Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.550
Filtrar
1.
Daru ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963538

RESUMEN

BACKGROUND: Melanoma poses a significant threat to human health, making the development of a safe and effective treatment a crucial challenge. Disulfiram (DS) is a proven anticancer drug that has shown effectiveness when used in combination with copper (DS-Cu complex). OBJECTIVES: This study focuses on encapsulation of DS-copper complex into nanofiber scaffold from polyvinyl alcohol (PVA) (DS-Cu@PVA). In order to increase bioavailability towards melanoma cell lines and decrease its toxicity. METHODS: The scaffold was fabricated through an electrospinning process using an aqueous solution, and subsequently analyzed using ART-Fourier transform infrared spectroscopy (ART-FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Additionally, cellular cytotoxicity, flow cytometry analysis, and determination of caspase 3 activity were conducted to further characterize the scaffold. RESULTS: The results confirmed that encapsulation of DS-Cu complex into PVA was successful via different characterization. The scanning electron microscopy (SEM) analysis revealed that the diameter of the nanofibers remained consistent despite the addition of DS-Cu. Additionally, ATR-FTIR confirmed that the incorporation of DS-Cu into PVA did not significantly alter the characteristic peaks of PVA. Furthermore, the cytotoxicity assessment of the DS-Cu@PVA nanofibrous scaffold using human normal skin cells (HFB4) demonstrated its superior biocompatibility compared to DS-Cu-free counterparts. Notably, the presence of DS-Cu maintained its effectiveness in promoting apoptosis by increasing cellular reactive oxygen species, proapoptotic gene expression, and caspase 3 activity, while simultaneously reducing glutathione levels and oncogene expression in human and mouse melanoma cell lines (A375 and B16F10, respectively). Overall, these findings suggest that the addition of DS-Cu to PVA nanofibers enhances their biocompatibility and cytotoxic effects on melanoma cells, making them a promising candidate for biomedical applications. CONCLUSION: The findings indicate that the targeted delivery of DS-Cu onto a PVA nanofiber scaffold holds potential approach to enhance the efficacy of DS-Cu in combating melanoma.

2.
Mikrochim Acta ; 191(7): 435, 2024 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-38949689

RESUMEN

A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Nanofibras , Nanofibras/química , Animales , Ratones , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Línea Celular Tumoral , Melaninas , Biomarcadores/análisis , Andamios del Tejido/química , Exocitosis , Melanoma Experimental/patología , Melanoma Experimental/diagnóstico
3.
Beilstein J Nanotechnol ; 15: 781-796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979523

RESUMEN

In this research, we applied electrospinning to create a two-component biodegradable polymeric scaffold containing polysuccinimide (PSI) and antibacterial salts. Antibacterial agents for therapeutical purposes mostly contain silver ions which are associated with high environmental impact and, in some cases, may cause undesired immune reactions. In our work, we prepared nanofibrous systems containing antibacterial and tissue-regenerating salts of zinc acetate or strontium nitrate in different concentrations, whose structures may be suitable for developing biomedical wound dressing systems in the future. Several experiments have been conducted to optimize the physicochemical, mechanical, and biological properties of the scaffolds developed for application as wound dressings. The scaffold systems obtained by PSI synthesis, salt addition, and fiber formation were first investigated by scanning electron microscopy. In almost all cases, different salts caused a decrease in the fiber diameter of PSI polymer-based systems (<500 nm). Fourier-transform infrared spectroscopy was applied to verify the presence of salts in the scaffolds and to determine the interaction between the salt and the polymer. Another analysis, energy-dispersive X-ray spectroscopy, was carried out to determine strontium and zinc atoms in the scaffolds. Our result showed that the salts influence the mechanical properties of the polymer scaffold, both in terms of specific load capacity and relative elongation values. According to the dissolution experiments, the whole amount of strontium nitrate was dissolved from the scaffold in 8 h; however, only 50% of the zinc acetate was dissolved. In addition, antibacterial activity tests were performed with four different bacterial strains relevant to skin surface injuries, leading to the appearance of inhibition zones around the scaffold discs in most cases. We also investigated the potential cytotoxicity of the scaffolds on human tumorous and healthy cells. Except for the ones containing zinc acetate salt, the scaffolds are not cytotoxic to either tumor or healthy cells.

4.
ACS Appl Bio Mater ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991130

RESUMEN

The efficient removal of lead ions at low concentrations is paramount in combating the significant threat posed by water pollution resulting from industrial activities and population growth. In this study, electrospun C. barbata/PAN fibers were developed to efficiently remove lead(II) ions from water. The morphology, structure, and mechanical properties of the fibers were examined, highlighting that the augmentation of the surface area through the conversion of C. barbata into the polymer fibers facilitates increased metal bonding sites during sorption. C. barbata/PAN fibers exhibited superior characteristics, including higher surface area, smaller pore size, and increased pore volume, compared to powdered C. barbata. The effects of factors such as shaking time, algae percentage, sorbent amount, pH, metal concentration, and temperature on Pb(II) sorption were investigated by the batch method. At an initial ion concentration of 100 µg L-1 and pH 4.0, C. barbata (5 wt %)/PAN fiber demonstrated a notable sorption efficiency of 89-90% (270 µg/g) after 60 min. The equilibrium data align with the Freundlich and Dubinin-Radushkevich isotherm models, whereas the pseudo-second-order kinetic model provides the most suitable description. The characterization of fibers after sorption revealed that carboxyl, hydroxyl, and sulfonyl groups play an active role in Pb(II) sorption.

5.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957181

RESUMEN

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Asunto(s)
Gelatina , Glucósidos , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Nanofibras , Neovascularización Fisiológica , Osteogénesis , Fenantrenos , Fenoles , Poliésteres , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Animales , Nanofibras/química , Gelatina/química , Poliésteres/química , Glucósidos/química , Glucósidos/farmacología , Fenoles/química , Fenoles/farmacología , Fenantrenos/química , Fenantrenos/farmacología , Fenantrenos/farmacocinética , Fenantrenos/administración & dosificación , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Masculino , Regeneración Ósea/efectos de los fármacos , Membranas Artificiales , Técnicas de Cocultivo , Liberación de Fármacos , Diferenciación Celular/efectos de los fármacos
6.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960479

RESUMEN

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Asunto(s)
Envejecimiento , Organoides , Humanos , Organoides/metabolismo , Envejecimiento/metabolismo , Proteínas de la Membrana/metabolismo , Senescencia Celular , Femenino , Andamios del Tejido/química , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/citología
7.
Curr Med Chem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38847381

RESUMEN

Cancer, a complicated and multi-dimensional medical concern worldwide, can be identified via either the growth of malignant tumours or colonisation of nearby tissues attributing to uncontrollable proliferation and division of cells promoted by several influential factors, including family history, exposure to pollutants, choice of lifestyle, and certain infections. The intricate processes underlying the development, expansion, and advancement of cancer are still being studied. However, there are a variety of therapeutic alternatives available for the diagnosis and treatment of cancer depending on the type and stage of cancer as well as the patient's individuality. The bioactive compoundsfortified nanofiber-based advanced therapies are revolutionary models for cancer detection and treatment, specifically targeting melanoma cells via exploring unique properties, such as increased surface area for payload, and imaging and bio-sensing capacities of nano-structured materials with minimal damage to functioning organs. The objective of the study was to gain knowledge regarding the potentiality of Nanofibers (NFs) fabricated using biomaterials in promoting cancer management along with providing a thorough overview of recent developmental initiatives, challenges, and future investigation strategies. Several fabrication approaches, such as electrospinning, self-assembly, phase separation, drawing, and centrifugal spinning of bio-compatible NFs along with characterization techniques, have been elaborated in the review.

8.
Dent Mater ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38876826

RESUMEN

OBJECTIVE: To fabricate and characterize an innovative gelatin methacryloyl/GelMA electrospun scaffold containing the citrus flavonoid naringenin/NA with osteogenic and anti-inflammatory properties. METHODS: GelMA scaffolds (15 % w/v) containing 0/Control, 5, 10, or 20 % of NA w/w were obtained via electrospinning. The chemical composition, fiber morphology/diameter, swelling/degradation profile, and NA release were investigated. Cytotoxicity, cell proliferation, adhesion and spreading, total protein/TP production, alkaline phosphatase/ALP activity, osteogenic genes expression (OCN, OPN, RUNX2), and mineralized nodules deposition/MND with human alveolar bone-derived mesenchymal stem cells (aBMSCs) seeded on the scaffolds were assessed. Moreover, aBMSCs seeded on the scaffolds and stimulated with tumor necrosis factor-alpha/TNF-α were submitted to collagen, nitric oxide/NO, interleukin/IL-1α, and IL-6 production assessment. Data were analyzed using ANOVA and t-student/post-hoc tests (α = 5 %). RESULTS: NA-laden scaffolds presented increased fiber diameter, lower swelling capacity, and faster degradation profile over 28 days (p < 0.05). NA release was detected over time. Cell adhesion and spreading, and TP production were similar between GelMA and GelMA+NA5 % scaffolds, while cell proliferation, ALP activity, OCN/OPN/RUNX2 gene expression, and MND were higher for GelMA+NA5 % scaffolds (p < 0.05). Cells seeded on control scaffolds and TNF-α-stimulated presented higher levels of NO, IL-1α/IL-6, and lower levels of collagen (p < 0.05). In contrast, cells seeded on GelMA+NA5 % scaffolds showed downregulation of inflammatory markers and higher collagen synthesis (p < 0.05). SIGNIFICANCE: GelMA+NA5 % scaffold was cytocompatible, stimulated aBMSCs proliferation and differentiation, and downregulated inflammatory mediators' synthesis, suggesting its therapeutic effect as a multi-target bifunctional scaffold with osteogenic and anti-inflammatory properties for bone tissue engineering.

9.
Int J Biol Macromol ; 272(Pt 1): 132874, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838901

RESUMEN

Despite its advantages, electrospinning has limited effectiveness in 3D scaffolding due to the high density of fibers it produces. In this research, a novel electrospinning collector was developed to overcome this constraint. An aqueous suspension containing chitosan/polyvinyl alcohol nanofibers was prepared employing a unique falling film collector. Suspension molding by freeze-drying resulted in a 3D nanofibrous scaffold (3D-NF). The mineralized scaffold was obtained by brushite deposition on 3D-NF using wet chemical mineralization by new sodium tripolyphosphate and calcium chloride dihydrate precursors. The 3D-NF was optimized and compared with the conventional electrospun 2D nanofibrous scaffold (2D-NF) and the 3D freeze-dried scaffold (3D-FD). Both minor fibrous and major freeze-dried pore shapes were present in 3D-NFs with sizes of 16.11-24.32 µm and 97.64-234.41 µm, respectively. The scaffolds' porosity increased by 53 % to 73 % compared to 2D-NFs. Besides thermal stability, mineralization improved the 3D-NF's ultimate strength and elastic modulus by 2.2 and 4.7 times, respectively. In vitro cell studies using rat bone marrow mesenchymal cells confirmed cell infiltration up to 290 µm and scaffold biocompatibility. The 3D-NFs given nanofibers and brushite inclusion exhibited considerable osteoinductivity. Therefore, falling film collectors can potentially be applied to prepare 3D-NFs from electrospinning without post-processing.


Asunto(s)
Huesos , Quitosano , Células Madre Mesenquimatosas , Nanofibras , Alcohol Polivinílico , Ingeniería de Tejidos , Andamios del Tejido , Alcohol Polivinílico/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Quitosano/química , Nanofibras/química , Animales , Ratas , Células Madre Mesenquimatosas/citología , Porosidad , Fosfatos de Calcio/química , Materiales Biocompatibles/química
10.
J Environ Manage ; 362: 121352, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833930

RESUMEN

The increased production of polystyrene waste has led to the need to find efficient ways to dispose of it. One possibility is the use of solid waste to produce filter media by the electrospinning technique. The aim of this work was to develop an ultra-fast electrospinning process applied to recycled polystyrene, with statistical evaluation of the influence of polymeric solution parameters (polymer concentration and percentage of DL-limonene) and process variables (flow rate, voltage, and type of support) on nanoparticle collection efficiency, air permeability, and fiber diameter. An extensive characterization of the materials and evaluation of the morphology of the fibers was also carried out. It was found that recycled expanded polystyrene could be used in electrospinning to produce polymeric membranes. The optimized condition that resulted in the highest nanoparticle collection efficiency was a polymer concentration of 13.5%, percentage of DL-limonene of 50%, voltage of 25 kV, and flow rate of 1.2 mL/h, resulting in values of 99.97 ± 0.01%, 2.6 ± 0.5 × 10-13 m2, 0.19 Pa-1, and 708 ± 176 nm for the collection efficiency of nanoparticles in the range from 6.38 to 232.9 nm, permeability, quality factor, and mean fiber diameter, respectively. All the parameters were found to influence collection efficiency and fiber diameter. The use of DL-limonene, a natural solvent, provided benefits including increased collection efficiency and decreased fiber size. In addition, the electrostatic filtration mechanism was evaluated using the presence of a copper grid as a support for the nanofibers. The findings demonstrated that an electrospinning time of only 5 min was sufficient to obtain filters with high collection efficiencies and low pressure drops, opening perspectives for the application of polystyrene waste in the development of materials with excellent characteristics for application in the area of atmospheric pollution mitigation.


Asunto(s)
Filtración , Nanopartículas , Poliestirenos , Poliestirenos/química , Nanopartículas/química , Filtración/métodos , Membranas Artificiales , Polímeros/química , Reciclaje , Permeabilidad
11.
Int J Nanomedicine ; 19: 5397-5418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863647

RESUMEN

Background: The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries. Methods: This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair. Results: Nanofibers with smooth surfaces and web-like structures with diameters ranging from 200 to 400 nm were successfully produced by electrospinning. These fibres exhibited excellent in vitro properties, including the ability to absorb wound exudates and undergo biodegradation over a two-week period. Additionally, these nanofibers demonstrated sustained and controlled release of encapsulated Resveratrol (RSV) and Ampicillin (AMP) through in vitro release studies. The zone of inhibition (ZOI) of PVP-PVA-RSV-AMP nanofibers against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was found 31±0.09 mm and 12±0.03, respectively, which was significantly higher as compared to positive control. Similarly, the biofilm study confirmed the significant reduction in the formation of biofilms in nanofiber-treated group against both S. aureus and E. coli. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis proved the encapsulation of RSV and AMP successfully into nanofibers and their compatibility. Haemolysis assay (%) showed no significant haemolysis (less than 5%) in nanofiber-treated groups, confirmed their cytocompatibility with red blood cells (RBCs). Cell viability assay and cell adhesion on HaCaT cells showed increased cell proliferation, indicating its biocompatibility as well as non-toxic properties. Results of the in-vivo experiments on a burn wound model demonstrated potential burn wound healing in rats confirmed by H&E-stained images and also improved the collagen synthesis in nanofibers-treated groups evidenced by Masson-trichrome staining. The ELISA assay clearly indicated the efficient downregulation of TNF-alpha and IL-6 inflammatory biomarkers after treatment with nanofibers on day 10. Conclusion: The RSV and AMP-loaded nanofiber mats, developed in this study, expedite burn wound healing through their multifaceted approach.


Asunto(s)
Ampicilina , Quemaduras , Colágeno , Escherichia coli , Nanofibras , Alcohol Polivinílico , Povidona , Resveratrol , Staphylococcus aureus , Cicatrización de Heridas , Resveratrol/farmacología , Resveratrol/química , Resveratrol/administración & dosificación , Resveratrol/farmacocinética , Nanofibras/química , Quemaduras/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Colágeno/química , Povidona/química , Staphylococcus aureus/efectos de los fármacos , Alcohol Polivinílico/química , Humanos , Escherichia coli/efectos de los fármacos , Ampicilina/farmacología , Ampicilina/química , Ampicilina/farmacocinética , Ampicilina/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Ratas , Biopelículas/efectos de los fármacos , Masculino
12.
Adv Colloid Interface Sci ; 331: 103236, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38917594

RESUMEN

As the potential applications of electrospinning in healthcare continue to be explored, along with advancements in industrial-scale solutions and the emergence of portable electrospinning devices, some researchers have explored electrospinning technology in topical products, including its application in skincare, such as facial masks, beauty patches, sunscreen, and dermatological treatments for conditions like atopic dermatitis, psoriasis, acne, skin cancer, etc. In this review, we first outline the fundamental principles of electrospinning and provide an overview of existing solutions for large-scale production and the components and functionalities of portable spinning devices. Based on the essential functionalities required for skincare products and the mechanisms and treatment methods for the aforementioned dermatological diseases, we summarize the potential advantages of electrospinning technology in these areas, including encapsulation, sustained release, large surface area, and biocompatibility, among others. Furthermore, considering the further commercialization and clinical development of electrospinning technology, we offer our insights on current challenges and future perspectives in these areas, including issues such as ingredients, functionality, residue concerns, environmental impact, and efficiency issues.

13.
Food Chem ; 457: 140032, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38936117

RESUMEN

The aim of the presented study was to evaluate the release of the enzymatically initiated production of hexanal from double emulsion electrospun bio-active membranes at a temperature of fruit storage. Among different formulations of water-in-oil (W1/O) primary emulsions, the emulsion composed of 12% w/v Tween20 and 0.1 M NaCl in water (W1) and 6% of poly(glycerol) poly(ricinoleate) dissolved in sunflower oil (O) using W1/O ratio of 80/20 (w/w) (Tween20-NaCl/6% PGPR) was selected, for further incorporation of enzymes, based on the lowest average droplet size (391.0 ± 15.6 nm), low polydispersity index (0.255 ± 0.07), and good gravitational stability also after 14 days. Both enzymes, lipase and lipoxygenase are needed to produce hexanal (up to 58 mg/L). Additionally, double emulsions were prepared with sufficient conductivity and viscosity using different W1/O to W2 ratios for electrospinning. From the selected electrospun membrane, up to 4.5 mg/L of hexanal was released even after 92 days.

14.
Front Biosci (Landmark Ed) ; 29(6): 228, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38940050

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach for a variety of diseases due to their immunomodulatory and tissue regeneration capabilities. Despite their potential, the clinical application of MSC therapies is hindered by limited cell retention and engraftment at the target sites. Electrospun scaffolds, with their high surface area-to-volume ratio and tunable physicochemical properties, can be used as platforms for MSC delivery. However, synthetic polymers often lack the bioactive cues necessary for optimal cell-scaffold interactions. Integrating electrospun scaffolds and biological polymers, such as polysaccharides, proteins, and composites, combines the mechanical integrity of synthetic materials with the bioactivity of natural polymers and represents a strategic approach to enhance cell-scaffold interactions. The molecular interactions between MSCs and blended or functionalized scaffolds have been examined in recent studies, and it has been shown that integration can enhance MSC adhesion, proliferation, and paracrine secretion through the activation of multiple signaling pathways, such as FAK/Src, MAPK, PI3K/Akt, Wnt/ß-catenin, and YAP/TAZ. Preclinical studies on small animals also reveal that the integration of electrospun scaffolds and natural polymers represents a promising approach to enhancing the delivery and efficacy of MSCs in the context of regenerating bone, cartilage, muscle, cardiac, vascular, and nervous tissues. Future research should concentrate on identifying the distinct characteristics of the MSC niche, investigating the processes involved in MSC-scaffold interactions, and applying new technologies in stem cell treatment and biofabrication to enhance scaffold design. Research on large animal models and collaboration among materials scientists, engineers, and physicians are crucial to translating these advancements into clinical use.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Polímeros , Andamios del Tejido , Humanos , Andamios del Tejido/química , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Polímeros/química , Ingeniería de Tejidos/métodos
15.
Int J Biol Macromol ; 273(Pt 2): 133193, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38885859

RESUMEN

A major problem after tendon injury is adhesion formation to the surrounding tissue leading to a limited range of motion. A viable strategy to reduce adhesion extent is the use of physical barriers that limit the contact between the tendon and the adjacent tissue. The purpose of this study was to fabricate an electrospun bilayered tube of hyaluronic acid/polyethylene oxide (HA/PEO) and biodegradable DegraPol® (DP) to improve the anti-adhesive effect of the implant in a rabbit Achilles tendon full laceration model compared to a pure DP tube. Additionally, the attachment of rabbit tenocytes on pure DP and HA/PEO containing scaffolds was tested and Scanning Electron Microscopy, Fourier-transform Infrared Spectroscopy, Differential Scanning Calorimetry, Water Contact Angle measurements, and testing of mechanical properties were used to characterize the scaffolds. In vivo assessment after three weeks showed that the implant containing a second HA/PEO layer significantly reduced adhesion extent reaching levels comparable to native tendons, compared with a pure DP implant that reduced adhesion formation only by 20 %. Tenocytes were able to attach to and migrate into every scaffold, but cell number was reduced over two weeks. Implants containing HA/PEO showed better mechanical properties than pure DP tubes and with the ability to entirely reduce adhesion extent makes this implant a promising candidate for clinical application in tendon repair.


Asunto(s)
Ácido Hialurónico , Polietilenglicoles , Andamios del Tejido , Animales , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Conejos , Polietilenglicoles/química , Andamios del Tejido/química , Tenocitos/efectos de los fármacos , Tenocitos/metabolismo , Tendón Calcáneo/efectos de los fármacos , Traumatismos de los Tendones/terapia , Adhesión Celular/efectos de los fármacos , Adherencias Tisulares/prevención & control , Tendones/efectos de los fármacos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Poliuretanos
16.
Anal Chim Acta ; 1312: 342750, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834264

RESUMEN

BACKGROUND: Coated blade spray (CBS) represents an innovative approach that utilizes solid-phase microextraction principles for sampling and sample preparation. When combined with ambient mass spectrometry (MS), it can also serve as an electrospray ionization source. Therefore, it became a promising tool in analytical applications as it can significantly reduce the analysis time. However, the current CBS coatings are based on the immobilization of extractive particles in bulk polymeric glue, which constrains the diffusion of the analytes to reach the extractive phase; therefore, the full reward of the system cannot be taken at pre-equilibrium. This has sparked the notion of developing new CBS probes that exhibit enhanced kinetics. RESULTS: With this aim, to generate a new extractive phase with improved extraction kinetics, poly(divinylbenzene) (PDVB) nanoparticles were synthesized by mini-emulsion polymerization and then immobilized into sub-micrometer (in diameter) sized polyacrylonitrile fibers which were obtained by electrospinning method. Following the optimization and characterization studies, the electrospun-coated blades were used to determine cholesterol, testosterone, and progesterone in plasma spots using the CBS-MS approach. For testosterone and progesterone, 10 ng mL-1 limits of quantification could be obtained, which was 200 ng mL-1 for cholesterol in spot-sized samples without including any pre-treatment steps to samples prior to extraction. SIGNIFICANCE: The comparison of the initial kinetics for dip-coated and electrospun-coated CBS probes proved that the electrospinning process could enhance the extraction kinetics; therefore, it can be used for more sensitive analyses. The total analysis time with this method, from sample preparation to instrumental analysis, takes only 7 min, which suggests that the new probes are promising for fast diagnostic applications.


Asunto(s)
Colesterol , Humanos , Colesterol/sangre , Colesterol/análisis , Testosterona/sangre , Testosterona/análisis , Progesterona/sangre , Progesterona/análisis , Microextracción en Fase Sólida/métodos , Nanopartículas/química , Resinas Acrílicas/química
17.
Int J Nanomedicine ; 19: 5681-5703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882541

RESUMEN

Introduction: Diabetes mellitus is frequently associated with foot ulcers, which pose significant health risks and complications. Impaired wound healing in diabetic patients is attributed to multiple factors, including hyperglycemia, neuropathy, chronic inflammation, oxidative damage, and decreased vascularization. Rationale: To address these challenges, this project aims to develop bioactive, fast-dissolving nanofiber dressings composed of polyvinylpyrrolidone loaded with a combination of an antibiotic (moxifloxacin or fusidic acid) and anti-inflammatory drug (pirfenidone) using electrospinning technique to prevent the bacterial growth, reduce inflammation, and expedite wound healing in diabetic wounds. Results: The fabricated drug-loaded fibers exhibited diameters of 443 ± 67 nm for moxifloxacin/pirfenidone nanofibers and 488 ± 92 nm for fusidic acid/pirfenidone nanofibers. The encapsulation efficiency, drug loading and drug release studies for the moxifloxacin/pirfenidone nanofibers were found to be 70 ± 3% and 20 ± 1 µg/mg, respectively, for moxifloxacin, and 96 ± 6% and 28 ± 2 µg/mg, respectively, for pirfenidone, with a complete release of both drugs within 24 hours, whereas the fusidic acid/pirfenidone nanofibers were found to be 95 ± 6% and 28 ± 2 µg/mg, respectively, for fusidic acid and 102 ± 5% and 30 ± 2 µg/mg, respectively, for pirfenidone, with a release rate of 66% for fusidic acid and 80%, for pirfenidone after 24 hours. The efficacy of the prepared nanofiber formulations in accelerating wound healing was evaluated using an induced diabetic rat model. All tested formulations showed an earlier complete closure of the wound compared to the controls, which was also supported by the histopathological assessment. Notably, the combination of fusidic acid and pirfenidone nanofibers demonstrated wound healing acceleration on day 8, earlier than all tested groups. Conclusion: These findings highlight the potential of the drug-loaded nanofibrous system as a promising medicated wound dressing for diabetic foot applications.


Asunto(s)
Antibacterianos , Vendajes , Pie Diabético , Liberación de Fármacos , Ácido Fusídico , Moxifloxacino , Nanofibras , Piridonas , Cicatrización de Heridas , Pie Diabético/tratamiento farmacológico , Pie Diabético/terapia , Nanofibras/química , Animales , Moxifloxacino/administración & dosificación , Moxifloxacino/farmacología , Moxifloxacino/química , Moxifloxacino/farmacocinética , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Piridonas/química , Piridonas/farmacología , Piridonas/farmacocinética , Piridonas/administración & dosificación , Ácido Fusídico/administración & dosificación , Ácido Fusídico/farmacología , Ácido Fusídico/química , Ácido Fusídico/farmacocinética , Ratas , Masculino , Diabetes Mellitus Experimental , Povidona/química , Ratas Sprague-Dawley
18.
Colloids Surf B Biointerfaces ; 239: 113967, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761494

RESUMEN

The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.


Asunto(s)
Poliésteres , Andamios del Tejido , Animales , Poliésteres/química , Ratas , Andamios del Tejido/química , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/química , Regeneración Nerviosa/efectos de los fármacos , Campos Magnéticos , Compuestos Férricos/química , Compuestos Férricos/farmacología , Ratas Sprague-Dawley , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células PC12
19.
Eur J Pharm Biopharm ; 200: 114314, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740224

RESUMEN

The present work focuses on the production of electrospun membranes based on Poly(ε-caprolactone) (PCL) and Polyvinylpyrrolidone (PVP) for the topical release of Quercetin (Q). Membranes were prepared at 0.5, 1.0, 3.0, 7.0 and 15 % wt of Quercetin and studied from a morphological, physical, and biological point of view. The scanning electron microscopy (SEM) evidences micrometric dimensions of the fibres with a good dispersion of the functional molecule. The retention degree of liquids was evaluated by testing four different liquid media while the radical scavenging activity of Quercetin-loaded membranes was evaluated through DPPH analysis. The release kinetics of Quercetin highlights the presence of an initial burst followed by slower release up to attaining an equilibrium state, after roughly 50 h, showing the possibility of a fine-tuning of drug release. Diffusion coefficients were then evaluated by using Fick's law. Finally, to verify the actual biocompatibility of the systems produced and the possible application in the repair of tissue injury, the biological activity of Quercetin released from drug-loaded membranes was analysed in an immortalized human keratinocyte cell line HaCaT by a wound healing assay. So, the reported preliminary data confirm the possibility of applying the electrospun Quercetin-loaded PCL-PVP membranes for wound healing applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Poliésteres , Povidona , Quercetina , Cicatrización de Heridas , Quercetina/administración & dosificación , Quercetina/química , Quercetina/farmacología , Povidona/química , Poliésteres/química , Humanos , Cicatrización de Heridas/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Membranas Artificiales , Microscopía Electrónica de Rastreo/métodos , Células HaCaT , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/química , Portadores de Fármacos/química , Línea Celular
20.
ACS Appl Bio Mater ; 7(5): 3316-3329, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38691017

RESUMEN

Basic fibroblast growth factor (bFGF) plays an important role in active wound repair. However, the existing dosage forms in clinical applications are mainly sprays and freeze-dried powders, which are prone to inactivation and cannot achieve a controlled release. In this study, a bioactive wound dressing named bFGF-ATP-Zn/polycaprolactone (PCL) nanodressing with a "core-shell" structure was fabricated by emulsion electrospinning, enabling the sustained release of bFGF. Based on the coordination and electrostatic interactions among bFGF, ATP, and Zn2+, as well as their synergistic effect on promoting wound healing, a bFGF-ATP-Zn ternary combination system was prepared with higher cell proliferation activity and used as the water phase for emulsion electrospinning. The bFGF-ATP-Zn/PCL nanodressing demonstrated improved mechanical properties, sustained release of bFGF, cytocompatibility, and hemocompatibility. It increased the proliferation activity of human dermal fibroblasts (HDFs) and enhanced collagen secretion by 1.39 and 3.45 times, respectively, while reducing the hemolysis rate to 3.13%. The application of the bFGF-ATP-Zn/PCL nanodressing in mouse full-thickness skin defect repair showed its ability to accelerate wound healing and reduce wound scarring within 14 days. These results provide a research basis for the development and application of this bioactive wound dressing product.


Asunto(s)
Adenosina Trifosfato , Materiales Biocompatibles , Proliferación Celular , Emulsiones , Factor 2 de Crecimiento de Fibroblastos , Ensayo de Materiales , Cicatrización de Heridas , Zinc , Cicatrización de Heridas/efectos de los fármacos , Emulsiones/química , Animales , Zinc/química , Zinc/farmacología , Humanos , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Tamaño de la Partícula , Fibroblastos/efectos de los fármacos , Poliésteres/química , Poliésteres/farmacología , Vendajes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA