Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.268
Filtrar
1.
Transl Oncol ; 47: 101950, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38964032

RESUMEN

BACKGROUND: Pulmonary sarcomatoid carcinoma (PSC) is a highly invasive pulmonary malignancy with an extremely poor prognosis. The results of previous studies suggest that ubiquitin-specific peptidase 9X (USP9X) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of USP9X in the metastasis of PSC. METHODS: Immunohistochemistry and western blotting were used to detect USP9X expression levels in PSC tissues and cells. Wound healing, transwell, enzyme-linked immunosorbent assay (ELISA), tube formation, and aortic ring assays were used to examine the function and mechanism of USP9X in the metastasis of PSC. RESULTS: Expression of USP9X was markedly decreased and significantly correlated with metastasis and prognosis of patients with PSC. Then we revealed that USP9X protein levels were negatively associated with the levels of epithelial-mesenchymal transition (EMT) markers and the migration of PSC cells. It was confirmed that USP9X in PSC cells reduced VEGF secretion and inhibited tubule formation of human umbilical vein endothelial cells (HUVEC) in vitro. USP9X was detected to downregulate MMP9. Meanwhile, MMP9 was positively related to EMT, angiogenesis and was negatively related to immune infiltration in the public databases. USP9X was significantly negatively associated with the expression of MMP9, EMT markers, CD31, and positively associated with CD4, and CD8 in PSC tissues. CONCLUSION: The present study reveals the vital role of USP9X in regulating EMT, angiogenesis and immune infiltration and inhibiting metastasis of PSC via downregulating MMP9, which provides a new effective therapeutic target for PSC.

2.
Hum Reprod ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885960

RESUMEN

Since the first description of adenomyosis more than 150 years ago, multiple hypotheses have attempted to explain its pathogenesis. Indeed, research over recent years has greatly enhanced our knowledge of the underlying causes. This has opened up avenues for the development of strategies for both disease prevention and treatment of its main symptoms, such as pelvic pain, heavy menstrual bleeding, and infertility. However, the current means are still largely ineffective, so it is vital that we shed light on the pathways involved. Dysregulated mechanisms and aberrant protein expression have been identified as contributing factors in interactions between endometrial epithelial and stromal cells, ultimately leading to the growth of adenomyotic lesions. These include collective cell migration, epithelial-to-mesenchymal transition, hormonal influence, and signaling from non-coding RNAs and extracellular vesicles. We provide a concise summary of the latest insights into the crosstalk between glands and stroma in ectopic adenomyotic lesion formation. While there is an abundance of literature on similarities between adenomyosis and deep endometriosis, there are insufficient data on the cytochemical, molecular, and pathogenetic mechanisms of these two disorders. However, various shared features, including alterations of cell adhesion molecules, abnormal hormone regulation, and the presence of cancer-driving mutations and epigenetic modifications, have been identified. Nevertheless, the pathogenic mechanisms that contribute to the cause and development of these enigmatic diseases have not been fully elucidated yet.

3.
Elife ; 132024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873887

RESUMEN

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation and delamination is a classic example of developmental EMT. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single-cell RNA sequencing of mouse embryos, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the importance of cell cycle regulation and functional role for the intermediate stage marker Dlc1 in facilitating mammalian cranial NCC delamination and may provide new insights into mechanisms regulating pathological EMP.


Asunto(s)
Transición Epitelial-Mesenquimal , Cresta Neural , Cresta Neural/citología , Animales , Ratones , Análisis de la Célula Individual
4.
Cancer Med ; 13(11): e7283, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826095

RESUMEN

BACKGROUND: Lung cancer remains the foremost reason of cancer-related mortality, with invasion and metastasis profoundly influencing patient prognosis. N-acetyltransferase 10 (NAT10) catalyzes the exclusive N (4)-acetylcytidine (ac4C) modification in eukaryotic RNA. NAT10 dysregulation is linked to various diseases, yet its role in non-small cell lung cancer (NSCLC) invasion and metastasis remains unclear. Our study delves into the clinical significance and functional aspects of NAT10 in NSCLC. METHODS: We investigated NAT10's clinical relevance using The Cancer Genome Atlas (TCGA) and a group of 98 NSCLC patients. Employing WB, qRT-PCR, and IHC analyses, we assessed NAT10 expression in NSCLC tissues, bronchial epithelial cells (BECs), NSCLC cell lines, and mouse xenografts. Further, knockdown and overexpression techniques (siRNA, shRNA, and plasmid) were employed to evaluate NAT10's effects. A series of assays were carried out, including CCK-8, colony formation, wound healing, and transwell assays, to elucidate NAT10's role in proliferation, invasion, and metastasis. Additionally, we utilized lung cancer patient-derived 3D organoids, mouse xenograft models, and Remodelin (NAT10 inhibitor) to corroborate these findings. RESULTS: Our investigations revealed high NAT10 expression in NSCLC tissues, cell lines and mouse xenograft models. High NAT10 level correlated with advanced T stage, lymph node metastasis and poor overall survive. NAT10 knockdown curtailed proliferation, invasion, and migration, whereas NAT10 overexpression yielded contrary effects. Furthermore, diminished NAT10 levels correlated with increased E-cadherin level whereas decreased N-cadherin and vimentin expressions, while heightened NAT10 expression displayed contrasting results. Notably, Remodelin efficiently attenuated NSCLC proliferation, invasion, and migration by inhibiting NAT10 through the epithelial-mesenchymal transition (EMT) pathway. CONCLUSIONS: Our data underscore NAT10 as a potential therapeutic target for NSCLC, presenting avenues for targeted intervention against lung cancer through NAT10 inhibition.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Acetiltransferasa E N-Terminal , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animales , Ratones , Acetiltransferasa E N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/genética , Masculino , Femenino , Progresión de la Enfermedad , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Persona de Mediana Edad , Acetiltransferasas N-Terminal
5.
Cancer Cell Int ; 24(1): 199, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840117

RESUMEN

The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].

6.
J Cell Sci ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904097

RESUMEN

PTPRK is a receptor tyrosine phosphatase linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. It regulates cell-cell adhesion, but is also reported to regulate numerous cancer-associated signalling pathways. However, its signalling mechanism remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.

7.
Med Oncol ; 41(7): 183, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902544

RESUMEN

Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.


Asunto(s)
Autofagia , Neoplasias , Humanos , Autofagia/fisiología , Neoplasias/patología , Microambiente Tumoral , Metástasis de la Neoplasia , Animales , Transducción de Señal
8.
In Vivo ; 38(4): 2064-2073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936929

RESUMEN

BACKGROUND/AIM: The RNA binding protein quaking (QKI) is associated with the development and progression of tumor suppressors in various cancers. However, the clinical implications of QKI expression have not yet been fully elucidated. In this study, we aimed to investigate the clinicopathological and prognostic significance of QKI expression in hepatocellular carcinoma (HCC). MATERIALS AND METHODS: We performed QKI, Zinc finger E-box-binding homeobox 1 (ZEB1), E-cadherin, and glutathione peroxidase 4 (GPX4) immunohistochemical staining on 166 HCC patient tissue samples. X-tile bioinformatics software was used to set the cut-off value for high QKI expression. Correlations between QKI expression and various clinicopathological parameters were assessed. RESULTS: The best cut-off value for high QKI expression was 12.5. High QKI expression was observed in 28 of 166 patients (16.9%) and was an independent prognostic factor for inferior recurrence-free survival (RFS). In addition, high ZEB1 and GPX4 expression correlated with high QKI expression, but not with the loss of E-cadherin expression. CONCLUSION: High QKI expression was identified in HCCs and associated with poor RFS. QKI might be a prognostic biomarker of HCCs associated with epithelial-to-mesenchymal transition and a potential candidate therapeutic target.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Unión al ARN , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Anciano , Regulación Neoplásica de la Expresión Génica , Adulto , Cadherinas/metabolismo , Cadherinas/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Inmunohistoquímica , Transición Epitelial-Mesenquimal/genética
9.
Cancer Sci ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941131

RESUMEN

Osimertinib induces a marked response in non-small-cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) gene mutations. However, acquired resistance to osimertinib remains an inevitable problem. In this study, we aimed to investigate osimertinib-resistant mechanisms and evaluate the combination therapy of afatinib and chemotherapy. We established osimertinib-resistant cell lines (PC-9-OR and H1975-OR) from EGFR-mutant lung adenocarcinoma cell lines PC-9 and H1975 by high exposure and stepwise method. Combination therapy of afatinib plus carboplatin (CBDCA) and pemetrexed (PEM) was effective in both parental and osimertinib-resistant cells. We found that expression of thrombospondin-1 (TSP-1) was upregulated in resistant cells using cDNA microarray analysis. We demonstrated that TSP-1 increases the expression of matrix metalloproteinases through integrin signaling and promotes tumor invasion in both PC-9-OR and H1975-OR, and that epithelial-to-mesenchymal transition (EMT) was involved in H1975-OR. Afatinib plus CBDCA and PEM reversed TSP-1-induced invasion ability and EMT changes in resistant cells. In PC-9-OR xenograft mouse models (five female Balb/c-Nude mice in each group), combination therapy strongly inhibited tumor growth compared with afatinib monotherapy (5 mg/kg, orally, five times per week) or CBDCA (75 mg/kg, intraperitoneally, one time per week) + PEM (100 mg/kg, intraperitoneally, one time per week) over a 28-day period. These results suggest that the combination of afatinib plus CBDCA and PEM, which effectively suppresses TSP-1 expression, may be a promising option in EGFR-mutated NSCLC patients after the acquisition of osimertinib resistance.

10.
BMC Biol ; 22(1): 139, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915055

RESUMEN

BACKGROUND: The intermediate filament protein vimentin is widely recognized as a molecular marker of epithelial-to-mesenchymal transition. Although vimentin expression is strongly associated with cancer metastatic potential, the exact role of vimentin in cancer metastasis and the underlying mechanism of its pro-metastatic functions remain unclear. RESULTS: This study revealed that vimentin can enhance integrin ß1 surface expression and induce integrin-dependent clustering of cells, shielding them against anoikis cell death. The increased integrin ß1 surface expression in suspended cells was caused by vimentin-mediated protection of the internal integrin ß1 pool against lysosomal degradation. Additionally, cell detachment was found to induce vimentin Ser38 phosphorylation, allowing the translocation of internal integrin ß1 to the plasma membrane. Furthermore, the use of an inhibitor of p21-activated kinase PAK1, one of the kinases responsible for vimentin Ser38 phosphorylation, significantly reduced cancer metastasis in animal models. CONCLUSIONS: These findings suggest that vimentin can act as an integrin buffer, storing internalized integrin ß1 and releasing it when needed. Overall, this study provides insights regarding the strong correlation between vimentin expression and cancer metastasis and a basis for blocking metastasis using this novel therapeutic mechanism.


Asunto(s)
Anoicis , Integrina beta1 , Vimentina , Vimentina/metabolismo , Vimentina/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Humanos , Animales , Supervivencia Celular , Ratones , Línea Celular Tumoral , Fosforilación , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética
11.
Oncol Res ; 32(6): 1047-1061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827317

RESUMEN

Background: Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. In many cases, the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil (5-FU). The epithelial-to-mesenchymal transition (EMT) and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers. This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC. Materials and Methods: HCT-116, Caco-2, and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU. The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays. This was followed by a Western blot which analyzed the protein expressions of the epithelial marker E-cadherin, mesenchymal marker vimentin, and the EMT transcription factor (EMT-TF), the snail family transcriptional repressor 1 (Snail) in the parental and desensitized cells. Western blotting was also conducted to study the protein expressions of the protein methyltransferases (PMTs), Euchromatic histone lysine methyltransferase 2 (EHMT2/G9A), protein arginine methyltransferase (PRMT5), and SET domain containing 7/9 (SETD7/9) along with the global lysine and arginine methylation profiles. Results: The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU. The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells. This was reflected in the observed reduction in E-cadherin, vimentin, and Snail in the desensitized cell lines. Additionally, the protein expressions of EHMT2/G9A, PRMT5, and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment. Conclusion: This study showed that continuous, dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells.


Asunto(s)
Movimiento Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Fluorouracilo , Humanos , Fluorouracilo/farmacología , Fluorouracilo/administración & dosificación , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Antimetabolitos Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Relación Dosis-Respuesta a Droga , Metiltransferasas/metabolismo , Metiltransferasas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Metilación , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética
12.
Clin Exp Pharmacol Physiol ; 51(7): e13900, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843865

RESUMEN

Traditional Chinese medicine, specifically the Jianpi Tiaoqi (JPTQ) decoction, has been explored for its role in treating breast cancer, particularly in inhibiting lung metastasis in affected mice. Our study evaluated the effects of JPTQ on several factors, including tumour growth, apoptosis, angiogenesis, epithelial-to-mesenchymal transition (EMT) and immune microenvironment regulation. We used bioluminescence imaging to observe in situ tumour growth and potential lung metastasis. Transcriptomic analysis provided insights into gene expression, whereas flow cytometry was used to examine changes in specific immune cells, such as CD4+ T cells and myeloid-derived suppressor cells. Several essential proteins and genes, including vascular endothelial growth factor (VEGF), matrix metalloprotein-9 (MMP-9) and B-cell lymphoma 2 (Bcl-2), were assessed through quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. Our findings showed that JPTQ treatment inhibited tumour proliferation in cancer-bearing mice. Bioluminescence imaging and pathological analysis indicated a reduction in lung metastasis. Transcriptome analysis of lung and tumour tissues indicated that the genes associated with EMT, angiogenesis, proliferation and apoptosis were regulated in the JPTQ-treated group. Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment of immune-related pathways. Flow cytometry indicated that JPTQ treatment reduced the proportion of monocyte-myeloid-derived suppressor cells in the lung and increased the number of CD4+ T cells in the peripheral blood and the number of T helper 1 (Th1) cells in the spleen (P < 0.05). E-cadherin and cleaved caspase 3 were upregulated, whereas Snail, Bcl-2, Ki67 and VEGF were downregulated in the lung and tumour tissues; moreover, the expression of MMP-9 was downregulated in the lung tissue (P < 0.05). In essence, JPTQ not only inhibits tumour growth in affected mice, but also promotes positive immune responses, reduces angiogenesis, boosts tumour cell apoptosis, reverses EMT and decreases breast cancer lung metastasis.


Asunto(s)
Proliferación Celular , Medicamentos Herbarios Chinos , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Animales , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Ratones , Proliferación Celular/efectos de los fármacos , Femenino , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología
13.
Transl Cancer Res ; 13(5): 2387-2407, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881943

RESUMEN

Background: The nectin adhesion molecule CD112, an important component of tumor progression, belongs to the nectin family. However, a comprehensive evaluation of its clinical relevance and mechanism in various cancers is yet to be conducted. Methods: This investigation fully examined the relationship between prognosis and CD112 expression. We clarified the function of CD112 in tumor immunity by employing The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. This involved examining its connections to tumor mutation burden (TMB), DNA methylation, tumor immune invasion, mismatch repair (MMR), microsatellite instability (MSI), and common immune checkpoint inhibitors (ICIs). Additionally, the impact of CD112 knockdown on cell function was examined in colorectal cancer (CRC) cell lines. Results: In the current study, we found malignant tissues express high levels of CD112, which was related to TMB, MMR, MSI, and DNA methylation. Survival analysis indicated that patients with high CD112 expression had an unfavorable prognosis more frequently. In addition, CD112 expression was negatively associated with infiltration levels of CD4 positive (CD4+) T cells, CD8 positive (CD8+) T cells, and T cells. Western blotting and pathway enrichment analysis showed that CD112 is significantly linked to epithelial-to-mesenchymal transition (EMT). Additionally, CRC cells migrate and proliferate less when CD112 was knocked down. CD112 expression was found to be negatively associated with anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) treatment outcomes in patients. Conclusions: CD112 may act as a possible prognostic marker in immune therapy and may stimulate tumor growth by upregulating the EMT pathway.

14.
In Silico Pharmacol ; 12(1): 41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716440

RESUMEN

Genes related to MAPK-ERK signaling pathways, and epithelial-mesenchymal transition induction is evolutionarily conserved and has crucial roles in the regulation of important cellular processes, including cell proliferation. In this study, six cannabinoids from Cannabis sativa were docked with MAPK-ERK signaling pathways to identify their possible binding interactions. The results showed that all the cannabinoids have good binding affinities with the target proteins. The best binding affinities were MEK- tetrahydrocannabinol (- 8.8 kcal/mol) and P13k-cannabinol (- 8.5 kcal/mol). The root mean square deviation was calculated and used two alternative variants (rmsd/ub and rmsd/lb) and the values of rmsd/lb fluctuated 8.6-2.0 Å and for rmsd/ub from 1.0 to 2.0 Å that suggests the cannabinoids and protein complex are accurate and cannot destroy on binding. The study analyzed the pharmacokinetic and drug-likeness properties of six cannabinoids from C. sativa leaves using the SwissADME web tool. Lipinski's rule of five was used to predict drug-likeness and showed that all compounds have not violated it and the total polar surface area of cannabinoids was also according to Lipinski's rule that is benchmarked of anticancer drugs. Cannabinoids are meet the requirements of leadlikeness and synthetic accessibility values showed they can be synthesized. The molecular weight, XLOGP3, solubility (log S), and flexibility (FLEX) are according to the bioavailability radar. The bioavailability score and consensus Log Po/w fall within the acceptable range for the suitable drug. Pharmacokinetics parameters showed that cannabinoids cannot cross the blood-brain barrier, have high GI absorption as well as cannabinoids are substrates of (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4) but no substrate of P-glycoprotein. Based on these findings, the study suggests that cannabinoids are suitable drugs that could be used as effective inhibitors for target proteins involved in cancer pathways. Among the six cannabinoids, cannabinol and tetrahydrocannabinol exerted maximum binding affinities with proteins of MAPK-ERK signaling pathways, and their pharmacokinetics and drug-likeness-related profiles suggest that these cannabinoids could be superlative inhibitors in cancer treatment. Further in vitro, in vivo, and clinical studies are needed to explore their potential in cancer treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00213-4.

15.
Am J Cancer Res ; 14(4): 1561-1576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726259

RESUMEN

Lung squamous cell carcinoma (LUSC) remains a difficult-to-treat disease with a poor prognosis. While prominin-1 (PROM1/CD-133) is largely investigated in a variety of malignancies, the role of prominin-2 (PROM2), the other member of the prominin family, has not been studied in LUSC. Transcriptomic data derived from matched tumor and adjacent non-tumorous lung tissues of LUSC patients were employed to conduct an in-depth analysis of the genetic and epigenetic regulation of prominin genes within LUSC, utilizing bioinformatic approaches. Furthermore, cellular behavior experiments were executed to discern the biological functions of PROM2. It was observed that PROM2, in contrast to PROM1, exhibited significant upregulation and overexpression at both the mRNA and protein levels in LUSC, and this upregulation was correlated with shortened patient survival. Transcriptomic analysis unveiled DNA methylation as an epigenetic regulatory mechanism associated with PROM2 expression. Notably, two transcription factors, CBFB and NRIP1, were identified as potential regulators of PROM2 expression. Subsequent in vitro investigations demonstrated that knocking down PROM2 led to the inhibition of cancer cell migration and the epithelial-to-mesenchymal transition (EMT). In summary, the pronounced upregulation of PROM2 in LUSC patients was linked to an unfavorable prognosis, possibly attributable to its influence on cancer cell migration and EMT. These findings suggest that PROM2 could serve as a promising diagnostic biomarker and therapeutic target in the management of LUSC. Consequently, further research into the mechanistic aspects and potential therapeutic interventions targeting PROM2 is warranted in the clinical context.

16.
Clin Sci (Lond) ; 138(11): 617-634, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785410

RESUMEN

The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.


Asunto(s)
Endotelinas , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Endotelinas/metabolismo , Endotelinas/fisiología , Animales , Transición Epitelial-Mesenquimal , Transducción de Señal
17.
J Cell Biochem ; 125(7): e30574, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704688

RESUMEN

Altered energy metabolism is an emerging hallmark of cancer and plays a pivotal in cell survival, proliferation, and biosynthesis. In a rapidly proliferating cancer, energy metabolism acts in synergism with epithelial-to-mesenchymal transition (EMT), enabling cancer stemness, dissemination, and metastasis. In this study, an interconnected functional network governing energy metabolism and EMT signaling pathways was targeted through the concurrent inhibition of IR, ITGB1, and CD36 activity. A novel multicomponent MD simulation approach was employed to portray the simultaneous inhibition of IR, ITGB1, and CD36 by a 2:1 combination of Pimozide and Ponatinib. Further, in-vitro studies revealed the synergistic anticancer efficacy of drugs against monolayer as well as tumor spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231). In addition, the combination therapy exerted approximately 40% of the apoptotic population and more than 1.5- to 3-fold reduction in the expression of ITGB1, IR, p-IR, IRS-1, and p-AKT in MCF-7 and MDA-MB-231 cell lines. Moreover, the reduction in fatty acid uptake, lipid droplet accumulation, cancer stemness, and migration properties were also observed. Thus, targeting IR, ITGB1, and CD36 in the interconnected network with the combination of Pimozide and Ponatinib represents a promising therapeutic approach for breast cancer.


Asunto(s)
Neoplasias de la Mama , Antígenos CD36 , Metabolismo Energético , Transición Epitelial-Mesenquimal , Integrina beta1 , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Integrina beta1/metabolismo , Antígenos CD36/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Metabolismo Energético/efectos de los fármacos , Células MCF-7 , Imidazoles/farmacología , Piridazinas/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
18.
Cell Biol Int ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773713

RESUMEN

Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.

19.
Front Oncol ; 14: 1227151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756663

RESUMEN

Stress-induced promoter-associated and antisense lncRNAs (si-paancRNAs) originate from a reservoir of oxidative stress (OS)-specific promoters via RNAPII pausing-mediated divergent antisense transcription. Several studies have shown that the KDM7A divergent transcript gene (KDM7A-DT), which encodes a si-paancRNA, is overexpressed in some cancer types. However, the mechanisms of this overexpression and its corresponding roles in oncogenesis and cancer progression are poorly understood. We found that KDM7A-DT expression is correlated with highly aggressive cancer types and specific inherently determined subtypes (such as ductal invasive breast carcinoma (BRCA) basal subtype). Its regulation is determined by missense TP53 mutations in a subtype-specific context. KDM7A-DT transcribes several intermediate-sized ncRNAs and a full-length transcript, exhibiting distinct expression and localization patterns. Overexpression of KDM7A-DT upregulates TP53 protein expression and H2AX phosphorylation in nonmalignant fibroblasts, while in semi-transformed fibroblasts, OS superinduces KDM7A-DT expression in a TP53-dependent manner. KDM7A-DT knockdown and gene expression profiling in TP53-missense mutated luminal A BRCA variant, where it is abundantly expressed, indicate its significant role in cancer pathways. Endogenous over-expression of KDM7A-DT inhibits DNA damage response/repair (DDR/R) via the TP53BP1-mediated pathway, reducing apoptosis and promoting G2/M checkpoint arrest. Higher KDM7A-DT expression in BRCA is associated with KDM7A-DT locus gain/amplification, higher histologic grade, aneuploidy, hypoxia, immune modulation scores, and activation of the c-myc pathway. Higher KDM7A-DT expression is associated with relatively poor survival outcomes in patients with luminal A or Basal subtypes. In contrast, it is associated with favorable outcomes in patients with HER2+ER- or luminal B subtypes. KDM7A-DT levels are coregulated with critical transcripts and proteins aberrantly expressed in BRCA, including those involved in DNA repair via non-homologous end joining and epithelial-to-mesenchymal transition pathway. In summary, KDM7A-DT and its si-lncRNA exhibit several intrinsic biological and clinical characteristics that suggest important roles in invasive BRCA and its subtypes. KDM7A-DT-defined mRNA and protein subnetworks offer resources for identifying clinically relevant RNA-based signatures and prospective targets for therapeutic intervention.

20.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732119

RESUMEN

High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10-6-100 µg/mL). We found CSC (10-3 or 10 µg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC.


Asunto(s)
Células Epiteliales , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Factor de Crecimiento Transformador beta/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/virología , Células Epiteliales/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Cuello del Útero/patología , Cuello del Útero/metabolismo , Cuello del Útero/virología , Humo/efectos adversos , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/patología , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/etiología , Papillomavirus Humano 16/patogenicidad , Nicotiana/efectos adversos , Virus del Papiloma Humano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA