Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
BMC Pregnancy Childbirth ; 24(1): 645, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367340

RESUMEN

BACKGROUND: Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. METHODS: Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. RESULTS: Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. CONCLUSIONS: P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.


Asunto(s)
Colágeno Tipo IV , Decidua , Escherichia coli , Metaloproteinasa 9 de la Matriz , Progesterona , Humanos , Femenino , Progesterona/farmacología , Progesterona/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Embarazo , Decidua/metabolismo , Colágeno Tipo IV/metabolismo , Rotura Prematura de Membranas Fetales/metabolismo , Infecciones por Escherichia coli
2.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090270

RESUMEN

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Asunto(s)
Decidua , Retardo del Crecimiento Fetal , Leptina , Placenta , Transducción de Señal , Animales , Femenino , Ratones , Embarazo , Decidua/metabolismo , Decidua/patología , Dieta Alta en Grasa/efectos adversos , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Leptina/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Obesidad/patología , Placenta/metabolismo , Progesterona/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Factor de Transcripción STAT3/metabolismo , Células del Estroma/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética
3.
Stem Cell Res Ther ; 15(1): 228, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075579

RESUMEN

BACKGROUND: Recurrent spontaneous abortion (RSA) is a challenging condition that affects the health of women both physically and mentally, but its pathogenesis and treatment have yet to be studied in detail. In recent years, Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have been shown to be effective in treating various diseases. Current understanding of RSA treatment using WJ-MSCs is limited, and the exact mechanisms of WJ-MSCs action in RSA remains largely unclear. In this study, we explored the decidual deficiencies in RSA and the therapeutic potential of WJ-MSCs at single-cell resolution. METHODS: Three mouse models were established: a normal pregnancy group, an RSA group, and a WJ-MSC treatment group. Decidual tissue samples were collected for single-cell RNA sequencing (scRNA-seq) and functional verification, including single-cell resolution in situ hybridization on tissues (SCRINSHOT) and immunofluorescence. RESULTS: We generated a single-cell atlas of decidual tissues from normal pregnant, RSA, and WJ-MSC-treated mice and identified 14 cell clusters in the decidua on day 14. Among these cell populations, stromal cells were the most abundant cell clusters in the decidua, and we further identified three novel subclusters (Str_0, Str_1, and Str_2). We also demonstrated that the IL17 and TNF signaling pathways were enriched for upregulated DEGs of stromal cells in RSA mice. Intriguingly, cell-cell communication analysis revealed that Str_1 cell-related gene expression was greatly reduced in the RSA group and rescued in the WJ-MSC treatment group. Notably, the interaction between NK cells and other cells in the RSA group was attenuated, and the expression of Spp1 (identified as an endometrial toleration-related marker) was significantly reduced in the NK cells of the RSA group but could be restored by WJ-MSC treatment. CONCLUSION: Herein, we implemented scRNA-seq to systematically evaluate the cellular heterogeneity and transcriptional regulatory networks associated with RSA and its treatment with WJ-MSCs. These data revealed potential therapeutic targets of WJ-MSCs to remodel the decidual subpopulations in RSA and provided new insights into decidua-derived developmental defects at the maternal-foetal interface.


Asunto(s)
Aborto Habitual , Decidua , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Femenino , Animales , Ratones , Decidua/citología , Decidua/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Embarazo , Trasplante de Células Madre Mesenquimatosas/métodos , Aborto Habitual/terapia , Aborto Habitual/metabolismo , Aborto Habitual/patología , Análisis de la Célula Individual , Humanos , Modelos Animales de Enfermedad , Gelatina de Wharton/citología
4.
Cell Rep ; 43(6): 114246, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38762885

RESUMEN

The decidua plays a crucial role in providing structural and trophic support to the developing conceptus before placentation. Following embryo attachment, embryonic components intimately interact with the decidual tissue. While evidence indicates the participation of embryo-derived factors in crosstalk with the uterus, the extent of their impact on post-implantation decidual development requires further investigation. Here, we utilize transgenic mouse models to selectively eliminate primary trophoblast giant cells (pTGCs), the embryonic cells that interface with maternal tissue at the forefront. pTGC ablation impairs decidualization and compromises decidual interferon response and lipid metabolism. Mechanistically, pTGCs release factors such as interferon kappa (IFNK) to strengthen the decidual interferon response and lipoprotein lipase (LPL) to enhance lipid accumulation within the decidua, thereby promoting decidualization. This study presents genetic and metabolomic evidence reinforcing the proactive role of pTGC-derived factors in mobilizing maternal resources to strengthen decidualization, facilitating the normal progression of early pregnancy.


Asunto(s)
Decidua , Interferones , Metabolismo de los Lípidos , Trofoblastos , Femenino , Animales , Trofoblastos/metabolismo , Decidua/metabolismo , Ratones , Embarazo , Interferones/metabolismo , Endometrio/metabolismo , Transducción de Señal , Ratones Transgénicos
5.
J Mol Endocrinol ; 73(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722222

RESUMEN

In this study, we investigate the effects of miRNA-138-5p and probable G-protein coupled receptor 124 (GPR124)-regulated inflammasome and downstream leukemia inhibitory factor (LIF)-STAT and adhesion molecule signaling in human decidual stromal cells. After informed consent was obtained from women aged 25-38 years undergoing surgical termination of the normal pregnancy and spontaneous miscarriage after 6-9 weeks of gestation, human decidual stromal cells were extracted from the decidual tissue. Extracellular vesicles (EVs) with microRNA (miRNA) between cells have been regarded as critical factors for embryo-maternal interactions on embryo implantation and programming of human pregnancy. MicroRNA-138-5p acts as the transcriptional regulator of GPR124 and the mediator of downstream inflammasome. LIF-regulated STAT activation and expression of integrins might influence embryo implantation. Hence, a better understanding of LIF-STAT and adhesion molecule signaling would elucidate the mechanism of microRNA-138-5p- and GPR124-regulated inflammasome activation on embryo implantation and pregnancy. Our results show that microRNA-138-5p, purified from the EVs of decidual stromal cells, inhibits the expression of GPR124 and the inflammasome, and activates the expression of LIF-STAT and adhesion molecules in human decidual stromal cells. Additionally, the knockdown of GPR124 and NLRP3 through siRNA increases the expression of LIF-STAT and adhesion molecules. The findings of this study help us gain a better understanding the role of EVs, microRNA-138-5p, GPR124, inflammasomes, LIF-STAT, and adhesion molecules in embryo implantation and programming of human pregnancy.


Asunto(s)
Decidua , Implantación del Embrión , Factor Inhibidor de Leucemia , MicroARNs , Transducción de Señal , Células del Estroma , Humanos , Femenino , Factor Inhibidor de Leucemia/metabolismo , Embarazo , Decidua/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Adulto , Células del Estroma/metabolismo , Inflamasomas/metabolismo , Factores de Transcripción STAT/metabolismo , Vesículas Extracelulares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética
6.
J Reprod Immunol ; 164: 104258, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810587

RESUMEN

The pathogenesis of preeclampsia (PE) has not been elucidated, but immune imbalance is known to be one of the main pathogeneses. Dysfunction of decidual macrophages can lead to PE, and the PD-1/PD-L1 signaling pathway is associated with macrophage polarization. However, the relationship between the influence of the PD-1/PD-L1 signaling pathway on macrophage polarization and the onset of PE has not been fully elucidated. In this study, we analyzed the expression of CD68, iNOS, CD206, PD-1 and PD-L1 and the coexpression of CD68+PD-1+ and CD68+PD-L1+ in the decidual tissue of PE patients (n= 18) and healthy pregnant women (n=20). We found that CD68 and iNOS expression was increased in the decidua of PE patients (P < 0.001) and that CD206, PD-1 and PD-L1 expression and CD68+PD-1+ and CD68+PD-L1+ coexpression were decreased (P < 0.001). To assess the influence of the PD-1/PD-L1 signaling pathway on macrophage polarization, we added an anti-PD-1 mAb (pembrolizumab) or an anti-PD-L1 mAb (durvalumab) during THP-1 differentiation into M1 macrophages. Then, we detected the polarization of CD68+CD80+ macrophages and the expression of iNOS. To examine the effect of macrophage polarization on the invasion ability of trophoblast cells, macrophages were cocultured with HTR8/SVneo cells, and the invasion ability of HTR8/SVneo cells was detected via transwell assays. We found that CD68+CD80+ macrophage polarization was enhanced (P<0.05) and that iNOS expression was greater (P<0.01) in the pembrolizumab group. In the durvalumab group, CD68+CD80+ macrophage polarization and iNOS expression were also increased (P<0.05 and P<0.001). Compared with that in the untreated group, the aggressiveness of HTR8/SVneo cells was decreased in both the pembrolizumab group (P < 0.01) and the durvalumab group (P < 0.001). These findings indicate that the PD-1/PD-L1 signaling pathway may play an important role in the pathogenesis of PE by influencing macrophage polarization and reducing the invasion ability of trophoblasts.


Asunto(s)
Antígeno B7-H1 , Decidua , Macrófagos , Preeclampsia , Receptor de Muerte Celular Programada 1 , Transducción de Señal , Humanos , Femenino , Preeclampsia/inmunología , Preeclampsia/patología , Preeclampsia/metabolismo , Embarazo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Decidua/inmunología , Decidua/patología , Decidua/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Transducción de Señal/inmunología , Adulto , Antígenos CD/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Activación de Macrófagos/inmunología , Células THP-1
7.
Front Immunol ; 15: 1364036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566989

RESUMEN

Introduction: Prior to pregnancy, hormonal changes lead to cellular adaptations in the endometrium allowing for embryo implantation. Critical for successful pregnancy establishment, innate immune cells constitute a significant proportion of uterine cells prior to arrival of the embryo and throughout the first trimester in humans and animal models. Abnormal uterine immune cell function during implantation is believed to play a role in multiple adverse pregnancy outcomes. Current work in humans has focused on uterine immune cells present after pregnancy establishment, and limited in vitro models exist to explore unique functions of these cells. Methods: With single-cell RNA-sequencing (scRNAseq), we comprehensively compared the human uterine immune landscape of the endometrium during the window of implantation and the decidua during the first trimester of pregnancy. Results: We uncovered global and cell-type-specific gene signatures for each timepoint. Immune cells in the endometrium prior to implantation expressed genes associated with immune metabolism, division, and activation. In contrast, we observed widespread interferon signaling during the first trimester of pregnancy. We also provide evidence of specific inflammatory pathways enriched in pre- and post-implantation macrophages and natural killer (NK) cells in the uterine lining. Using our novel implantation-on-a-chip (IOC) to model human implantation ex vivo, we demonstrate for the first time that uterine macrophages strongly promote invasion of extravillous trophoblasts (EVTs), a process essential for pregnancy establishment. Pre- and post-implantation uterine macrophages promoted EVT invasion to a similar degree as pre- and post-implantation NK cells on the IOC. Conclusions: This work provides a foundation for further investigation of the individual roles of uterine immune cell subtypes present prior to embryo implantation and during early pregnancy, which will be critical for our understanding of pregnancy complications associated with abnormal trophoblast invasion and placentation.


Asunto(s)
Decidua , Implantación del Embrión , Embarazo , Femenino , Animales , Humanos , Decidua/metabolismo , Útero , Células Asesinas Naturales , Macrófagos
8.
Front Immunol ; 15: 1382424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601161

RESUMEN

During pregnancy, the maternal immune system must allow and support the growth of the developing placenta while maintaining the integrity of the mother's body. The trophoblast's unique HLA signature is a key factor in this physiological process. This study focuses on decidual γδT cell populations and examines their expression of receptors that bind to non-classical HLA molecules, HLA-E and HLA-G. We demonstrate that decidual γδT cell subsets, including Vδ1, Vδ2, and double-negative (DN) Vδ1-/Vδ2- cells express HLA-specific regulatory receptors, such as NKG2C, NKG2A, ILT2, and KIR2DL4, each with varying dominance. Furthermore, decidual γδT cells produce cytokines (G-CSF, FGF2) and cytotoxic mediators (Granulysin, IFN-γ), suggesting functions in placental growth and pathogen defense. However, these processes seem to be controlled by factors other than trophoblast-derived non-classical HLA molecules. These findings indicate that decidual γδT cells have the potential to actively contribute to the maintenance of healthy human pregnancy.


Asunto(s)
Antineoplásicos , Placenta , Embarazo , Humanos , Femenino , Decidua , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Trofoblastos/metabolismo , Citocinas/metabolismo
9.
Front Immunol ; 15: 1353556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571943

RESUMEN

Natural killer (NK) cells, with a unique NK cell receptor phenotype, are abundantly present in the non-pregnant (endometrium) and pregnant (decidua) humanuterine mucosa. It is hypothesized that NK cells in the endometrium are precursors for decidual NK cells present during pregnancy. Microenvironmental changes can alter the phenotype of NK cells, but it is unclear whether decidual NK cell precursors in the endometrium alter their NK cell receptor repertoire under the influence of pregnancy. To examine whether decidual NK cell precursors reveal phenotypic modifications upon pregnancy, we immunophenotyped the NK cell receptor repertoire of both endometrial and early-pregnancy decidual NK cells using flow cytometry. We showed that NK cells in pre-pregnancy endometrium have a different phenotypic composition compared to NK cells in early-pregnancy decidua. The frequency of killer-immunoglobulin-like receptor (KIR expressing NK cells, especially KIR2DS1, KIR2DL2L3S2, and KIR2DL2S2 was significantly lower in decidua, while the frequency of NK cells expressing activating receptors NKG2D, NKp30, NKp46, and CD244 was significantly higher compared to endometrium. Furthermore, co-expression patterns showed a lower frequency of NK cells co-expressing KIR3DL1S1 and KIR2DL2L3S2 in decidua. Our results provide new insights into the adaptations in NK cell receptor repertoire composition that NK cells in the uterine mucosa undergo upon pregnancy.


Asunto(s)
Endometrio , Células Asesinas Naturales , Embarazo , Femenino , Humanos , Receptores de Células Asesinas Naturales , Útero , Membrana Mucosa
10.
Biology (Basel) ; 13(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38534461

RESUMEN

The etiopathogenesis of preeclampsia, a leading hypertensive disorder of pregnancy, has been proposed to involve an abnormal circulating sex hormone profile and misexpression of placental estrogen and progesterone receptors (ER and PR, respectively). However, existing research is vastly confined to third trimester preeclamptic placentas. Consequently, the placental-uterine molecular crosstalk and the dynamic ER and PR expression pattern in the peri-conception period remain overlooked. Herein, our goal was to use the BPH/5 mouse to elucidate pre-pregnancy and early gestation Er and Pr dynamics in a preeclamptic-like uterus. BPH/5 females display low circulating estrogen concentration during proestrus, followed by early gestation hypoestrogenemia, hyperprogesteronemia, and a spontaneous preeclamptic-like phenotype. Preceding pregnancy, the gene encoding Er alpha (Erα, Esr1) is upregulated in the diestrual BPH/5 uterus. At the peak of decidualization, Esr1, Er beta (Erß, Esr2), and Pr isoform B (Pr-B) were upregulated in the BPH/5 maternal-fetal interface. At the protein level, BPH/5 females display higher percentage of decidual cells with nuclear Erα expression, as well as Pr downregulation in the decidua, luminal and glandular epithelium. In conclusion, we provide evidence of disrupted sex hormone signaling in the peri-conception period of preeclamptic-like pregnancies, potentially shedding some light onto the intricate role of sex hormone signaling at unexplored timepoints of human preeclampsia.

11.
Am J Obstet Gynecol ; 230(4): 443.e1-443.e18, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38296740

RESUMEN

BACKGROUND: Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE: This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN: To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS: In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION: Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.


Asunto(s)
Desprendimiento Prematuro de la Placenta , Placenta Accreta , Enfermedades Placentarias , Embarazo , Femenino , Recién Nacido , Humanos , Placenta Accreta/terapia , Células Endoteliales , Placenta/patología , Enfermedades Placentarias/patología , Péptidos y Proteínas de Señalización Intercelular , Decidua/patología , Endotelio/patología
12.
Immunol Invest ; 52(8): 997-1007, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37933581

RESUMEN

OBJECTIVE: To investigate the expression of Siglec10 and CD24 in normal early pregnancy and missed abortion, and their significance in the maternal-fetal interface. METHODS: For our research, we employed Q-PCR and WB techniques to evaluate the traits and expression of Siglec10 and CD24 in the nonpregnant endometrium, as well as in the villus and decidua of women in their 6-10 weeks of normal early pregnancy and those who experienced missed abortion. Additionally, we utilized ELISA to determine the levels of Siglec10 and CD24 in the peripheral blood of pregnancy, missed abortion, and non-pregnant individuals. T-test and ANOVA were used to compare groups. RESULTS: 1. Villous tissues in early pregnancy showed high expression of Siglec10 and CD24, with a significant increase in expression in the missed abortion group (P < 0.01).2. Nonpregnant endometrial tissue showed low expression of Siglec10 and CD24, while early pregnancy decidua showed high expression, with even higher expression in missed abortion (all P < 0.05).3. Serum levels of Siglec10 and CD24 in normal early pregnancy were significantly higher than non-pregnancy (P < 0.01). However, the missed abortion group showed significantly higher levels than normal pregnancy (P < 0.01).4. CD24 expression in serum of missed abortion increases with Siglec10 expression, indicating a significant positive correlation (r = 0.500, P < 0.01). CONCLUSION: Siglec10 and CD24 expression in villus, decidua, and peripheral blood are up-regulated in unexplained missed abortions than those of women with normal pregnancies. This suggests that the levels of serum Siglec10 and CD24 can be used as an effective predictor of missed abortion.


Asunto(s)
Aborto Retenido , Femenino , Humanos , Embarazo , Aborto Retenido/genética , Aborto Retenido/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Decidua/metabolismo , Endometrio/metabolismo
13.
Am J Obstet Gynecol MFM ; 5(12): 101203, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871693

RESUMEN

Pregnancy involves an interplay between maternal and fetal factors affecting changes to maternal anatomy and physiology to support the developing fetus and ensure the well-being of both the mother and offspring. A century of research has provided evidence of the imperative role of the placenta in the development of preeclampsia. Recently, a growing body of evidence has supported the adaptations of the maternal cardiovascular system during normal pregnancy and its maladaptation in preeclampsia. Debate surrounds the roles of the placenta vs the maternal cardiovascular system in the pathophysiology of preeclampsia. We proposed an integrated model of the maternal cardiac-placental-fetal array and the development of preeclampsia, which reconciles the disease phenotypes and their proposed origins, whether placenta-dominant or maternal cardiovascular system-dominant. These phenotypes are sufficiently diverse to define 2 distinct types: preeclampsia Type I and Type II. Type I preeclampsia may present earlier, characterized by placental dysfunction or malperfusion, shallow trophoblast invasion, inadequate spiral artery conversion, profound syncytiotrophoblast stress, elevated soluble fms-like tyrosine kinase-1 levels, reduced placental growth factor levels, high peripheral vascular resistance, and low cardiac output. Type I is more often accompanied by fetal growth restriction, and low placental growth factor levels have a measurable impact on maternal cardiac remodeling and function. Type II preeclampsia typically occurs in the later stages of pregnancy and entails an evolving maternal cardiovascular intolerance to the demands of pregnancy, with a moderately dysfunctional placenta and inadequate blood supply. The soluble fms-like tyrosine kinase-1-placental growth factor ratio may be normal or slightly disturbed, peripheral vascular resistance is low, and cardiac output is high, but these adaptations still fail to meet demand. Emergent placental dysfunction, coupled with an increasing inability to meet demand, more often appears with fetal macrosomia, multiple pregnancies, or prolonged pregnancy. Support for the notion of 2 types of preeclampsia observable on the molecular level is provided by single-cell transcriptomic survey of gene expression patterns across different cell classes. This revealed widespread dysregulation of gene expression across all cell types, and significant imbalance in fms-like tyrosine kinase-1 (FLT1) and placental growth factor, particularly marked in the syncytium of early preeclampsia cases. Classification of preeclampsia into Type I and Type II can inform future research to develop targeted screening, prevention, and treatment approaches.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Preeclampsia/diagnóstico , Preeclampsia/epidemiología , Preeclampsia/etiología , Factor de Crecimiento Placentario/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Trofoblastos
14.
Front Immunol ; 14: 1241068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868964

RESUMEN

Graft versus host disease (GVHD) can occur at any period post allogeneic hematopoietic stem cell transplantation as a common clinical complication contributing to significant morbidity and mortality. Acute GVHD develops in approximately 30-50% of patients receiving transplants from matched related donors. High doses of steroids are used as first-line treatment, but are unsuccessful in around 40% of patients, resulting in the diagnosis of steroid-refractory acute GVHD. Consensus has yet to develop for the management of steroid-refractory acute GVHD, and prognosis at six months has been estimated at around 50%. Thus, it is critical to find effective treatments that increase survival of steroid-refractory acute GVHD. This article describes the currently known characteristics, pathophysiology, and treatments for GVHD, with a special focus on recent advances in cell therapies. In particular, a novel cell therapy using decidua stromal cells (DSCs) was recently shown to have promising results for acute GVHD, with improved effectiveness over previous treatments including mesenchymal stromal cells. At the Karolinska Institute, severe acute GVHD patients treated with placenta-derived DSCs supplemented with either 5% albumin or 10% AB plasma displayed a one-year survival rate of 76% and 47% respectively. Furthermore, patients with steroid-refractory acute GVHD, displayed survival rates of 73% with albumin and 31% with AB plasma-supplemented DSCs, compared to the 20% survival rate in the mesenchymal stromal cell control group. Adverse events and deaths were found to be attributed only to complications of hematopoietic stem cell transplant and GVHD, not to the study intervention. ASC Therapeutics, Inc, in collaboration with the Karolinska Institute, will soon initiate a phase 2 multicenter, open-label study to further assess the efficacy and safety of intravenous DSC treatment in sixty patients with Grade II-IV steroid-refractory acute GVHD. This novel cell therapy represents a promising treatment to combat the poor prognosis that steroid-refractory acute GVHD patients currently face.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Femenino , Humanos , Enfermedad Injerto contra Huésped/terapia , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Esteroides/uso terapéutico , Albúminas/uso terapéutico , Estudios Multicéntricos como Asunto
15.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894950

RESUMEN

Crucial roles in embryo implantation and placentation in humans include the invasion of the maternal decidua by extravillous trophoblasts and the motile behavior of decidual endometrial stromal cells. The effects of the epidermal growth factor (EGF) and GnRH-II in the endometrium take part in early pregnancy. In the present study, we demonstrated the coaction of EGF- and GnRH-II-promoted motility of human decidual endometrial stromal cells, indicating the possible roles of EGF and GnRH-II in embryo implantation and early pregnancy. After obtaining informed consent, we obtained human decidual endometrial stromal cells from decidual tissues from normal pregnancies at 6 to 12 weeks of gestation in healthy women undergoing suction dilation and curettage. Cell motility was evaluated with invasion and migration assays. The mechanisms of EGF and GnRH-II were performed using real-time PCR and immunoblot analysis. The results showed that human decidual tissue and stromal cells expressed the EGF and GnRH-I receptors. GnRH-II-mediated cell motility was enhanced by EGF and was suppressed by the knockdown of the endogenous GnRH-I receptor and EGF receptor with siRNA, revealing that GnRH-II promoted the cell motility of human decidual endometrial stromal cells through the GnRH-I receptor and the activation of Twist and N-cadherin signaling. This new concept regarding the coaction of EGF- and GnRH-promoted cell motility suggests that EGF and GnRH-II potentially affect embryo implantation and the decidual programming of human pregnancy.


Asunto(s)
Cadherinas , Factor de Crecimiento Epidérmico , Femenino , Humanos , Embarazo , Cadherinas/metabolismo , Movimiento Celular , Decidua/metabolismo , Endometrio/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Receptores LHRH/metabolismo , Células del Estroma/metabolismo , Trofoblastos/metabolismo
16.
Redox Biol ; 67: 102885, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776707

RESUMEN

Myeloperoxidase (MPO) is one of the most abundant proteins in neutrophil granules. It catalyzes the production of reactive oxygen species, which are important in inflammation and immune defense. MPO also binds to several proteins, lipids, and DNA to alter their function. MPO is present at the feto-maternal interface during pregnancy, where neutrophils are abundant. In this study, we determined the effect of MPO on JEG-3 human choriocarcinoma cells as a model of extravillous trophoblasts (EVTs) during early pregnancy. We found that MPO was internalized by JEG-3 cells and localized to the cytoplasm and nuclei. MPO internalization and activity enhanced JEG-3 cell migration and invasion, whereas this effect was impaired by pre-treating cells with heparin, to block cellular uptake, and MPO-activity inhibitor 4-ABAH. This study identifies a novel mechanism for the effect of MPO on EVT function during normal pregnancy and suggests a potential role of MPO in abnormal pregnancies.


Asunto(s)
Coriocarcinoma , Trofoblastos , Femenino , Humanos , Embarazo , Línea Celular Tumoral , Coriocarcinoma/metabolismo , Coriocarcinoma/patología , Peroxidasa/metabolismo , Proteínas/metabolismo , Trofoblastos/metabolismo
17.
Biol Reprod ; 109(6): 785-798, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37658761

RESUMEN

Infertility is a challenging health problem that affects 8-15% of couples worldwide. Establishing pregnancy requires successful embryo implantation, but about 85% of unsuccessful pregnancies are due to embryo implantation failure or loss soon after. Factors crucial for successful implantation include invasive blastocysts, receptive endometrium, invasion of trophoblast cells, and regulation of immune tolerance at the maternal-fetal interface. Maternal-fetal crosstalk, which relies heavily on protein-protein interactions, is a critical factor in implantation that involves multiple cellular communication and molecular pathways. Glycosylation, a protein modification process, is closely related to cell growth, adhesion, transport, signal transduction, and recognition. Protein glycosylation plays a crucial role in maternal-fetal crosstalk and can be divided into N-glycosylation and O-glycosylation, which are often terminated by sialylation or fucosylation. This review article examines the role of protein glycosylation in maternal-fetal crosstalk based on two transcriptome datasets from the GEO database (GSE139087 and GSE113790) and existing research, particularly in the context of the mechanism of protein glycosylation and embryo implantation. Dysregulation of protein glycosylation can lead to adverse pregnancy outcomes, such as missed abortion and recurrent spontaneous abortion, underscoring the importance of a thorough understanding of protein glycosylation in the diagnosis and treatment of female reproductive disorders. This knowledge could have significant clinical implications, leading to the development of more effective diagnostic and therapeutic approaches for these conditions.


Asunto(s)
Aborto Habitual , Implantación del Embrión , Embarazo , Femenino , Humanos , Glicosilación , Implantación del Embrión/fisiología , Endometrio/fisiología , Resultado del Embarazo
18.
Cell Rep ; 42(7): 112769, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37432849

RESUMEN

Leukocyte diversity of the first-trimester maternal-fetal interface has been extensively described; however, the immunological landscape of the term decidua remains poorly understood. We therefore profiled human leukocytes from term decidua collected via scheduled cesarean delivery. Relative to the first trimester, our analyses show a shift from NK cells and macrophages to T cells and enhanced immune activation. Although circulating and decidual T cells are phenotypically distinct, they demonstrate significant clonotype sharing. We also report significant diversity within decidual macrophages, the frequency of which positively correlates with pregravid maternal body mass index. Interestingly, the ability of decidual macrophages to respond to bacterial ligands is reduced with pregravid obesity, suggestive of skewing toward immunoregulation as a possible mechanism to safeguard the fetus against excessive maternal inflammation. These findings are a resource for future studies investigating pathological conditions that compromise fetal health and reproductive success.


Asunto(s)
Decidua , Linfocitos T , Embarazo , Femenino , Humanos , Reproducción , Células Asesinas Naturales , Macrófagos
19.
J Reprod Immunol ; 159: 103988, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451159

RESUMEN

Endometrial stromal cells (EnSCs) are the major cell type of the human endometrium and they undergo dramatic differentiation, termed decidualization, every month that enables them to be receptive to implantation. Appropriate decidualization and EnSC function is key for a successful pregnancy. EnSC function may be affected when the uterus is exposed to bacterial and viral infection. However, how human EnSCs respond to viral and bacterial components have not been well-studied and it remains unclear whether uterine innate immune responses change during decidualization. This study demonstrated that viral double-stranded RNA [Poly(I:C)] and bacterial lipopolysaccharide (LPS) upregulated undecidualized human EnSC production of a large array of proinflammatory cytokines and chemokines, and revealed that these immune responses were significantly dampened during decidualization in vitro and in vivo. This dampened response was associated with increased NFKBIA transcription during decidualization that leads to the accumulation of this negative regulator in decidualizing EnSCs that can bind to NFκB p65 and prevents its nuclear translocation and downstream Toll-like receptor signaling. These findings highlight that endometrial responses to infection may vary at different stages of the menstrual cycle which may be important for preparing the endometrium to support the growth of the semi-allogenic blastocyst. This work emphasizes the need to consider menstrual cycle stage, sex hormone levels and the differentiation status of cells when examining inflammatory responses in the future.


Asunto(s)
Decidua , Endometrio , Embarazo , Femenino , Humanos , Inhibidor NF-kappaB alfa/metabolismo , Endometrio/metabolismo , Receptores Toll-Like/metabolismo , Células del Estroma/metabolismo
20.
Biol Reprod ; 109(4): 507-519, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37515773

RESUMEN

The mechanism underlying the initiation of parturition remains unclear. Cyclooxygenase 2 and prostaglandins in decidual membrane tissue play an important role in the "parturition cascade." With the advancement of gestation, the expression of the transcriptional suppressor B lymphocyte-induced maturation protein 1 in the decidual membrane gradually decreases. Through chromatin immunoprecipitation sequencing, we found that B lymphocyte-induced maturation protein 1 has a binding site in the distal intergenic of PTGS2(COX2). Tripartite motif-containing protein 66 is a chromatin-binding protein that usually performs transcriptional regulatory functions by "reading" histone modification sites in chromatin. In this study, tripartite motif-containing protein 66 exhibits the same trend of expression as B lymphocyte-induced maturation protein 1 in the decidua during gestation. Moreover, the co-immunoprecipitation assay revealed that tripartite motif-containing protein 66 combined with B lymphocyte-induced maturation protein 1. This finding indicated that tripartite motif-containing protein 66 formed a transcription complex with B lymphocyte-induced maturation protein 1, which coregulated the expression of COX2. In animal experiments, we injected si-Blimp1 adenoviruses (si-Blimp1), Blimp1 overexpression plasmid (Blimp1-OE), and Trim66 overexpression plasmid (Trim66-OE) through the tail vein of mice. The results showed that B lymphocyte-induced maturation protein 1 and tripartite motif-containing protein 66 affected the initiation of parturition in mice. Therefore, the present evidence suggests that B lymphocyte-induced maturation protein 1 and tripartite motif-containing protein 66 partially participate in the initiation of labor, which may provide a new perspective for exploring the mechanism of term labor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA