Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Viruses ; 16(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39205297

RESUMEN

Bovine adenovirus (BAdV)-3 genome encodes a 26 kDa core protein designated as protein VII, which localizes to the nucleus/nucleolus. The requirement of a protein VII-complementing cell line for the replication of VII-deleted BAdV-3 suggests that protein VII is required for the production of infectious progeny virions. An analysis of the BAV.VIId+ virus (only phenotypically positive for protein VII) detected no noticeable differences in the expression and incorporation of viral proteins in the virions. Moreover, protein VII does not appear to be essential for the formation of mature BAV.VIId+. However, protein VII appeared to be required for the efficient assembly of mature BAV.VIId- virions. An analysis of the BAV.VIId- virus (genotypically and phenotypically negative for protein VII) in non-complementing cells detected the inefficient release of virions from endosomes, which affected the expression of viral proteins or DNA replication. Moreover, the absence of protein VII altered the proteolytic cleavage of protein VI of BAV.VIId-. Our results suggest that BAdV-3 protein VII appears to be required for efficient production of mature virions. Moreover, the absence of protein VII produces non-infectious BAdV-3 by altering the release of BAdV-3 from endosomes/vesicles.


Asunto(s)
Mastadenovirus , Virión , Replicación Viral , Animales , Virión/metabolismo , Virión/genética , Bovinos , Mastadenovirus/genética , Mastadenovirus/fisiología , Mastadenovirus/metabolismo , Línea Celular , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ensamble de Virus , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/genética , Replicación del ADN
2.
Bioessays ; 46(9): e2400026, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991978

RESUMEN

Receptor tyrosine kinases exhibit ligand-induced activity and uptake into cells via endocytosis. In the case of epidermal growth factor (EGF) receptor (EGFR), the resulting endosomes are trafficked to the perinuclear region, where dephosphorylation of receptors occurs, which are subsequently directed to degradation. Traveling endosomes bearing phosphorylated EGFRs are subjected to the activity of cytoplasmic phosphatases as well as interactions with the endoplasmic reticulum (ER). The peri-nuclear region harbors ER-embedded phosphatases, a component of the EGFR-bearing endosome-ER contact site. The ER is also emerging as a central player in spatiotemporal control of endosomal motility, positioning, tubulation, and fission. Past studies strongly suggest that the physical interaction between the ER and endosomes forms a reaction "unit" for EGFR dephosphorylation. Independently, endosomes have been implicated to enable quantization of EGFR signals by modulation of the phosphorylation levels. Here, we review the distinct mechanisms by which endosomes form the logistical means for signal quantization and speculate on the role of the ER.


Asunto(s)
Retículo Endoplásmico , Endosomas , Receptores ErbB , Transducción de Señal , Animales , Humanos , Endocitosis , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Receptores ErbB/metabolismo , Fosforilación
3.
J Virol ; 98(7): e0043324, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888346

RESUMEN

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.


Asunto(s)
Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Penaeidae , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/fisiología , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Penaeidae/virología , Penaeidae/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Endosomas/metabolismo , Endosomas/virología , Hemocitos/virología , Hemocitos/metabolismo , Interacciones Huésped-Patógeno , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Interferencia de ARN
4.
Virol Sin ; 39(3): 501-512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789039

RESUMEN

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 â€‹h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.


Asunto(s)
Calmodulina , Endosomas , Inmunidad Innata , Virus de la Diarrea Epidémica Porcina , Replicación Viral , Animales , Virus de la Diarrea Epidémica Porcina/inmunología , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Calmodulina/metabolismo , Calmodulina/genética , Endosomas/metabolismo , Endosomas/virología , Interacciones Huésped-Patógeno/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Células Vero , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo
5.
Kidney Int ; 106(3): 419-432, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797325

RESUMEN

ZFYVE21 is an ancient, endosome-associated protein that is highly expressed in endothelial cells (ECs) but whose function(s) in vivo are undefined. Here, we identified ZFYVE21 as an essential regulator of vascular barrier function in the aging kidney. ZFYVE21 levels significantly decline in ECs in aged human and mouse kidneys. To investigate attendant effects, we generated EC-specific Zfyve21-/- reporter mice. These knockout mice developed accelerated aging phenotypes including reduced endothelial nitric oxide (ENOS) activity, failure to thrive, and kidney insufficiency. Kidneys from Zfyve21 EC-/- mice showed interstitial edema and glomerular EC injury. ZFYVE21-mediated phenotypes were not programmed developmentally as loss of ZFYVE21 in ECs during adulthood phenocopied its loss prenatally, and a nitric oxide donor normalized kidney function in adult hosts. Using live cell imaging and human kidney organ cultures, we found that in a GTPase Rab5- and protein kinase Akt-dependent manner, ZFYVE21 reduced vesicular levels of inhibitory caveolin-1 and promoted transfer of Golgi-derived ENOS to a perinuclear Rab5+ vesicular population to functionally sustain ENOS activity. Thus, our work defines a ZFYVE21- mediated trafficking mechanism sustaining ENOS activity and demonstrates the relevance of this pathway for maintaining kidney function with aging.


Asunto(s)
Envejecimiento , Caveolina 1 , Células Endoteliales , Riñón , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/fisiología , Caveolina 1/metabolismo , Caveolina 1/genética , Células Endoteliales/metabolismo , Aparato de Golgi/metabolismo , Riñón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rab5/genética , Insuficiencia Renal/metabolismo , Insuficiencia Renal/fisiopatología , Insuficiencia Renal/genética
6.
Cell Rep ; 43(5): 114119, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38630589

RESUMEN

Phosphatidylinositol 3-kinase α (PI3Kα) is a heterodimer of p110α catalytic and p85 adaptor subunits that is activated by agonist-stimulated receptor tyrosine kinases. Although p85α recruits p110α to activated receptors on membranes, p85α loss, which occurs commonly in cancer, paradoxically promotes agonist-stimulated PI3K/Akt signaling. p110α localizes to microtubules via microtubule-associated protein 4 (MAP4), facilitating its interaction with activated receptor kinases on endosomes to initiate PI3K/Akt signaling. Here, we demonstrate that in response to agonist stimulation and p85α knockdown, the residual p110α, coupled predominantly to p85ß, exhibits enhanced recruitment with receptor tyrosine kinases to endosomes. Moreover, the p110α C2 domain binds PI3-phosphate, and this interaction is also required to recruit p110α to endosomes and for PI3K/Akt signaling. Stable knockdown of p85α, which mimics the reduced p85α levels observed in cancer, enhances cell growth and tumorsphere formation, and these effects are abrogated by MAP4 or p85ß knockdown, underscoring their role in the tumor-promoting activity of p85α loss.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia , Endosomas , Proteínas Asociadas a Microtúbulos , Fosfatos de Fosfatidilinositol , Transducción de Señal , Animales , Humanos , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Endosomas/metabolismo , Activación Enzimática , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Genetics ; 227(2)2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581414

RESUMEN

In humans, MAPK8IP3 (also known as JIP3) is a neurodevelopmental disorder-associated gene. In Caenorhabditis elegans, the UNC-16 ortholog of the MAPK8IP3 protein can regulate the termination of axon growth. However, its role in this process is not well understood. Here, we report that UNC-16 promotes axon termination through a process that includes the LRK-1 (LRRK-1/LRRK-2) kinase and the WDFY-3 (WDFY3/Alfy) selective autophagy protein. Genetic analysis suggests that UNC-16 promotes axon termination through an interaction between its RH1 domain and the dynein complex. Loss of unc-16 function causes accumulation of late endosomes specifically in the distal axon. Moreover, we observe synergistic interactions between loss of unc-16 function and disruptors of endolysosomal function, indicating that the endolysosomal system promotes axon termination. We also find that the axon termination defects caused by loss of UNC-16 function require the function of a genetic pathway that includes lrk-1 and wdfy-3, 2 genes that have been implicated in autophagy. These observations suggest a model where UNC-16 promotes axon termination by interacting with the endolysosomal system to regulate a pathway that includes LRK-1 and WDFY-3.


Asunto(s)
Axones , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Endosomas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Axones/metabolismo , Endosomas/metabolismo , Autofagia , Dineínas/metabolismo , Dineínas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas , Proteínas Adaptadoras Transductoras de Señales
8.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677261

RESUMEN

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Asunto(s)
Autofagia , Lisosomas , Fármacos Fotosensibilizantes , Humanos , Células HT29 , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inhibidores , Luz , Porfirinas/farmacología , Porfirinas/química , Catepsina D/metabolismo , Catepsina B/metabolismo
9.
J Biol Chem ; 300(4): 107137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447793

RESUMEN

Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Transporte Axonal , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/genética , Axones/metabolismo , Axones/patología , Complejo Dinactina/metabolismo , Complejo Dinactina/genética , Dineínas/metabolismo , Endosomas/metabolismo , Endosomas/genética , Lisosomas/metabolismo , Mutación , Variación Genética
10.
Circ Res ; 134(5): 505-525, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38422177

RESUMEN

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Asunto(s)
Cardiomiopatías , Resistencia a la Insulina , Animales , Ratones , Ratas , Adenosina Trifosfatasas , Arginina , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Antígenos CD36/genética , Fibrosis , Inflamación , Leucina , Lípidos , Lisina , Diana Mecanicista del Complejo 1 de la Rapamicina , Miocitos Cardíacos , Mononucleótido de Nicotinamida , Receptor Toll-Like 4/genética
11.
J Biol Chem ; 300(3): 105750, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360271

RESUMEN

Extracellular vesicles-mediated exchange of miRNA cargos between diverse types of mammalian cells is a major mechanism of controlling cellular miRNA levels and activity, thus regulating the expression of miRNA-target genes in both donor and recipient cells. Despite tremendous excitement related to extracellular vesicles-associated miRNAs as biomarkers or having therapeutic potential, the mechanism of selective packaging of miRNAs into endosomes and multivesicular bodies for subsequent extracellular export is poorly studied due to the lack of an in vitro assay system. Here, we have developed an in vitro assay with endosomes isolated from mammalian macrophage cells to follow miRNA packaging into endocytic organelles. The synthetic miRNAs, used in the assay, get imported inside the isolated endosomes during the in vitro reaction and become protected from RNase in a time- and concentration-dependent manner. The selective miRNA accumulation inside endosomes requires both ATP and GTP hydrolysis and the miRNA-binding protein HuR. The HuR-miRNA complex binds and stimulates the endosomal RalA GTPase to facilitate the import of miRNAs into endosomes and their subsequent export as part of the extracellular vesicles. The endosomal targeting of miRNAs is also very much dependent on the endosome maturation process that is controlled by Rab5 protein and ATP. In summary, we provide an in vitro method to aid in the investigation of the mechanism of miRNA packaging process for its export from mammalian macrophage cells.


Asunto(s)
Proteína 1 Similar a ELAV , Endosomas , Macrófagos , MicroARNs , Proteínas de Unión al GTP ral , Adenosina Trifosfato/metabolismo , Endosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Humanos , Proteínas de Unión al GTP ral/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Macrófagos/metabolismo , Células HEK293
12.
Cell Commun Signal ; 22(1): 140, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378560

RESUMEN

Hostile microenvironment of cancer cells provoke a stressful condition for endoplasmic reticulum (ER) and stimulate the expression and secretion of ER chaperones, leading to tumorigenic effects. However, the molecular mechanism underlying these effects is largely unknown. In this study, we reveal that the last four residues of ER chaperones, which are recognized by KDEL receptor (KDELR), is required for cell proliferation and migration induced by secreted chaperones. By combining proximity-based mass spectrometry analysis, split venus imaging and membrane yeast two hybrid assay, we present that EGF receptor (EGFR) may be a co-receptor for KDELR on the surface. Prior to ligand addition, KDELR spontaneously oligomerizes and constantly undergoes recycling near the plasma membrane. Upon KDEL ligand binding, the interactions of KDELR with itself and with EGFR increase rapidly, leading to augmented internalization of KDELR and tyrosine phosphorylation in the C-terminus of EGFR. STAT3, which binds the phosphorylated tyrosine motif on EGFR, is subsequently activated by EGFR and mediates cell growth and migration. Taken together, our results suggest that KDELR serves as a bona fide cell surface receptor for secreted ER chaperones and transactivates EGFR-STAT3 signaling pathway.


Asunto(s)
Receptores ErbB , Receptores de Péptidos , Transducción de Señal , Humanos , Ligandos , Receptores ErbB/metabolismo , Chaperonas Moleculares/metabolismo , Proliferación Celular , Tirosina , Factor de Transcripción STAT3/metabolismo
13.
EMBO Rep ; 25(3): 1156-1175, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332148

RESUMEN

Human rhinovirus is the most frequently isolated virus during severe exacerbations of chronic respiratory diseases, like chronic obstructive pulmonary disease. In this disease, alveolar macrophages display significantly diminished phagocytic functions that could be associated with bacterial superinfections. However, how human rhinovirus affects the functions of macrophages is largely unknown. Macrophages treated with HRV16 demonstrate deficient bacteria-killing activity, impaired phagolysosome biogenesis, and altered intracellular compartments. Using RNA sequencing, we identify the small GTPase ARL5b to be upregulated by the virus in primary human macrophages. Importantly, depletion of ARL5b rescues bacterial clearance and localization of endosomal markers in macrophages upon HRV16 exposure. In permissive cells, depletion of ARL5b increases the secretion of HRV16 virions. Thus, we identify ARL5b as a novel regulator of intracellular trafficking dynamics and phagolysosomal biogenesis in macrophages and as a restriction factor of HRV16 in permissive cells.


Asunto(s)
Macrófagos , Rhinovirus , Humanos , Macrófagos/microbiología , Macrófagos Alveolares , Fagocitosis , Bacterias
14.
Pathogens ; 13(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38392896

RESUMEN

Human adenovirus (HAdV) is a common pathogen, which can lead to various clinical symptoms and-in some cases-central nervous system (CNS) dysfunctions, such as encephalitis and meningitis. Although the initial events of virus entry have already been identified in various cell types, the mechanism of neuronal uptake of adenoviruses is relatively little understood. The aim of this study was to investigate early events during adenoviral infection, in particular to determine the connection between cellular coxsackievirus and adenovirus receptor (CAR), clathrin, caveolin, and early endosomal proteins (EEA1 and Rab5) with the entry of HAdVs into primary murine neurons in vitro. An immunofluorescence assay and confocal microscopy analysis were carried out to determine HAdV4, 5, and 7 correlation with CAR, clathrin, caveolin, and early endosomal proteins in neurons. The quantification of Pearson's coefficient between CAR and HAdVs indicated that the HAdV4 and HAdV5 types correlated with CAR and that the correlation was more substantial for HAdV5. Inhibition of clathrin-mediated endocytosis using chlorpromazine limited the infection with HAdV, whereas inhibition of caveolin-mediated endocytosis did not affect virus entry. Thus, the entry of tested HAdV types into neurons was most likely associated with clathrin but not caveolin. It was also demonstrated that HAdVs correlate with the Rab proteins (EEA1, Rab5) present in early vesicles, and the observed differences in the manner of correlation depended on the serotype of the virus. With our research, we strove to expand knowledge regarding the mechanism of HAdV entry into neurons, which may be beneficial for developing potential therapeutics in the future.

15.
BMC Biol ; 22(1): 12, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273307

RESUMEN

BACKGROUND: Many viruses enter host cells by hijacking endosomal trafficking. CapZ, a canonical actin capping protein, participates in endosomal trafficking, yet its precise role in endocytosis and virus infection remains elusive. RESULTS: Here, we showed that CapZ was transiently associated with early endosomes (EEs) and was subsequently released from the matured EEs after the fusion of two EEs, which was facilitated by PI(3)P to PI(3,5)P2 conversion. Vacuolin-1 (a triazine compound) stabilized CapZ at EEs and thus blocked the transition of EEs to late endosomes (LEs). Likewise, artificially tethering CapZ to EEs via a rapamycin-induced protein-protein interaction system blocked the early-to-late endosome transition. Remarkably, CapZ knockout or artificially tethering CapZ to EEs via rapamycin significantly inhibited flaviviruses, e.g., Zika virus (ZIKV) and dengue virus (DENV), or beta-coronavirus, e.g., murine hepatitis virus (MHV), infection by preventing the escape of RNA genome from endocytic vesicles. CONCLUSIONS: These results indicate that the temporal association of CapZ with EEs facilitates early-to-late endosome transition (physiologically) and the release of the viral genome from endocytic vesicles (pathologically).


Asunto(s)
Fosfatos de Fosfatidilinositol , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ratones , Endocitosis/fisiología , Endosomas/metabolismo , Sirolimus/farmacología , Sirolimus/metabolismo , Vesículas Transportadoras , Internalización del Virus , Infección por el Virus Zika/metabolismo
16.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279221

RESUMEN

In nature, the formation of specialized (secondary) metabolites is associated with the late stages of fungal development. Enzymes involved in the biosynthesis of secondary metabolites in fungi are located in distinct subcellular compartments including the cytosol, peroxisomes, endosomes, endoplasmic reticulum, different types of vesicles, the plasma membrane and the cell wall space. The enzymes traffic between these subcellular compartments and the secretion through the plasma membrane are still unclear in the biosynthetic processes of most of these metabolites. Recent reports indicate that some of these enzymes initially located in the cytosol are later modified by posttranslational acylation and these modifications may target them to membrane vesicle systems. Many posttranslational modifications play key roles in the enzymatic function of different proteins in the cell. These modifications are very important in the modulation of regulatory proteins, in targeting of proteins, intracellular traffic and metabolites secretion. Particularly interesting are the protein modifications by palmitoylation, prenylation and miristoylation. Palmitoylation is a thiol group-acylation (S-acylation) of proteins by palmitic acid (C16) that is attached to the SH group of a conserved cysteine in proteins. Palmitoylation serves to target acylated proteins to the cytosolic surface of cell membranes, e.g., to the smooth endoplasmic reticulum, whereas the so-called toxisomes are formed in trichothecene biosynthesis. Palmitoylation of the initial enzymes involved in the biosynthesis of melanin serves to target them to endosomes and later to the conidia, whereas other non-palmitoylated laccases are secreted directly by the conventional secretory pathway to the cell wall space where they perform the last step(s) of melanin biosynthesis. Six other enzymes involved in the biosynthesis of endocrosin, gliotoxin and fumitremorgin believed to be cytosolic are also targeted to vesicles, although it is unclear if they are palmitoylated. Bioinformatic analysis suggests that palmitoylation may be frequent in the modification and targeting of polyketide synthetases and non-ribosomal peptide synthetases. The endosomes may integrate other small vesicles with different cargo proteins, forming multivesicular bodies that finally fuse with the plasma membrane during secretion. Another important effect of palmitoylation is that it regulates calcium metabolism by posttranslational modification of the phosphatase calcineurin. Mutants defective in the Akr1 palmitoyl transferase in several fungi are affected in calcium transport and homeostasis, thus impacting on the biosynthesis of calcium-regulated specialized metabolites. The palmitoylation of secondary metabolites biosynthetic enzymes and their temporal distribution respond to the conidiation signaling mechanism. In summary, this posttranslational modification drives the spatial traffic of the biosynthetic enzymes between the subcellular organelles and the plasma membrane. This article reviews the molecular mechanism of palmitoylation and the known fungal palmitoyl transferases. This novel information opens new ways to improve the biosynthesis of the bioactive metabolites and to increase its secretion in fungi.


Asunto(s)
Lipoilación , Melaninas , Calcio , Membranas , Proteínas
17.
Plant J ; 117(2): 516-540, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864805

RESUMEN

Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.


Asunto(s)
Citrullus , Comamonadaceae , Cucurbitaceae , Adaptación al Huésped , Enfermedades de las Plantas/microbiología , Citrullus/genética , Aminoácidos
18.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979916

RESUMEN

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Asunto(s)
Fosfatos de Fosfatidilinositol , Subunidades de Proteína , ATPasas de Translocación de Protón Vacuolares , Humanos , Sitios de Unión , Endosomas/enzimología , Endosomas/metabolismo , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Concentración de Iones de Hidrógeno , Lisosomas/enzimología , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Dominios Proteicos
19.
J Neurosci ; 43(50): 8812-8824, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37884349

RESUMEN

Accumulation of amyloid-ß peptide (Aß) aggregates in synapses may contribute to the profound synaptic loss characteristic of Alzheimer's disease (AD). The origin of synaptic Aß aggregates remains elusive, but loss of endosomal proteostasis may trigger their formation. In this study, we identified the synaptic compartments where Aß accumulates, and performed a longitudinal analysis of synaptosomes isolated from brains of TgCRND8 APP transgenic mice of either sex. To evaluate the specific contribution of Aß-degrading protease endothelin-converting enzyme (ECE-1) to synaptic/endosomal Aß homeostasis, we analyzed the effect of partial Ece1 KO in brain and complete ECE1 KO in SH-SY5Y cells. Global inhibition of ECE family members was used to further assess their role in preventing synaptic Aß accumulation. Results showed that, before extracellular amyloid deposition, synapses were burdened with detergent-soluble Aß monomers, oligomers, and fibrils. Levels of all soluble Aß species declined thereafter, as Aß42 turned progressively insoluble and accumulated in Aß-producing synaptic endosomal vesicles with characteristics of multivesicular bodies. Accordingly, fibrillar Aß was detected in brain exosomes. ECE-1-deficient mice had significantly increased endogenous synaptosomal Aß42 levels, and protease inhibitor experiments showed that, in TgCRND8 mice, synaptic Aß42 became nearly resistant to degradation by ECE-related proteases. Our study supports that Aß accumulating in synapses is produced locally, within endosomes, and does not require the presence of amyloid plaques. ECE-1 is a determinant factor controlling the accumulation and fibrillization of nascent Aß in endosomes and, in TgCRND8 mice, Aß overproduction causes rapid loss of Aß42 solubility that curtails ECE-mediated degradation.SIGNIFICANCE STATEMENT Deposition of aggregated Aß in extracellular plaques is a defining feature of AD. Aß aggregates also accumulate in synapses and may contribute to the profound synaptic loss and cognitive dysfunction typical of the disease. However, it is not clear whether synaptotoxic Aß is mainly derived from plaques or if it is produced and aggregated locally, within affected synaptic compartments. Filling this knowledge gap is important for the development of an effective treatment for AD, as extracellular and intrasynaptic pools of Aß may not be equally modulated by immunotherapies or other therapeutic approaches. In this manuscript, we provide evidence that Aß aggregates building up in synapses are formed locally, within synaptic endosomes, because of disruptions in nascent Aß proteostasis.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Neuroblastoma , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Neuroblastoma/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Endosomas/metabolismo , Placa Amiloide/metabolismo
20.
Mol Cancer ; 22(1): 152, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689715

RESUMEN

BACKGROUND: Among digestive tract tumours, pancreatic ductal adenocarcinoma (PDAC) shows the highest mortality trend. Moreover, although PDAC metastasis remains a leading cause of cancer-related deaths, the biological mechanism is poorly understood. Recent evidence demonstrates that circular RNAs (circRNAs) play important roles in PDAC progression. METHODS: Differentially expressed circRNAs in normal and PDAC tissues were screened via bioinformatics analysis. Sanger sequencing, RNase R and actinomycin D assays were performed to confirm the loop structure of circEIF3I. In vitro and in vivo functional experiments were conducted to assess the role of circEIF3I in PDAC. MS2-tagged RNA affinity purification, mass spectrometry, RNA immunoprecipitation, RNA pull-down assay, fluorescence in situ hybridization, immunofluorescence and RNA-protein interaction simulation and analysis were performed to identify circEIF3I-interacting proteins. The effects of circEIF3I on the interactions of SMAD3 with TGFßRI or AP2A1 were measured through co-immunoprecipitation and western blotting. RESULTS: A microarray data analysis showed that circEIF3I was highly expressed in PDAC cells and correlated with TNM stage and poor prognosis. Functional experiments in vitro and in vivo revealed that circEIF3I accelerated PDAC cells migration, invasion and metastasis by increasing MMPs expression and activity. Mechanistic research indicated that circEIF3I binds to the MH2 domain of SMAD3 and increases SMAD3 phosphorylation by strengthening the interactions between SMAD3 and TGFßRI on early endosomes. Moreover, AP2A1 binds with circEIF3I directly and promotes circEIF3I-bound SMAD3 recruitment to TGFßRI on early endosomes. Finally, we found that circEif3i exerts biological functions in mice similar to those of circEIF3I in humans PDAC. CONCLUSIONS: Our study reveals that circEIF3I promotes pancreatic cancer progression. circEIF3I is a molecular scaffold that interacts with SMAD3 and AP2A1 to form a ternary complex, that facilitates the recruitment of SMAD3 to early endosomes and then activates the TGF-ß signalling pathway. Hence, circEIF3I is a potential prognostic biomarker and therapeutic target in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/genética , Endosomas , Hibridación Fluorescente in Situ , Neoplasias Pancreáticas/genética , ARN Circular , Proteína smad3/genética , Factor de Crecimiento Transformador beta , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA