Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Indian J Otolaryngol Head Neck Surg ; 76(1): 1014-1017, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38440543

RESUMEN

The mitochondrial disorder-Leigh syndrome is a neurodegenerative disorder often manifested with brainstem abnormalities. The case report highlights the auditory brainstem response in a child with medical findings suggestive of Leigh syndrome. The case report also emphasizes the importance of ruling out any underlying neural pathology before making a clinical impression in children with developmental delays.

2.
Clin Genet ; 105(6): 671-675, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351533

RESUMEN

The biallelic variants of the POP1 gene are associated with the anauxetic dysplasia (AAD OMIM 607095), a rare skeletal dysplasia, characterized by prenatal rhizomelic shortening of limbs and generalized joint hypermobility. Affected individuals usually have normal neurodevelopmental milestones. Here we present three cases from the same family with likely pathogenic homozygous POP1 variant and a completely novel phenotype: a girl with global developmental delay and autism, microcephaly, peculiar dysmorphic features and multiple congenital anomalies. Two subsequent pregnancies were terminated due to multiple congenital malformations. Fetal DNA samples revealed the same homozygous variant in the POP1 gene. Expression of the RMRP was reduced in the proband compared with control and slightly reduced in both heterozygous parents, carriers for this variant. To our knowledge, this is the first report of this new phenotype, associated with a novel likely pathogenic variant in POP1. Our findings expand the phenotypic spectrum of POP1-related disorders.


Asunto(s)
Homocigoto , Fenotipo , Humanos , Femenino , Masculino , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Mutación , Linaje , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Preescolar , Niño , Predisposición Genética a la Enfermedad
3.
Mol Autism ; 15(1): 5, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254177

RESUMEN

BACKGROUND: Helsmoortel-Van der Aa syndrome (HVDAS) is a rare genetic disorder caused by variants in the activity-dependent neuroprotector homeobox (ADNP) gene; hence, it is also called ADNP syndrome. ADNP is a multitasking protein with the function as a transcription factor, playing a critical role in brain development. Furthermore, ADNP variants have been identified as one of the most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability. METHODS: We assembled a cohort of 15 Chinese pediatric patients, identified 13 variants in the coding region of ADNP gene, and evaluated their clinical phenotypes. Additionally, we constructed the corresponding ADNP variants and performed western blotting and immunofluorescence analysis to examine their protein expression and subcellular localization in human HEK293T and SH-SY5Y cells. RESULTS: Our study conducted a thorough characterization of the clinical manifestations in 15 children with ADNP variants, and revealed a broad spectrum of symptoms including global developmental delay, intellectual disability, ASD, facial abnormalities, and other features. In vitro studies were carried out to check the expression of ADNP with identified variants. Two cases presented missense variants, while the remainder exhibited nonsense or frameshift variants, leading to truncated mutants in in vitro overexpression systems. Both overexpressed wildtype ADNP and all the different mutants were found to be confined to the nuclei in HEK293T cells; however, the distinctive pattern of nuclear bodies formed by the wildtype ADNP was either partially or entirely disrupted by the mutant proteins. Moreover, two variants of p.Y719* on the nuclear localization signal (NLS) of ADNP disrupted the nuclear expression pattern, predominantly manifesting in the cytoplasm in SH-SY5Y cells. LIMITATIONS: Our study was limited by a relatively small sample size and the absence of a longitudinal framework to monitor the progression of patient conditions over time. Additionally, we lacked in vivo evidence to further indicate the causal implications of the identified ADNP variants. CONCLUSIONS: Our study reported the first cohort of HVDAS patients in the Chinese population and provided systematic clinical presentations and laboratory examinations. Furthermore, we identified multiple genetic variants and validated them in vitro. Our findings offered valuable insights into the diverse genetic variants associated with HVDAS.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Neuroblastoma , Humanos , Niño , Discapacidad Intelectual/genética , Trastorno del Espectro Autista/genética , Células HEK293 , Factores de Transcripción , Proteínas del Tejido Nervioso , Proteínas de Homeodominio/genética
4.
Front Pediatr ; 11: 1171920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790694

RESUMEN

Objective: Individuals with neurodevelopmental disorders such as global developmental delay (GDD) present both genotypic and phenotypic heterogeneity. This diversity has hampered developing of targeted interventions given the relative rarity of each individual genetic etiology. Novel approaches to clinical trials where distinct, but related diseases can be treated by a common drug, known as basket trials, which have shown benefits in oncology but have yet to be used in GDD. Nonetheless, it remains unclear how individuals with GDD could be clustered. Here, we assess two different approaches: agglomerative and divisive clustering. Methods: Using the largest cohort of individuals with GDD, which is the Deciphering Developmental Disorders (DDD), characterized using a systematic approach, we extracted genotypic and phenotypic information from 6,588 individuals with GDD. We then used a k-means clustering (divisive) and hierarchical agglomerative clustering (HAC) to identify subgroups of individuals. Next, we extracted gene network and molecular function information with regard to the clusters identified by each approach. Results: HAC based on phenotypes identified in individuals with GDD revealed 16 clusters, each presenting with one dominant phenotype displayed by most individuals in the cluster, along with other minor phenotypes. Among the most common phenotypes reported were delayed speech, absent speech, and seizure. Interestingly, each phenotypic cluster molecularly included several (3-12) gene sub-networks of more closely related genes with diverse molecular function. k-means clustering also segregated individuals harboring those phenotypes, but the genetic pathways identified were different from the ones identified from HAC. Conclusion: Our study illustrates how divisive (k-means) and agglomerative clustering can be used in order to group individuals with GDD for future basket trials. Moreover, the result of our analysis suggests that phenotypic clusters should be subdivided into molecular sub-networks for an increased likelihood of successful treatment. Finally, a combination of both agglomerative and divisive clustering may be required for developing of a comprehensive treatment.

5.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(10): 1028-1033, 2023 Oct 15.
Artículo en Chino | MEDLINE | ID: mdl-37905759

RESUMEN

OBJECTIVES: To investigate the efficacy and required indicators of Children Neuropsychological and Behavioral Scale-Revision 2016 (CNBS-R2016) in the differential diagnosis of autism spectrum disorder (ASD) and global developmental delay (GDD). METHODS: A total of 277 children with ASD and 415 children with GDD, aged 18-48 months, were enrolled as subjects. CNBS-R2016 was used to assess the developmental levels of six domains, i.e., gross motor, fine motor, adaptive ability, language, social behavior, and warning behavior, and a total of 13 indicators on intelligence age and developmental quotient (DQ) were obtained as the input features. Five commonly used machine learning classifiers were used for training to calculate the classification accuracy, sensitivity, and specificity of each classifier. RESULTS: DQ of warning behavior was selected as the first feature in all five classifiers, and the use of this indicator alone had a classification accuracy of 78.90%. When the DQ of warning behavior was used in combination with the intelligence age of warning behavior, gross motor, and language, it had the highest classification accuracy of 86.71%. CONCLUSIONS: Machine learning combined with CNBS-R2016 can effectively distinguish children with ASD from those with GDD. The DQ of warning behavior plays an important role in machine learning, and its combination with other features can improve classification accuracy, providing a basis for the efficient and accurate differential diagnosis of ASD and GDD in clinical practice.


Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/psicología , Diagnóstico Diferencial , Aprendizaje Automático , Conducta Social
6.
Rev. Hosp. Ital. B. Aires (2004) ; 43(3): 143-146, sept. 2023. ilus, tab
Artículo en Español | LILACS, UNISALUD, BINACIS | ID: biblio-1517927

RESUMEN

Se presenta un niño de 6 años con antecedente de retraso del lenguaje que llevó a sus padres a realizar múltiples consultas. En un primer momento, su cuadro fue interpretado como parte de un retraso global del desarrollo. Posteriormente, el paciente presentó convulsiones y episodios de descompensación metabólica, comenzando desde entonces su seguimiento por los Servicios de neurología, genética y metabolismo. Finalmente, tras varios estudios complementarios, por medio de un exoma trío se arribó al diagnóstico de síndrome de microduplicación del cromosoma 7q11.23, lo que justifica tanto el retraso global de desarrollo del paciente como su clínica neurológica. (AU)


A six-year-old boy presents with a history of language delay that led his parents to make multiple consultations. At first, we interpreted his condition as part of a global developmental delay. Subsequently, the patient presented seizures and episodes of metabolic decompensation, and since then, he had to be followed up by neurology, genetics, and metabolism services. Finally, after several complementary studies, following a trio exome analysis, we diagnosed chromosome 7q11.23 microduplication syndrome, which explains his global developmental delay and neurological symptoms. (AU)


Asunto(s)
Humanos , Masculino , Niño , Cromosomas Humanos Par 7/genética , Discapacidades del Desarrollo/genética , Síndrome de Williams/genética , Duplicación Cromosómica , Trastornos del Desarrollo del Lenguaje/genética , Discapacidad Intelectual/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/metabolismo , Pruebas Genéticas , Síndrome de Williams/diagnóstico , Síndrome de Williams/metabolismo , Trastornos del Desarrollo del Lenguaje/diagnóstico , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/metabolismo
7.
Medicina (B.Aires) ; 82(supl.3): 25-29, oct. 2022.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1405758

RESUMEN

Resumen Los trastornos del neurodesarrollo (TND) constituyen un grupo relevante de enfermedades, con base biológica y etiología total o parcialmente genética. El reconocimiento de los factores causales cons tituye un reto cuyos resultados se han perfeccionado a lo largo de las últimas décadas, hasta obtener un rédito diagnóstico cada vez mayor. La implementación de estos avances tecnológicos solo puede lograrse mediante la conformación de equipos de trabajo interdisciplinarios, que siguiendo un proceso ordenado, logran un diag nóstico de presunción, que luego es certificado mediante las técnicas que, para cada uno de los casos, resulta más redituable en calidad y costo. En este trabajo, enumeramos estos procedimientos a partir de diferentes escenarios que ponen de relieve el extenso menú de posibilidades y la necesidad de administrar los mismos de un modo racional, sobre bases científicas debidamente fundadas.


Abstract Neurodevelopmental disorders (NDD) constitute a relevant group of pathologies, of childhood, with a biological basis and totally or partially genetic etiology. The recognition of the causal factors constitutes a challenge that has been perfected over the last decades, until obtaining an increasing diagnostic yield. The implementation of these technological advances can only be achieved through the formation of interdisciplinary work teams, which, following an or derly process, achieve a presumptive diagnosis, which is then certified using the techniques that for each of the cases are more profitable in terms of quality and cost. In this paper we list these procedures, based on different scenarios that highlight the extensive menu of possibilities and the need to manage them in a rational way, on well-founded scientific bases.

8.
Int J Pediatr Otorhinolaryngol ; 162: 111213, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35988456

RESUMEN

OBJECTIVE: As the number of hearing loss cochlear implant candidates who suffer from global developmental delay has dramatically increased, we aimed to study the prognosis of implantation in this group. MATERIALS AND METHODS: In this cross-sectional case-control study, we utilized the Ages and Stages Questionnaire third edition (ASQ-3) to investigate the prognosis of cochlear implantation and its rehabilitation in 26 congenitally deaf children who suffered from global developmental delay compared with those in 25 non-delayed cases with the same conditions in two time periods, namely the first diagnosis of hearing loss and 18 months after the surgery and rehabilitation program. The data were analyzed using Statistical Package for Social Sciences, version 21 (SPSS-21). RESULTS: By the time of hearing loss diagnosis (six months old), the performance of all the global developmentally delayed hearing loss children in five subtests of the ASQ-3 scale was significantly lower than that of their non-delayed peers. Meanwhile, they improved significantly in two gross motor and social development subtests 18 months after the surgery and rehabilitation. CONCLUSION: Along with the general improvement of delay developed children with sensorineural hearing loss after cochlear implantation, global developmental assessment in the process of candidacy and after implantation is an essential factor that needs to be considered.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Percepción del Habla , Estudios de Casos y Controles , Niño , Estudios Transversales , Sordera/cirugía , Pérdida Auditiva/cirugía , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/cirugía , Humanos , Lactante
9.
Front Genet ; 13: 729980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368710

RESUMEN

Infantile cerebellar-retinal degeneration (ICRD) is an extremely rare, infantile-onset neuro-degenerative disease, characterized by autosomal recessive inherited, global developmental delay (GDD), progressive cerebellar and cortical atrophy, and retinal degeneration. In 2012, a biallelic pathogenic variant in ACO2 gene (NM_001098.3) was found to be causative of this disease. To date, approximately 44 variants displaying various clinical features have been reported. Here, we report a case of two siblings with compound heterozygous variants in the ACO2 gene. Two siblings without perinatal problems were born to healthy non-consanguineous Korean parents. They showed GDD and seizures since infancy. Their first brain magnetic resonance imaging (MRI), electroencephalography, and metabolic workup revealed no abnormal findings. As they grew, they developed symptoms including ataxia, dysmetria, poor sitting balance, and myopia. Follow-up brain MRI findings revealed atrophy of the cerebellum and optic nerve. Through exome sequencing of both siblings and their parents, we identified the following compound heterozygous variants in the ACO2: c.85C > T (p.Arg29Trp) and c.2303C > A (p.Ala768Asp). These two variants were categorized as likely pathogenic based on ACMG/AMP guidelines. In conclusion, this case help to broaden the genetic and clinical spectrum of the ACO2 variants associated with ICRD. We have also documented the long-term clinical course and serial brain MRI findings for two patients with this extremely rare disease.

10.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35395208

RESUMEN

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Trastornos del Neurodesarrollo , Ubiquitinación , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Células Germinativas , Mutación de Línea Germinal , Humanos , Trastornos del Neurodesarrollo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35146895

RESUMEN

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Asunto(s)
Epilepsia , Enfermedades del Recién Nacido , Discapacidad Intelectual , Canales Catiónicos TRPM , Niño , Discapacidades del Desarrollo/genética , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Mutación Missense , Canales Catiónicos TRPM/genética , Secuenciación del Exoma
12.
Int J Dev Neurosci ; 82(1): 96-103, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34708882

RESUMEN

MN1 C-terminal truncation (MCTT) syndrome is a newly recognized neurodevelopmental disorder due to heterozygous gain-of-function C-terminal truncating mutations clustering in the last or penultimate exon of MN1 gene (MIM: 156100). Up to date, only 25 affected patients have been reported. Here, we report a 2-year-old Chinese girl with MCTT syndrome. The girl presented with the characteristic features of the syndrome, including global developmental delay (GDD), facial dysmorphism and hearing impairment. Notably, the patient did not have other frequently observed symptoms such as hypotonia, cranial or brain abnormalities, indicating variability of the phenotype of patients with MN1 C-terminal truncating mutations. Trio whole-exome sequencing revealed a novel de novo heterozygous nonsense variant in the extreme 3' region of penultimate exon of MN1 (NM_002430.3: c.3743G > A, p.Trp1248*). This rare truncating variant was classified as pathogenic due to its predicted gain-of-function effect, given that the gain-of-function MN1 truncating variants producing C-terminally truncated proteins have been confirmed to cause the recognizable syndrome. Additionally, a systematic review of previously reported MN1 variants including C-terminal truncating variants and N-terminal truncating variants shows that different location of MN1 truncating variants causes two distinct clinical subtypes. To our knowledge, this is the first reported case of MCTT syndrome caused by a novel MN1 C-terminal truncating variant in a Chinese population, which enriched the mutation spectrum of MN1 gene and further supporting the association of the novel MCTT syndrome with MN1 C-terminal truncating variants.


Asunto(s)
Transactivadores , Proteínas Supresoras de Tumor , China , Exones/genética , Humanos , Mutación/genética , Fenotipo , Transactivadores/genética , Proteínas Supresoras de Tumor/genética , Secuenciación del Exoma
13.
Natl J Maxillofac Surg ; 13(3): 479-483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36683929

RESUMEN

Pediatric maxillofacial trauma is a rare entity, which is primarily the reason for an individual surgeon's inexperience in managing such injuries. More so, maxillary injuries are infrequent. Pediatric maxillofacial injuries are usually a result of blunt force trauma such as falls, motor vehicle accidents, bicycle injuries, sports-related injuries, assault, and child abuse. The atypical pattern of facial injuries in the pediatric population necessitates each surgeon to approach individual cases with a unique and innovative technique of management, while still following the basic principles of surgical management of maxillofacial injuries. Since facial trauma and surgical interventions both have the potential to lead to disturbance in growth and development, management should be as conservative as possible. The foundation of any surgical intervention must be developed keeping in perspective, the future growth, and development of dentofacial structures. Pediatric facial trauma management is in itself a disconcerting situation for a maxillofacial surgeon, but when a special needs child is involved it becomes an even more perplex decision. We present a case of maxillary trauma in a pediatric patient with global developmental delay, the treatment dilemma, and a review of current literature.

14.
Cytogenet Genome Res ; 161(10-11): 514-519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34879376

RESUMEN

Recently, an increasing number of genes have been associated with global developmental delay (GDD) and intellectual disability (ID). The sorting nexin (SNX) protein family plays multiple roles in protein trafficking and intracellular signaling. SNXs have been reported to be associated with several disorders, including Alzheimer disease and Down syndrome. Despite the growing evidence of an association of SNXs with neurodegeneration, SNX13 deficiency has not been associated with GDD or ID. In this study, we present the case of a 4-year-old boy with brain dysplasia and GDD, including language delay, cognitive delay, and dyskinesia. Exome sequencing revealed a 1-bp homozygous deletion in SNX13 (NM_015132.5: exon8: c.742_743del; p.Tyr248Leufs*20), which caused a frameshift and predicted early termination. Sanger sequencing confirmed that the variant was inherited from his parents respectively. Our findings associate SNX13 variation with GDD for the first time and provide a new GDD candidate gene.


Asunto(s)
Discapacidades del Desarrollo/genética , Mutación del Sistema de Lectura/genética , Discapacidad Intelectual/genética , Nexinas de Clasificación/genética , Preescolar , Homocigoto , Humanos , Masculino
15.
Artículo en Inglés | MEDLINE | ID: mdl-34716204

RESUMEN

The methodologic approach used in next-generation sequencing (NGS) affords a high depth of coverage in genomic analysis. Inherent in the nature of genomic testing, there exists potential for identifying genomic findings that are incidental or secondary to the indication for clinical testing, with the frequency dependent on the breadth of analysis and the tissue sample under study. The interpretation and management of clinically meaningful incidental genomic findings is a pressing issue particularly in the pediatric population. Our study describes a 16-mo-old male who presented with profound global delays, brain abnormality, progressive microcephaly, and growth deficiency, as well as metopic craniosynostosis. Clinical exome sequencing (ES) trio analysis revealed the presence of two variants in the proband. The first was a de novo variant in the PPP2R1A gene (c.773G > A, p.Arg258His), which is associated with autosomal dominant (AD) intellectual disability, accounting for the proband's clinical phenotype. The second was a recurrent hotspot variant in the CBL gene (c.1111T > C, p.Tyr371His), which was present at a variant allele fraction of 11%, consistent with somatic variation in the peripheral blood sample. Germline pathogenic variants in CBL are associated with AD Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia. Molecular analyses using a different tissue source, buccal epithelial cells, suggest that the CBL alteration may represent a clonal population of cells restricted to leukocytes. This report highlights the laboratory methodologic and interpretative processes and clinical considerations in the setting of acquired variation detected during clinical ES in a pediatric patient.


Asunto(s)
Hallazgos Incidentales , Discapacidad Intelectual , Niño , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Fenotipo
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(8): 786-790, 2021 Aug 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-34511166

RESUMEN

OBJECTIVES: To study the clinical effect of mouse nerve growth factor (mNGF) in the treatment of children with global developmental delay (GDD). METHODS: A prospective clinical trial was conducted in 60 children with GDD who were treated in the First Affiliated Hospital of Anhui Medical University between July 2016 and July 2017. These children were randomly divided into two groups: conventional rehabilitation treatment and mNGF treatment group (n=30 each). The children in the conventional rehabilitation treatment group were given neurodevelopmental therapy, and those in the mNGF treatment group were given mNGF treatment in addition to the treatment in the control group. The evaluation results of the Gesell Developmental Scale were compared between the two groups before and after treatment. RESULTS: Before treatment and after 1.5 months of treatment, there was no significant difference in the developmental quotient (DQ) of each functional area of the Gesell Developmental Scale between the mNGF treatment and conventional rehabilitation treatment groups (P>0.05). After 3 months of treatment, the mNGF treatment group had significantly higher DQs of gross motor, fine motor, and personal-social interaction than the conventional rehabilitation treatment group (P˂0.05). The incidence rate of transient injection site pain after injection of mNGF was 7% (2/30), and there was no epilepsy or other serious adverse reactions. CONCLUSIONS: In children with GDD, routine rehabilitation training combined with mNGF therapy can significantly improve their cognitive, motor, and social abilities.


Asunto(s)
Epilepsia , Animales , Ratones , Estudios Prospectivos , Habilidades Sociales
18.
Artículo en Inglés | MEDLINE | ID: mdl-34117072

RESUMEN

The ETS2 repressor factor (ERF) is a transcription factor in the RAS-MEK-ERK signal transduction cascade that regulates cell proliferation and differentiation, and pathogenic sequence variants in the ERF gene cause variable craniosynostosis inherited in an autosomal dominant pattern. The reported ERF variants are largely loss-of-function, implying haploinsufficiency as a primary disease mechanism; however, ERF gene deletions have not been reported previously. Here we describe three probands with macrocephaly, craniofacial dysmorphology, and global developmental delay. Clinical genetic testing for fragile X and other relevant sequencing panels were negative; however, chromosomal microarray identified heterozygous deletions (63.7-583.2 kb) on Chromosome 19q13.2 in each proband that together included five genes associated with Mendelian diseases (ATP1A3, ERF, CIC, MEGF8, and LIPE). Parental testing indicated that the aberrations were apparently de novo in two of the probands and were inherited in the one proband with the smallest deletion. Deletion of ERF is consistent with the reported loss-of-function ERF variants, prompting clinical copy-number-variant classifications of likely pathogenic. Moreover, the recent characterization of heterozygous loss-of-function CIC sequence variants as a cause of intellectual disability and neurodevelopmental disorders inherited in an autosomal dominant pattern is also consistent with the developmental delays and intellectual disabilities identified among the two probands with CIC deletions. Taken together, this case series adds to the previously reported patients with ERF and/or CIC sequence variants and supports haploinsufficiency of both genes as a mechanism for a variable syndromic cranial phenotype with developmental delays and intellectual disability inherited in an autosomal dominant pattern.


Asunto(s)
Eliminación de Gen , Predisposición Genética a la Enfermedad/genética , Proteínas Represoras/genética , Cráneo/anomalías , Cráneo/crecimiento & desarrollo , Adolescente , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteína Proto-Oncogénica c-ets-2/genética , Cráneo/patología , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Transcripción/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-34021018

RESUMEN

De novo pathogenic variants in CHAMP1 (chromosome alignment maintaining phosphoprotein 1), which encodes kinetochore-microtubule associated protein on 13q34, cause a rare neurodevelopmental disorder. We enrolled 14 individuals with pathogenic variants in CHAMP1 that were documented by exome sequencing or gene panel sequencing. Medical history interviews, seizure surveys, Vineland Adapted Behavior Scales Second Edition, and other behavioral surveys were completed by primary caregivers of available participants in Simons Searchlight. Clinicians extracted clinical data from the medical record for two participants. We report on clinical features of 14 individuals (ages 2-26) with de novo predicted loss-of-function variants in CHAMP1 and compare them with previously reported cases (total n = 32). At least two individuals have the same de novo variant: p.(Ser181Cysfs*5), p.(Trp348*), p.(Arg398*), p.(Arg497*), or p.(Tyr709*). Common phenotypes include intellectual disability/developmental delay, language impairment, congenital and acquired microcephaly, behavioral problems including autism spectrum disorder, seizures, hypotonia, gastrointestinal issues of reflux and constipation, and ophthalmologic issues. Other rarely observed phenotypes include leukemia, failure to thrive, and high pain tolerance. Pathogenic variants in CHAMP1 are associated with a variable clinical phenotype of developmental delay/intellectual disability and seizures.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Mutación con Pérdida de Función , Trastornos del Neurodesarrollo/genética , Fosfoproteínas/genética , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Leucemia/genética , Masculino , Trastornos del Neurodesarrollo/fisiopatología , Pruebas Neuropsicológicas , Fenotipo , Adulto Joven
20.
Am J Hum Genet ; 108(6): 1069-1082, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34022130

RESUMEN

BCAS3 microtubule-associated cell migration factor (BCAS3) is a large, highly conserved cytoskeletal protein previously proposed to be critical in angiogenesis and implicated in human embryogenesis and tumorigenesis. Here, we established BCAS3 loss-of-function variants as causative for a neurodevelopmental disorder. We report 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. The human phenotype is less severe compared with the Bcas3 knockout mouse model and cannot be explained by angiogenic defects alone. Consistent with being loss-of-function alleles, we observed absence of BCAS3 in probands' primary fibroblasts. By comparing the transcriptomic and proteomic data based on probands' fibroblasts with those of the knockout mouse model, we identified similar dysregulated pathways resulting from over-representation analysis, while the dysregulation of some proposed key interactors could not be confirmed. Together with the results from a tissue-specific Drosophila loss-of-function model, we demonstrate a vital role for BCAS3 in neural tissue development.


Asunto(s)
Mutación con Pérdida de Función , Pérdida de Heterocigocidad , Proteínas de Neoplasias/genética , Trastornos del Neurodesarrollo/etiología , Adolescente , Adulto , Animales , Movimiento Celular , Niño , Preescolar , Drosophila , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Linaje , Proteoma/análisis , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA