCDS code.Results. The study shows that DSB and SSB yields are influenced by the LET of the particles, with distinct trends observed for different particles. The cellular oxygenation is a key factor, with anoxic cells exhibiting reduced SSB and DSB yields, underscoring the intricate relationship between cellular oxygen levels and DNA damage. The study introduced DSB/SSB ratio as an informative metric for evaluating the severity of radiation-induced DNA damage, particularly in higher LET regions.Conclusions. The study highlights the importance of considering particle type, LET, and cellular oxygenation in assessing the biological effects of ionizing radiation.


Asunto(s)
Algoritmos , Carbono , Daño del ADN , ADN , Fibroblastos , Helio , Transferencia Lineal de Energía , Método de Montecarlo , Protones , Humanos , Fibroblastos/efectos de la radiación , Fibroblastos/metabolismo , Carbono/química , Iones , Roturas del ADN de Doble Cadena/efectos de la radiación , Simulación por Computador , Roturas del ADN de Cadena Simple/efectos de la radiación
7.
DNA Repair (Amst) ; 141: 103714, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38943827

RESUMEN

The Mediator complex is an essential coregulator of RNA polymerase II transcription. More recent developments suggest Mediator functions as a link between transcription regulation, genome organisation and DNA repair mechanisms including nucleotide excision repair, base excision repair, and homologous recombination. Dysfunctions of these processes are frequently associated with human pathologies, and growing evidence shows Mediator involvement in cancers, neurological, metabolic and infectious diseases. The detailed deciphering of molecular mechanisms of Mediator functions, using interdisciplinary approaches in different biological models and considering all functions of this complex, will contribute to our understanding of relevant human diseases.


Asunto(s)
Reparación del ADN , Complejo Mediador , Transcripción Genética , Humanos , Complejo Mediador/metabolismo , Complejo Mediador/genética , Neoplasias/genética , Neoplasias/metabolismo , Regulación de la Expresión Génica , ARN Polimerasa II/metabolismo , Animales
8.
Front Oncol ; 14: 1380633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807759

RESUMEN

Background: Ataxia telangiectasia-mutated (ATM) kinase is a central regulator of the DNA damage response (DDR) signaling pathway, and its function is critical for the maintenance of genomic stability in cells that coordinate a network of cellular processes, including DNA replication, DNA repair, and cell cycle progression. ATM is frequently mutated in human cancers, and approximately 3% of lung cancers have biallelic mutations in ATM, i.e., including 3.5% of lung adenocarcinomas (LUAD) and 1.4% of lung squamous cell carcinomas (LUSC). Methods: We investigated the potential of targeting the DDR pathway in lung cancer as a potential therapeutic approach. In this context, we examined whether ATM loss is synthetically lethal with niraparib monotherapy. This exploration involved the use of hATM knockout (KO) isogenic cell lines containing hATM homozygous (-/-) and heterozygous (+/-) generated via CRISPR/Cas9 gene knockout technology in DLD-1, a human colorectal adenocarcinoma cell line. Subsequently, we extended our investigation to non-small cell lung cancer (NSCLC) patient derived xenograft (PDX) models for further validation of poly ADP-ribose polymerase inhibitor (PARPi) synthetic lethality in ATM mutant NSCLC models. Results: Here, we demonstared that biallelic hATM deletion (-/-) in DLD-1 impairs homologous recombination (HR) repair function and sensitizes cells to the PARPi, niraparib. Niraparib also caused significant tumor regression in one-third of the NSCLC PDX models harboring deleterious biallelic ATM mutations. Loss of hATM (-/-) was concomitantly associated with low BRCA1 and BRCA2 protein expression in both the hATM (-/-) DLD-1 cell line and PARPi-sensitive ATM mutant NSCLC PDX models, suggesting a downstream effect on the impairment of HR-mediated DNA checkpoint signaling. Further analysis revealed that loss of ATM led to inhibition of phosphorylation of MRN (Mre11-Rad50-NBS1) complex proteins, which are required for ATM-mediated downstream phosphorylation of p53, BRCA1, and CHK2. Conclusions: Taken together, our findings highlight that the synthetic lethality of niraparib in ATM-deficient tumors can be regulated through a subsequent effect on the modulation of BRCA1/2 expression and its effect on HR function.

9.
Genetics ; 227(3)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38691577

RESUMEN

Although gene conversion (GC) in Saccharomyces cerevisiae is the most error-free way to repair double-strand breaks (DSBs), the mutation rate during homologous recombination is 1,000 times greater than during replication. Many mutations involve dissociating a partially copied strand from its repair template and re-aligning with the same or another template, leading to -1 frameshifts in homonucleotide runs, quasipalindrome (QP)-associated mutations and microhomology-mediated interchromosomal template switches. We studied GC induced by HO endonuclease cleavage at MATα, repaired by an HMR::KI-URA3 donor. We inserted into HMR::KI-URA3 an 18-bp inverted repeat where one arm had a 4-bp insertion. Most GCs yield MAT::KI-ura3::QP + 4 (Ura-) outcomes, but template-switching produces Ura+ colonies, losing the 4-bp insertion. If the QP arm without the insertion is first encountered by repair DNA polymerase and is then (mis)used as a template, the palindrome is perfected. When the QP + 4 arm is encountered first, Ura+ derivatives only occur after second-end capture and second-strand synthesis. QP + 4 mutations are suppressed by mismatch repair (MMR) proteins Msh2, Msh3, and Mlh1, but not Msh6. Deleting Rdh54 significantly reduces QP mutations only when events creating Ura+ occur in the context of a D-loop but not during second-strand synthesis. A similar bias is found with a proofreading-defective DNA polymerase mutation (poI3-01). DSB-induced mutations differed in several genetic requirements from spontaneous events. We also created a + 1 frameshift in the donor, expanding a run of 4 Cs to 5 Cs. Again, Ura+ recombinants markedly increased by disabling MMR, suggesting that MMR acts during GC but favors the unbroken, template strand.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación de la Incompatibilidad de ADN , Mutación del Sistema de Lectura , Mutagénesis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Conversión Génica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Homólogo 1 de la Proteína MutL
10.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791135

RESUMEN

Details of excitation and ionization acts hide a description of the biological effects of charged particle traversal through living tissue. Nanodosimetry enables the introduction of novel quantities that characterize and quantify the particle track structure while also serving as a foundation for assessing biological effects based on this quantification. This presents an opportunity to enhance the planning of charged particle radiotherapy by taking into account the ionization detail. This work uses Monte Carlo simulations with Geant4-DNA code for a wide variety of charged particles and their radiation qualities to analyze the distribution of ionization cluster sizes within nanometer-scale volumes, similar to DNA diameter. By correlating these results with biological parameters extracted from the PIDE database for the V79 cell line, a novel parameter R2 based on ionization details is proposed for the evaluation of radiation quality in terms of biological consequences, i.e., radiobiological cross section for inactivation. By incorporating the probability p of sub-lethal damage caused by a single ionization, we address limitations associated with the usually proposed nanodosimetric parameter Fk for characterizing the biological effects of radiation. We show that the new parameter R2 correlates well with radiobiological data and can be used to predict biological outcomes.


Asunto(s)
Supervivencia Celular , Daño del ADN , Método de Montecarlo , Supervivencia Celular/efectos de la radiación , Línea Celular , Simulación por Computador , Humanos , Animales , Bases de Datos Factuales , Radioterapia/métodos
11.
Trends Biochem Sci ; 49(5): 391-400, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490833

RESUMEN

One of the two chromosomal breakage events in recurring translocations in B cell neoplasms is often due to the recombination-activating gene complex (RAG complex) releasing DNA ends before end joining. The other break occurs in a fragile zone of 20-600 bp in a non-antigen receptor gene locus, with a more complex and intriguing set of mechanistic factors underlying such narrow fragile zones. These factors include activation-induced deaminase (AID), which acts only at regions of single-stranded DNA (ssDNA). Recent work leads to a model involving the tethering of AID to the nascent RNA as it emerges from the RNA polymerase. This mechanism may have relevance in class switch recombination (CSR) and somatic hypermutation (SHM), as well as broader relevance for other DNA enzymes.


Asunto(s)
ARN , Translocación Genética , Humanos , ARN/metabolismo , ARN/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Sitios Frágiles del Cromosoma
12.
J Radiat Res ; 65(3): 263-271, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38461549

RESUMEN

Ionizing radiation (IR)-induced double-strand breaks (DSBs) are primarily repaired by non-homologous end joining or homologous recombination (HR) in human cells. DSB repair requires adenosine-5'-triphosphate (ATP) for protein kinase activities in the multiple steps of DSB repair, such as DNA ligation, chromatin remodeling, and DNA damage signaling via protein kinase and ATPase activities. To investigate whether low ATP culture conditions affect the recruitment of repair proteins at DSB sites, IR-induced foci were examined in the presence of ATP synthesis inhibitors. We found that p53 binding protein 1 foci formation was modestly reduced under low ATP conditions after IR, although phosphorylated histone H2AX and mediator of DNA damage checkpoint 1 foci formation were not impaired. Next, we examined the foci formation of breast cancer susceptibility gene I (BRCA1), replication protein A (RPA) and radiation 51 (RAD51), which are HR factors, in G2 phase cells following IR. Interestingly, BRCA1 and RPA foci in the G2 phase were significantly reduced under low ATP conditions compared to that under normal culture conditions. Notably, RAD51 foci were drastically impaired under low ATP conditions. These results suggest that HR does not effectively progress under low ATP conditions; in particular, ATP shortages impair downstream steps in HR, such as RAD51 loading. Taken together, these results suggest that the maintenance of cellular ATP levels is critical for DNA damage response and HR progression after IR.


Asunto(s)
Adenosina Trifosfato , Proteína BRCA1 , Recombinación Homóloga , Recombinasa Rad51 , Radiación Ionizante , Humanos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Recombinación Homóloga/efectos de la radiación , Recombinasa Rad51/metabolismo , Proteína BRCA1/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteína de Replicación A/metabolismo , Línea Celular Tumoral , Espacio Intracelular/metabolismo , Espacio Intracelular/efectos de la radiación , Reparación del ADN , Histonas/metabolismo
13.
Mol Oncol ; 18(9): 2179-2195, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38533616

RESUMEN

The one-carbon metabolism enzyme bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is among the most overexpressed proteins across tumors and is widely recognized as a promising anticancer target. While MTHFD2 is mainly described as a mitochondrial protein, a new nuclear function is emerging. Here, we observe that nuclear MTHFD2 protein levels and association with chromatin increase following ionizing radiation (IR) in an ataxia telangiectasia mutated (ATM)- and DNA-dependent protein kinase (DNA-PK)-dependent manner. Furthermore, repair of IR-induced DNA double-strand breaks (DSBs) is delayed upon MTHFD2 knockdown, suggesting a role for MTHFD2 in DSB repair. In support of this, we observe impaired recruitment of replication protein A (RPA), reduced resection, decreased IR-induced DNA repair protein RAD51 homolog 1 (RAD51) levels and impaired homologous recombination (HR) activity in MTHFD2-depleted cells following IR. In conclusion, we identify a key role for MTHFD2 in HR repair and describe an interdependency between MTHFD2 and HR proficiency that could potentially be exploited for cancer therapy.


Asunto(s)
Aminohidrolasas , Recombinación Homóloga , Metilenotetrahidrofolato Deshidrogenasa (NADP) , Enzimas Multifuncionales , Radiación Ionizante , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Recombinación Homóloga/genética , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Línea Celular Tumoral , Reparación del ADN/genética , Carbono/metabolismo
14.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542327

RESUMEN

DNA damage is induced by both endogenous and exogenous factors. Repair of DNA double-strand break (DSB), a serious damage that threatens genome stability, decreases with senescence. However, the molecular mechanisms underlying the decline in DNA repair capacity during senescence remain unclear. We performed immunofluorescence staining for phosphorylated histone H2AX (γ-H2AX) in normal human fetal lung fibroblasts and human skin fibroblasts of different ages after chronic irradiation (total dose, 1 Gy; dose rate, 1 Gy/day) to investigate the effect of cellular senescence and organismal aging on DSB repair. Accumulation of DSBs was observed with cellular senescence and organismal aging, probably caused by delayed DSB repair. Importantly, the formation of γ-H2AX foci, an early event in DSB repair, is delayed with cellular senescence and organismal aging. These results suggest that the delay in γ-H2AX focus formation might delay the overall DSB repair. Interestingly, immediate γ-H2AX foci formation was suppressed in cells with senescence-associated heterochromatin foci (SAHF). To investigate the relationship between the γ-H2AX focus formation and SAHF, we used LiCl to relax the SAHFs, followed by irradiation. We demonstrated that LiCl rescued the delayed γ-H2AX foci formation associated with cellular senescence. This indicates that SAHF interferes with γ-H2AX focus formation and inhibits DSB repair in radiation-induced DSB. Our results suggest that therapeutic targeting of SAHFs have potential to resolve DSB repair dysfunction associated with cellular senescence.


Asunto(s)
Histonas , Exposición a la Radiación , Humanos , Histonas/metabolismo , Heterocromatina , Reparación del ADN , Daño del ADN
15.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460408

RESUMEN

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Asunto(s)
Toxinas Marinas , Microcistinas , Sirtuinas , Espermatogonias , Animales , Masculino , Ratones , Apoptosis , Proliferación Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN , Toxinas Marinas/metabolismo , Toxinas Marinas/toxicidad , Ratones Endogámicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidad , Semen , Sirtuinas/efectos de los fármacos , Sirtuinas/metabolismo , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo
16.
Biol Trace Elem Res ; 202(11): 5017-5024, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38367174

RESUMEN

DNA double-strand break (DSB) repair genes interact with tumor stemness- and resistance-associated processes in cancer stem cells (CSCs). Therefore, targeting DNA DSB genes in cancer treatment is important for the CSC phenotype. Although the anti-cancer effect of boric acid (BA) has been studied, its effect on DNA DSB is unclear. Moreover, no studies investigate BA's effects on DNA DSB of lung cancer stem cells (LC-SCs). To fill the gap, we aimed to assess the effects of BA on A549 cancer stem cells. CSCs were isolated from human non-small cell lung cancer cells (A549) and characterized by flow cytometry. Different concentrations of BA (at doses ranging from 1 to 100 mM) were applied to cancer stem cells. Cytotoxic activities were determined using the cell viability assay (MTT assay) at 24 and 48 h. Expression levels of DNA DSB genes that BRCA1, BRCA2, RAD51, KU70/80, ATM, and XRCC4 were evaluated by RT-qPCR. Additionally, immunofluorescence staining analysis was exploited for caspase-3 and E-cadherin. ATM expression increased significantly (p < 0.001). No significant change was observed in the expression of other genes. Moreover, BA up-regulated caspase-3 and E-cadherin expression. Consequently, we can say that BA affects DNA DSB and the apoptotic abilities of LC-SCs.


Asunto(s)
Ácidos Bóricos , Roturas del ADN de Doble Cadena , Reparación del ADN , Células Madre Neoplásicas , Humanos , Ácidos Bóricos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células A549 , Reparación del ADN/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Relación Dosis-Respuesta a Droga , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Apoptosis/efectos de los fármacos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo
17.
Cancers (Basel) ; 16(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38339346

RESUMEN

R-loops (RNA-DNA hybrids with displaced single-stranded DNA) have emerged as a potent source of DNA damage and genomic instability. The termination of defective RNA polymerase II (RNAPII) is one of the major sources of R-loop formation. 5'-3'-exoribonuclease 2 (XRN2) promotes genome-wide efficient RNAPII termination, and XRN2-deficient cells exhibit increased DNA damage emanating from elevated R-loops. Recently, we showed that DNA damage instigated by XRN2 depletion in human fibroblast cells resulted in enhanced poly(ADP-ribose) polymerase 1 (PARP1) activity. Additionally, we established a synthetic lethal relationship between XRN2 and PARP1. However, the underlying cellular stress response promoting this synthetic lethality remains elusive. Here, we delineate the molecular consequences leading to the synthetic lethality of XRN2-deficient cancer cells induced by PARP inhibition. We found that XRN2-deficient lung and breast cancer cells display sensitivity to two clinically relevant PARP inhibitors, Rucaparib and Olaparib. At a mechanistic level, PARP inhibition combined with XRN2 deficiency exacerbates R-loop and DNA double-strand break formation in cancer cells. Consistent with our previous findings using several different siRNAs, we also show that XRN2 deficiency in cancer cells hyperactivates PARP1. Furthermore, we observed enhanced replication stress in XRN2-deficient cancer cells treated with PARP inhibitors. Finally, the enhanced stress response instigated by compromised PARP1 catalytic function in XRN2-deficient cells activates caspase-3 to initiate cell death. Collectively, these findings provide mechanistic insights into the sensitivity of XRN2-deficient cancer cells to PARP inhibition and strengthen the underlying translational implications for targeted therapy.

18.
Reprod Health ; 21(1): 18, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310235

RESUMEN

BACKGROUND: Male infertility is a global health issue. The more causative genes related to human male infertility should be further explored. The essential role of Zcwpw1 in male mouse fertility has been established and the role of ZCWPW1 in human reproduction needs further investigation to verify. METHODS: An infertile man with oligoasthenoteratozoospermia phenotype and his parents were recruited from West China Second University Hospital, Sichuan University. A total of 200 healthy Han Chinese volunteers without any evidence of infertility were recruited as normal controls, while an additional 150 infertile individuals were included to assess the prevalence of ZCWPW1 variants in a sporadic male sterile population. The causative gene variant was identified by Whole-exome sequencing and Sanger sequencing. The phenotype of the oligoasthenoteratozoospermia was determined by Papanicolaou staining, immunofluorescence staining and electron microscope. In-vitro experiments, western blot and in-silicon analysis were applied to assess the pathogenicity of the identified variant. Additionally, we examined the influence of the variant on the DNA fragmentation and DNA repair capability by Sperm Chromatin Dispersion and Neutral Comet Assay. RESULTS: The proband exhibits a phenotype of oligoasthenoteratozoospermia, his spermatozoa show head defects by semen examination, Papanicolaou staining and electron microscope assays. Whole-exome sequencing and Sanger sequencing found the proband carries a homozygous ZCWPW1 variant (c.1064C > T, p. P355L). Immunofluorescence analysis shows a significant decrease in ZCWPW1 expression in the proband's sperm. By exogenous expression with ZCWPW1 mutant plasmid in vitro, the obvious declined expression of ZCWPW1 with the mutation is validated in HEK293T. After being treated by hydroxyurea, MUT-ZCWPW1 transfected cells and empty vector transfected cells have a higher level of γ-H2AX, increased tail DNA and reduced H3K9ac level than WT-ZCWPW1 transfected cells. Furthermore, the Sperm Chromatin Dispersion assay revealed the proband's spermatozoa have high DNA fragmentation. CONCLUSIONS: It is the first report that a novel homozygous missense mutation in ZCWPW1 caused human male infertility with sperm head defects and high DNA fragmentation. This finding enriches the gene variant spectrum and etiology of oligoasthenoteratozoospermia.


Asunto(s)
Infertilidad Masculina , Oligospermia , Humanos , Masculino , Cromatina , Fragmentación del ADN , Células HEK293 , Infertilidad Masculina/genética , Semen , Cabeza del Espermatozoide , Espermatozoides
19.
EMBO Mol Med ; 16(1): 112-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38182795

RESUMEN

The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.


Asunto(s)
Sistemas CRISPR-Cas , Hiperoxaluria Primaria , Humanos , Animales , Ratones , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Edición Génica , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/terapia
20.
Nucleus ; 15(1): 2296243, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38146123

RESUMEN

DNA double-strand break (DSB) is the most dangerous type of DNA damage, which may lead to cell death or oncogenic mutations. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two typical DSB repair mechanisms. Recently, many studies have revealed that liquid-liquid phase separation (LLPS) plays a pivotal role in DSB repair and response. Through LLPS, the crucial biomolecules are quickly recruited to damaged sites with a high concentration to ensure DNA repair is conducted quickly and efficiently, which facilitates DSB repair factors activating downstream proteins or transmitting signals. In addition, the dysregulation of the DSB repair factor's phase separation has been reported to promote the development of a variety of diseases. This review not only provides a comprehensive overview of the emerging roles of LLPS in the repair of DSB but also sheds light on the regulatory patterns of phase separation in relation to the DNA damage response (DDR).


Asunto(s)
Roturas del ADN de Doble Cadena , Separación de Fases , Reparación del ADN , Recombinación Homóloga , ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA