Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.477
Filtrar
Más filtros











Intervalo de año de publicación
1.
Clin Mol Hepatol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355871

RESUMEN

The liver sinusoid, mainly composed of liver sinusoidal endothelial cells, hepatic macrophages and hepatic stellate cells, shapes the hepatic vasculature and is key maintaining liver homeostasis and function. During chronic liver disease (CLD), the function of sinusoidal cells is impaired, being directly involved in the progression of liver fibrosis, cirrhosis, and main clinical complications including portal hypertension and hepatocellular carcinoma. In addition to their roles in liver diseases pathobiology, sinusoidal cells' paracrine communication or cross-talk is being studied as a mechanism of disease but also as a remarkable target for treatment. The aim of this review is to gather current knowledge of intercellular signalling in the hepatic sinusoid during the progression of liver disease. We summarise studies developed in pre-clinical models of CLD, specially emphasizing those pathways characterized in human-based clinically relevant models. Finally, we describe pharmacological treatments targeting sinusoidal communication as promising options to treat CLD and its clinical complications.

2.
BMC Biol ; 22(1): 222, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354506

RESUMEN

BACKGROUND: Abnormalities of in utero testis development are strongly associated with reproductive health conditions, including male infertility and testis cancer. In mouse testes, SOX9 and FGF9 support Sertoli cell development, while VEGF signalling is essential for the establishment of vasculature. The mitogen-activated protein kinase (MAPK) pathway is a major signalling cascade, essential for cell proliferation, differentiation and activation of Sry during primary sex-determination, but little is known about its function during fetal testis morphogenesis. We explored potential functions of MAPK signalling immediately after the establishment of testis cords in embryonic day (E)12.5 Oct4-eGFP transgenic mouse testes cultured using a MEK1/2 inhibitor. RESULTS: RNA sequencing in isolated gonadal somatic cells identified 116 and 114 differentially expressed genes after 24 and 72 h of MEK1/2 inhibition, respectively. Ingenuity Pathway Analysis revealed an association of MEK1/2 signalling with biological functions such as angiogenesis, vasculogenesis and cell migration. This included a failure to upregulate the master transcriptional regulators of vascular development, Sox7 and Sox17, VEGF receptor genes, the cell adhesion factor gene Cd31 and a range of other endothelial cell markers such as Cdh5 (encoding VE-cadherin) and gap junction genes Gja4 and Gja5. In contrast, only a small number of Sertoli cell enriched genes were affected. Immunofluorescent analyses of control testes revealed that the MEK1/2 downstream target, ERK1/2 was phosphorylated in endothelial cells and Sertoli cells. Inhibition of MEK1/2 eliminated pERK1/2 in fetal testes, and CD31, VE-cadherin, SOX7 and SOX17 and endothelial cells were lost. Consistent with a role for VEGF in driving endothelial cell development in the testis, inhibition of VEGFR also abrogated pERK1/2 and SOX7 and SOX17 expressing endothelial cells. Moreover, while Sertoli cell proliferation and localisation to the testis cord basement membrane was disrupted by inhibition of MEK1/2, it was unaffected by VEGFR inhibition. Instead, inhibition of FGF signalling compromised Sertoli cell proliferation and localisation to the testis cord basement membrane. CONCLUSIONS: Together, our data highlight an essential role for VEGF-dependent MEK1/2 signalling in promoting vasculature and indicate that FGF signalling through MEK1/2 regulates Sertoli cell organisation in the developing mouse testis.


Asunto(s)
Ratones Transgénicos , Factores de Transcripción SOXF , Testículo , Animales , Masculino , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción SOXF/genética , Ratones , Testículo/metabolismo , Testículo/embriología , Testículo/irrigación sanguínea , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/metabolismo , MAP Quinasa Quinasa 2/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Neovascularización Fisiológica , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/genética , Angiogénesis , Proteínas HMGB
3.
Cell Oncol (Dordr) ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373859

RESUMEN

PURPOSE: Establishing an immunosuppressive premetastatic niche (PMN) in distant organs is crucial for breast cancer metastasis. Vascular endothelial cells (VECs) act as barriers to transendothelial cell migration. However, the immune functions of PMNs remain unclear. Tumour cell-released autophagosomes (TRAPs) are critical modulators of antitumour immune responses. Herein, we investigated the mechanism through which TRAPs modulate the immune function of pulmonary VECs in lung PMN in breast cancer. METHODS: Immortalised mouse pulmonary microvascular endothelial cells were incubated with TRAPs in vitro. RNA sequencing, flow cytometry, and western blotting were employed to assess immunosuppressive function and mechanism. In vivo, TRAP-trained and autophagy-deficient tumour mice were used to detect immunosuppression, and high-mobility group box 1 (HMGB1)-deficient TRAP-trained and TLR4 knockout mice were utilised to investigate the underlying mechanisms of pulmonary VECs. Additionally, the efficacy of anti-programmed cell death ligand-1 (PD-L1) immunotherapy was evaluated in early tumour-bearing mice. RESULTS: HMGB1 on TRAPs surfaces stimulated VECs to upregulate PD-L1 via a TLR4-MyD88-p38/STAT3 signalling cascade that depended on the cytoskeletal movement of VECs. Importantly, PD-L1 on TRAP-induced VECs can inhibit T cell function, promote lung PMN immunosuppression, and result in more pronounced lung metastasis. Treatment with anti-PD-L1 reduces lung metastasis in early stage tumour-bearing mice. CONCLUSIONS: These findings revealed a novel role and mechanism of TRAP-induced immunosuppression of pulmonary VECs in lung PMN. TRAPs and their surface HMGB1 are important therapeutic targets for reversing immunosuppression, providing a new theoretical basis for the treatment of early stage breast cancer using an anti-PD-L1 antibody.

4.
Thorac Cancer ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385307

RESUMEN

INTRODUCTION: Sex-determining region Y-related high-mobility group box 17 protein (SOX17), a proangiogenic transcription factor, is specifically expressed in tumor endothelial cells (TECs) of implanted Lewis lung carcinoma. However, the expression profile of SOX17 is largely unknown in human lung cancer. We aimed to elucidate SOX17 expression in cancer cells and the tumor microenvironment of lung adenocarcinoma. METHODS: In the present study, we examined SOX17 expression in whole-tissue specimens of 83 lung adenocarcinomas by immunohistochemistry. RESULTS: SOX17 immunoreactivity was minimal in lung adenocarcinoma cells, except in five non-mucinous adenocarcinomas in situ. SOX17 was also expressed in cultured A549 lung adenocarcinoma cells, which is widely used as a model of malignant alveolar type II epithelial cells. Notably, SOX17 immunoreactivity was found in endothelial cells of tumor-penetrating vessels in 19 of 83 lung adenocarcinoma tissue specimens, with statistical significance to stromal infiltration of CD8+ T cells (p < 0.01) but was not associated with the number of tertiary lymph nodes. Although not statistically significant, SOX17 immunoreactivity was related to favorable patient outcomes. CONCLUSION: Our findings indicate that SOX17 might play a pleiotropic role in lung adenocarcinoma in cancer cells and stromal niches. SOX17-mediated CD8+ T-cell-rich tumor microenvironment might attract interest in improving the effect of cancer immunotherapy.

5.
J Nanobiotechnology ; 22(1): 620, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39396002

RESUMEN

Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.


Asunto(s)
Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Células Endoteliales , Nanopartículas , Humanos , Portadores de Fármacos/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Nanopartículas/química , Endotelio Vascular/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Neoplasias/tratamiento farmacológico
6.
Tissue Eng Regen Med ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400879

RESUMEN

OBJECTIVE: Surgical wounds that can't complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing. APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function. RESULTS: PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate > 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells. INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds. CONCLUSION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.

7.
Cells ; 13(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39404395

RESUMEN

BACKGROUND AND AIMS: We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS: Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS: Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS: These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.


Asunto(s)
Antiinflamatorios , Aterosclerosis , Células Endoteliales , Inflamación , Oxiesteroles , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/metabolismo , Ratones , Humanos , Inflamación/patología , Inflamación/tratamiento farmacológico , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Oxiesteroles/metabolismo , Oxiesteroles/farmacología , Antiinflamatorios/farmacología , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Hiperlipidemias/complicaciones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Dieta Alta en Grasa
8.
Mater Today Bio ; 29: 101260, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39391792

RESUMEN

Most human tissues possess vascular networks supplying oxygen and nutrients. Engineering of functional tissue and organ models or equivalents often require the integration of artificial vascular networks. Several approaches, such as organs on chips and three-dimensional (3D) bioprinting, have been pursued to obtain vasculature and vascularized tissues in vitro. This technical feasibility study proposes a new approach for the in vitro vascularization of 3D microtissues. For this, we thermoform arrays of round-bottom microwells into thin non-porous and porous polymer films/membranes and culture vascular beds on them from which endothelial sprouting occurs in a Matrigel-based 3D extra cellular matrix. We present two possible culture configurations for the microwell-integrated vascular beds. In the first configuration, human umbilical vein endothelial cells (HUVECs) grow on and sprout from the inner wall of the non-porous microwells. In the second one, HUVECs grow on the outer surface of the porous microwells and sprout through the pores toward the inside. These approaches are extended to lymphatic endothelial cells. As a proof of concept, we demonstrate the in vitro vascularization of spheroids from human mesenchymal stem cells and MG-63 human osteosarcoma cells. Our results show the potential of this approach to provide the spheroids with an abundant outer vascular network and the indication of an inner vasculature.

9.
J Hepatol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39393439

RESUMEN

BACKGROUND: The tumor microenvironment (TME) plays a crucial role in the limited efficacy of existing treatments for hepatocellular carcinoma (HCC), with tumor-associated endothelial cells (TECs) serving as fundamental TME components that substantially influence tumor progression and treatment efficacy. However, the precise roles and mechanisms of TECs in HCC remain inadequately understood. METHODS: We employed a multi-omics profiling strategy to investigate the single-cell and spatiotemporal evolution of TECs within the microenvironment of HCC tumors showcasing varied responses to immunotherapy. Through an analysis of a clinical cohort of HCC patients, we explored the correlation between TEC subpopulations and immunotherapy outcomes. The influence of TEC subsets on the immune microenvironment was confirmed through comprehensive in vitro and in vivo studies. To further explore the mechanisms of distinct TEC subpopulations in microenvironmental modulation and their impact on immunotherapy, we utilized TEC subset-specific knockout mouse models as well as humanized mouse models. RESULTS: In this research, we identified a new subset of CXCL12+ TECs that exert a crucial role in immune suppression within the HCC TME. Functionally, CXCL12+ TECs impede the differentiation of CD8+ naïve T cells into CD8+ cytotoxic T cells by secreting CXCL12. Furthermore, they attract myeloid-derived suppressor cells (MDSCs). A bispecific antibody was developed to target both CXCL12 and PD1 specifically, showing significant promise in bolstering anti-tumor immune responses and advancing HCC therapy. CONCLUSIONS: CXCL12+ TECs are pivotal in mediating immunosuppression within HCC microenvironment and targeting CXCL12+ TECs presents a promising approach to augment the efficacy of immunotherapies in HCC patients. IMPACT AND IMPLICATION: This investigation reveals a pivotal mechanism in the HCC TME, where CXCL12+ TECs emerge as crucial modulators of immune suppression. The discovery of CXCL12+ TECs as inhibitors of CD8+ naïve T cell activation and recruiters of MDSCs significantly advances our grasp of the dynamic between HCC and immune regulation. Moreover, the development and application of a bispecific antibody precisely targeting CXCL12 and PD1 has proven to enhance immune responses in a humanized mouse HCC model. This finding underscores a promising therapeutic direction for HCC, offering the potential to amplify the impact of current immunotherapies.

10.
Cancer Lett ; : 217290, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39396705

RESUMEN

Although it is an effective treatment for acute myeloid leukemia (AML), chemotherapy leads to myelosuppression and poor hematopoietic reconstruction. Hematopoiesis is regulated by bone marrow (BM) endothelial cells (ECs), and BM ECs are dysfunctional in acute leukemia patients with poor hematopoietic reconstitution after allogenic hematopoietic stem cell transplantation. Thus, it is crucial to explore the underlying mechanism of EC impairment and establish strategies for targeted therapy. TGF-ß signaling was found to be upregulated in ECs from AML patients in complete remission (CR ECs) and led to CR EC damage. Administration of a TGF-ß inhibitor rescued the dysfunction of ECs caused by TGF-ß1 expression in vitro, especially their hematopoiesis-supporting ability. Moreover, inhibition of TGF-ß expression repaired the BM EC damage triggered by chemotherapy in both AML patients in vitro and in an AML-CR murine model, and restored normal hematopoiesis without promoting AML progression. Mechanistically, our data reveal alterations in the transcriptomic pattern of damaged BM ECs, accompanied by the overexpression of downstream molecules TGF-ßRI, pSmad2/3, and functional genes related to adhesion, angiogenesis suppression and pro-apoptosis. Collectively, our findings reveal for the first time that the activation of TGF-ß signaling leads to BM EC dysfunction and poor hematopoietic reconstitution. Targeting TGF-ß represents a potential therapeutic strategy to promote multilineage hematopoiesis, thereby benefiting more cancer patients who suffer from myelosuppression after chemotherapy.

11.
Drug Resist Updat ; 77: 101149, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39306871

RESUMEN

AIMS: Oxidative stress reflected by elevated reactive oxygen species (ROS) in the tumor ecosystem, is a hallmark of human cancers. The mechanisms by which oxidative stress regulate the metastatic ecosystem and resistance remain elusive. This study aimed to dissect the oxidative stress-sensing machinery during the evolvement of early dissemination and acquired drug resistance in breast cancer. METHODS: Here, we constructed single-cell landscape of primary breast tumors and metastatic lymph nodes, and focused on RGS5+ endothelial cell subpopulation in breast cancer metastasis and resistance. RESULTS: We reported on RGS5 as a master in endothelial cells sensing oxidative stress. RGS5+ endothelial cells facilitated tumor-endothelial adhesion and transendothelial migration of breast cancer cells. Antioxidant suppressed oxidative stress-induced RGS5 expression in endothelial cells, and prevented adhesion and transendothelial migration of cancer cells. RGS5-overexpressed HLECs displayed attenuated glycolysis and oxidative phosphorylation. Drug-resistant HLECs with RGS5 overexpression conferred acquired drug resistance of breast cancer cells. Importantly, genetic knockdown of RGS5 prevented tumor growth and lymph node metastasis. CONCLUSIONS: Our work demonstrates that RGS5 in lymphatic endothelial cells senses oxidative stress to promote breast cancer lymph node metastasis and resistance, providing a novel insight into a potentially targetable oxidative stress-sensing machinery in breast cancer treatment.

12.
Front Pharmacol ; 15: 1462936, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309006

RESUMEN

Ethyl carbamate (EC) is a process contaminant found in fermented foods and alcoholic beverages. Metabolic conversion of ethyl carbamate generates vinyl carbamate (VC), a carcinogenic metabolite. EC, as a Group 2A probable human carcinogen, and the more potent VC, are known to cause tumors in rodents. However, their effects on the kidney are unknown and were explored here. Female A/J inbred mice received an intraperitoneal injection of vehicle or VC. Beginning 5 weeks after VC injection, mice showed signs of moribund state. Mouse necropsies revealed renal glomerular injury that histopathologically recapitulated human membranoproliferative glomerulonephritis (MPGN), as evidenced by light microscopy, immunostaining for immunoglobulins and complements, and electron microscopy. To determine the molecular pathomechanisms, a post-hoc analysis was performed on a publicly available RNA-Seq transcriptome of kidneys from control rats and rats treated with fermented wine containing high concentrations of EC. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the differentially expressed genes revealed that the complement and coagulation cascades were a top predicted biological process involved. Furthermore, pathway-based data integration and visualization revealed that key regulators of complement activation were altered by high EC treatment. Among these, complement factors (CF) D and H, critical positive and negative regulators of the alternative pathway, respectively, were most affected, with CFD induced by 3.49-fold and CFH repressed by 5.9-fold, underscoring a hyperactive alternative pathway. Consistently, exposure of primary glomerular endothelial cells to EC or VC resulted in induction of CFD and repression of CFH, accompanied by increased fixation of C3 and C5b9. This effect seems to be mediated by Ras, one of the top genes that interact with both EC and VC, as identified by analyzing the chemical-gene/protein interactions database. Indeed, EC or VC-elicited complement activation was associated with activation of Ras signaling, but was abolished by the Ras inhibitor farnesyl thiosalicylic acid. Collectively, our findings suggest that VC, a metabolite of EC, induces glomerular injury in mice akin to human MPGN, possibly via perturbing the expression of complement regulators, resulting in an effect that favors activation of the alternative complement pathway.

13.
Pathol Res Pract ; 263: 155610, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39342888

RESUMEN

The high mortality rate of colorectal cancer (CRC) highlights the need for new treatment strategies; however, the venous invasion mechanisms in tumor endothelial cells within CRC remain unexplored. Therefore, we investigated the clinicopathological features of SRY-box transcription factor 17 (SOX17) in CRC. Immunohistochemical staining was performed on 55 CRC tissue specimens using a SOX17-specific antibody, followed by Kaplan-Meier and Cox proportional hazards regression analyses. SOX17 immunoreactivity was detected in the endothelial cells of tumor-penetrating vessels in 35/55 CRC samples. Kaplan-Meier analysis indicated that patients with SOX17 immunoreactivity had favorable overall and progression-free survival (log-rank test, P = 0.03 and 0.02, respectively). Notably, tumor endothelial SOX17 immunoreactivity was associated with a favorable prognosis in patients with stage III or IV disease (OS, P = 0.0089; PFS, P = 0.0065). Cox proportional hazard regression analysis indicated that SOX17 immunoreactivity is an independent factor for predicting favorable overall and progression-free survival in CRC (P = 0.02 and 0.01, respectively). The present findings suggest that SOX17 expression in tumor endothelial cells is a potential indicator of favorable prognosis in patients with CRC.

14.
Front Biosci (Landmark Ed) ; 29(9): 315, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344331

RESUMEN

BACKGROUND: Liver cancer is a highly lethal malignancy with frequent recurrence, widespread metastasis, and low survival rates. The aim of this study was to explore the role of Endoglin (ENG) in liver cancer progression, as well as its impacts on angiogenesis, immune cell infiltration, and the therapeutic efficacy of sorafenib. METHODS: A comprehensive evaluation was conducted using online databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), 76 pairs of clinical specimens of tumor and adjacent non-tumor liver tissue, and tissue samples from 32 hepatocellular carcinoma (HCC) patients treated with sorafenib. ENG expression levels were evaluated using quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), Western blot, and immunohistochemical analysis. Cox regression analysis, Spearman rank correlation analysis, and survival analysis were used to assess the results. Functional experiments included Transwell migration assays and tube formation assays with Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS: Tumor cells exhibited retro-differentiation into endothelial-like cells, with a significant increase in ENG expression in these tumor-derived endothelial cells (TDECs). High expression of ENG was associated with more aggressive cancer characteristics and worse patient prognosis. Pathway enrichment and functional analyses identified ENG as a key regulator of immune responses and angiogenesis in liver cancer. Further studies confirmed that ENG increases the expression of Collagen type Iα1 (COL1A1), thereby promoting angiogenesis in liver cancer. Additionally, HCC patients with elevated ENG levels responded well to sorafenib treatment. CONCLUSIONS: This study found that ENG is an important biomarker of prognosis in liver cancer. Moreover, ENG is associated with endothelial cell differentiation in liver cancer and plays a crucial role in formation of the tumor vasculature. The assessment of ENG expression could be a promising strategy to identify liver cancer patients who might benefit from targeted immunotherapies.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Diferenciación Celular , Endoglina , Neoplasias Hepáticas , Neovascularización Patológica , Sorafenib , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/tratamiento farmacológico , Sorafenib/farmacología , Sorafenib/uso terapéutico , Endoglina/metabolismo , Endoglina/genética , Masculino , Femenino , Persona de Mediana Edad , Línea Celular Tumoral , Compuestos de Fenilurea/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Angiogénesis
15.
Clin Sci (Lond) ; 138(18): 1131-1150, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39282930

RESUMEN

Vascular endothelial growth factor receptor inhibitors (VEGFRis) improve cancer survival but are associated with treatment-limiting hypertension, often attributed to endothelial cell (EC) dysfunction. Using phosphoproteomic profiling of VEGFRi-treated ECs, drugs were screened for mitigators of VEGFRi-induced EC dysfunction and validated in primary aortic ECs, mice, and canine cancer patients. VEGFRi treatment significantly raised systolic blood pressure (SBP) and increased markers of endothelial and renal dysfunction in mice and canine cancer patients. α-Adrenergic-antagonists were identified as drugs that most oppose the VEGFRi proteomic signature. Doxazosin, one such α-antagonist, prevented EC dysfunction in murine, canine, and human aortic ECs. In mice with sorafenib-induced-hypertension, doxazosin mitigated EC dysfunction but not hypertension or glomerular endotheliosis, while lisinopril mitigated hypertension and glomerular endotheliosis without impacting EC function. Hence, reversing EC dysfunction was insufficient to mitigate VEGFRi-induced-hypertension in this mouse model. Canine cancer patients with VEGFRi-induced-hypertension were randomized to doxazosin or lisinopril and both agents significantly decreased SBP. The canine clinical trial supports safety and efficacy of doxazosin and lisinopril as antihypertensives for VEGFRi-induced-hypertension and the potential of trials in canines with spontaneous cancer to accelerate translation. The overall findings demonstrate the utility of phosphoproteomics to identify EC-protective agents to mitigate cardio-oncology side effects.


Asunto(s)
Doxazosina , Células Endoteliales , Hipertensión , Receptores de Factores de Crecimiento Endotelial Vascular , Animales , Perros , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hipertensión/fisiopatología , Doxazosina/farmacología , Doxazosina/uso terapéutico , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteómica/métodos , Presión Sanguínea/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Lisinopril/farmacología , Lisinopril/uso terapéutico , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Sorafenib/farmacología , Sorafenib/uso terapéutico
16.
Artículo en Inglés | MEDLINE | ID: mdl-39291782

RESUMEN

People with human immunodeficiency virus (PWH), despite achieving viral suppression through antiretroviral therapy, face increased risk and earlier onset of atherosclerotic cardiovascular diseases than the general population. CD57+ T cells can be readily recovered from atherosclerotic plaques and likely contribute to disease by targeting endothelial cells (ECs); however, the specific mechanisms facilitating the infiltration of these cells into plaques remain elusive. Here, we report the development of a novel assay to quantify T cell adhesion to and transmigration through a primary human vascular EC monolayer and show that CD57+ T cells preferentially adhere to and transmigrate through the monolayer. Moreover, activating the ECs with tumor necrosis factor (TNF) significantly increased the transmigration of CD57+ T cells, supporting the role of TNF in promoting the vascular homing of CD57+ T cells. This model will allow for elucidating the mechanisms of and testing interventions to prevent CD57+ T cell infiltration into plaques.

17.
Circ Res ; 135(8): 822-837, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39234692

RESUMEN

BACKGROUND: Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis. METHODS: Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet). RESULTS: En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation. CONCLUSIONS: Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.


Asunto(s)
Aterosclerosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Endoteliales , Ácidos Grasos , Obesidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Obesidad/metabolismo , Obesidad/genética , Células Cultivadas , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Porcinos , Masculino , Dieta Alta en Grasa , Endotelio Vascular/metabolismo , Endotelio Vascular/patología
18.
Int J Biochem Cell Biol ; 176: 106664, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303850

RESUMEN

In response to hyperglycemia, endothelial cells (ECs) release exosomes with altered protein content and contribute to paracrine signalling, subsequently leading to vascular dysfunction in type 2 diabetes (T2D). High glucose reprograms DNA methylation patterns in various cell/tissue types, including ECs, resulting in pathologically relevant changes in cellular and extracellular proteome. However, DNA methylation-based proteome reprogramming in endothelial exosomes and associated pathological implications in T2D are not known. Hence, in the present study, we used Human umbilical vein endothelial cells (HUVECs), High Fat Diet (HFD) induced diabetic mice (C57BL/6) and clinical models to understand epigenetic basis of exosome proteome regulation in T2D pathogenesis . Exosomes were isolated by size exclusion chromatography and subjected to tandem mass tag (TMT) labelled quantitative proteomics and bioinformatics analysis. Immunoblotting was performed to validate exosome protein signature in clinically characterized individuals with T2D. We observed ECs cultured in high glucose and aortic ECs from HFD mouse expressed elevated DNA methyltransferase1 (DNMT1) levels. Quantitative proteomics of exosomes isolated from ECs treated with high glucose and overexpressing DNMT1 showed significant alterations in both protein levels and post translational modifications which were aligned to T2D associated vascular functions. Based on ontology and gene-function-disease interaction analysis, differentially expressed exosome proteins such as Thrombospondin1, Pentraxin3 and Cystatin C related to vascular complications were significantly increased in HUVECs treated with high glucose and HFD animals and T2D individuals with higher levels of glycated hemoglobin. These proteins were reduced upon treatment with 5-Aza-2'-deoxycytidine. Our study shows epigenetic regulation of exosome proteome in T2D associated vascular complications.

19.
Adv Ophthalmol Pract Res ; 4(4): 194-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319216

RESUMEN

Background: Cataracts are a common eye disease and a major cause of blindness in China and worldwide. In China, the incidence of cataracts among people over 60 years old is as high as 80%. Surgery is the primary treatment for various types of cataracts, but such invasive procedures can affect corneal endothelial cells to some extent. Content: Cataract surgery can damage corneal endothelial cells, leading to complications such as corneal edema in mild cases. Severe damage can result in endothelial decompensation, necessitating secondary corneal endothelial transplantation. Preoperative thorough assessment of endothelial status, intraoperative endothelial protection measures, and postoperative active use of medications to prevent further damage to endothelial cells can reduce endothelial cell loss. Factors influencing endothelial cell status include whether the patient has related systemic diseases or ocular conditions, the hardness of the nucleus, the choice of surgical incision, the method of nuclear fragmentation, the type of viscoelastic agent used, the orientation of the phacoemulsification needle bevel, the duration and energy of ultrasound use, the choice of fluid control system, the use of protective auxiliary instruments, the application of intraocular lens scaffold technology, femtosecond laser assistance, and the use of certain medications. Conclusions: Actively regulating the factors affecting corneal endothelial cells to reduce damage related to cataract surgery is crucial. This paper reviews the existing literature on various factors affecting corneal endothelial cells during cataract surgery and explores future developments and research directions.

20.
Development ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324287

RESUMEN

Undergoing endothelial-to-hematopoietic transition, a small fraction of embryonic aortic endothelial cells specializes into hemogenic endothelial cells (HECs) and eventually gives rise to hematopoietic stem cells (HSCs). Previously we have found that the activity of ribosome biogenesis (RiBi) is highly enriched in the HSC-primed HECs as compared with adjacent arterial endothelial cells, however, whether RiBi is required in HECs for the generation of HSC remain to be determined. Here, we found that robust RiBi was markedly augmented from HEC stage along the HSC ontogeny. Pharmacological inhibition of RiBi completely impeded the generation of HSCs in explant cultures. Moreover, disrupting RiBi selectively interrupted the HSC generation potential of HECs rather than T1 pre-HSCs, which was in line with its influence on cell cycle activity. Further investigation revealed that upon HEC specification the master transcription factor Runx1 dramatically bound to the loci of genes involved in RiBi, thereby facilitating this biological process. Taken together, our study provided functional evidence showing the indispensable role of RiBi in HECs to generate HSCs, providing novel insights that may contribute to improving HSC regeneration strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA