Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Vet Res ; 16(1): 289, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787931

RESUMEN

BACKGROUND: The recent identification of the endocannabinoid system in the gastrointestinal tract suggests a role in controlling intestinal inflammation. In addition, the gut chemosensing system has therapeutic applications in the treatment of gastrointestinal diseases and inflammation due to the presence of a large variety of receptors. The purposes of this study were to investigate the presence of markers of the endocannabinoid system and the chemosensing system in the pig gut and, second, to determine if thymol modulates these markers. One hundred sixty 28-day-old piglets were allocated into one of 5 treatment groups (n = 32 per treatment): T1 (control), T2 (25.5 mg thymol/kg feed), T3 (51 mg thymol/kg feed), T4 (153 mg thymol/kg feed), and T5 (510 mg thymol/kg feed). After 14 days of treatment, piglets were sacrificed (n = 8), and then duodenal and ileal mucosal scrapings were collected. Gene expression of cannabinoid receptors (CB1 and CB2), transient receptor potential vanilloid 1 (TRPV1), the olfactory receptor OR1G1, diacylglycerol lipases (DGL-α and DGL-ß), fatty acid amine hydrolase (FAAH), and cytokines was measured, and ELISAs of pro-inflammatory cytokines levels were performed. RESULTS: mRNAs encoding all markers tested were detected. In the duodenum and ileum, the CB1, CB2, TRPV1, and OR1G1 mRNAs were expressed at higher levels in the T4 and T5 groups compared to the control group. The level of the FAAH mRNA was increased in the ileum of the T4 group compared to the control. Regarding the immune response, the level of the tumor necrosis factor (TNF-α) mRNA was significantly increased in the duodenum of the T5 group, but this increase was not consistent with the protein level. CONCLUSIONS: These results indicate the presence of endocannabinoid system and gut chemosensing markers in the piglet gut mucosa. Moreover, thymol modulated the expression of the CB1, CB2, TRPV1, and OR1G1 mRNAs in the duodenum and ileum. It also modulated the mRNA levels of enzymes involved in the biosynthesis and degradation of endocannabinoid molecules. Based on these findings, the effects of thymol on promoting gut health are potentially mediated by the activation of these receptors.


Asunto(s)
Endocannabinoides/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Timol/farmacología , Amidohidrolasas/metabolismo , Animales , Citocinas/metabolismo , Femenino , Lipoproteína Lipasa/metabolismo , Masculino , ARN Mensajero/metabolismo , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Receptores Odorantes/metabolismo , Sus scrofa , Canales Catiónicos TRPV/metabolismo , Timol/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo
2.
F1000Res ; 5: 2424, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27781093

RESUMEN

The ability of humans to sense chemical signals in ingested substances is implicit in the ability to detect the five basic tastes; sweet, sour, bitter, salty, and umami. Of these, sweet, bitter, and umami tastes are detected by lingual G-protein-coupled receptors (GPCRs). Recently, these receptors were also localized to the gut mucosa. In this review, we will emphasize recent advances in the understanding of the mechanisms and consequences of foregut luminal chemosensing, with special emphasis on cell surface GPCRs such as the sweet and proteinaceous taste receptors (TASRs), short- and long-chain fatty acid (FA) receptors, and bile acid receptors. The majority of these luminal chemosensors are expressed on enteroendocrine cells (EECs), which are specialized endocrine cells in the intestine and pancreas that release gut hormones with ligand activation. These gut hormones are responsible for a wide variety of physiologic and homeostatic mechanisms, including glycemic control, appetite stimulation and suppression, regulation of gastric emptying, and trophic effects on the intestinal epithelium. Released from the EECs, the gut peptides have paracrine, autocrine, and endocrine effects. Additionally, EECs have unique direct connections to the enteric nervous system enabling precise transmission of sensory data to and communication with the central nervous system. We will also describe how gut sensors are implicated in gut hormone release, followed by examples of how altered gut chemosensing has been implicated in pathological conditions such as metabolic diseases including diabetes and obesity, functional dyspepsia, helminthic infections, colitis, gastric bypass surgery, and gastric inflammation and cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA