Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 12(19)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830570

RESUMEN

ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation.


Asunto(s)
Cilios , Glioma , Humanos , Cilios/metabolismo , Glioma/genética , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Receptor Smoothened/metabolismo
2.
Genes (Basel) ; 14(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37239394

RESUMEN

Progressive corneal opacification can result from multiple etiologies, including corneal dystrophies or systemic and genetic diseases. We describe a novel syndrome featuring progressive epithelial and anterior stromal opacification in a brother and sister and their mildly affected father, with all three family members having sensorineural hearing loss and two also with tracheomalacia/laryngomalacia. All carried a 1.2 Mb deletion at chromosome 13q12.11, with no other noteworthy co-segregating variants identified on clinical exome or chromosomal microarray. RNAseq analysis from an affected corneal epithelial sample from the proband's brother revealed downregulation of XPO4, IFT88, ZDHHC20, LATS2, SAP18, and EEF1AKMT1 within the microdeletion interval, with no notable effect on the expression of nearby genes. Pathway analysis showed upregulation of collagen metabolism and extracellular matrix (ECM) formation/maintenance, with no significantly down-regulated pathways. Analysis of overlapping deletions/variants demonstrated that deleterious variants in XPO4 were found in patients with laryngomalacia and sensorineural hearing loss, with the latter phenotype also being a feature of variants in the partially overlapping DFNB1 locus, yet none of these had reported corneal phenotypes. Together, these data define a novel microdeletion-associated syndromic progressive corneal opacification and suggest that a combination of genes within the microdeletion may contribute to ECM dysregulation leading to pathogenesis.


Asunto(s)
Pérdida Auditiva Sensorineural , Laringomalacia , Masculino , Femenino , Humanos , Pérdida Auditiva Sensorineural/genética , Síndrome , Hermanos , Análisis por Micromatrices , Proteínas Serina-Treonina Quinasas , Proteínas Supresoras de Tumor
3.
Oral Dis ; 29(4): 1622-1631, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35189017

RESUMEN

OBJECTIVES: The ciliopathies are a wide spectrum of human diseases, which are caused by perturbations in the function of primary cilia. Tooth enamel anomalies are often seen in ciliopathy patients; however, the role of primary cilia in enamel formation remains unclear. MATERIALS AND METHODS: We examined mice with epithelial conditional deletion of the ciliary protein, Ift88, (Ift88fl / fl ;K14Cre). RESULTS: Ift88fl / fl ;K14Cre mice showed premature abrasion in molars. A pattern of enamel rods which is determined at secretory stage, was disorganized in Ift88 mutant molars. Many amelogenesis-related molecules expressing at the secretory stage, including amelogenin and ameloblastin, enamelin, showed significant downregulation in Ift88 mutant molar tooth germs. Shh signaling is essential for amelogenesis, which was found to be downregulated in Ift88 mutant molar at the secretory stage. Application of Shh signaling agonist at the secretory stage partially rescued enamel anomalies in Ift88 mutant mice. CONCLUSION: Findings in the present study indicate that the function of the primary cilia via Ift88 is critical for the secretory stage of amelogenesis through involving Shh signaling.


Asunto(s)
Proteínas del Esmalte Dental , Esmalte Dental , Ratones , Animales , Humanos , Amelogenina/genética , Amelogenina/metabolismo , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Amelogénesis/genética , Proteínas Supresoras de Tumor , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo
4.
Front Immunol ; 13: 1017540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505420

RESUMEN

Introduction: Human pulmonary infection with non-tuberculous mycobacteria (NTM) such as Mycobacterium abscessus (Mabs) occurs in seemingly immunocompetent patients with underlying structural lung disease such as bronchiectasis in which normal ciliary function is perturbed. In addition to alterations in mucociliary clearance, the local immunologic milieu may be altered in patients with structural lung disease, but the nature of these changes and how they relate to NTM persistence remain unclear. Methods: We used a mouse strain containing a conditional floxed allele of the gene IFT88, which encodes for the protein Polaris. Deletion of this gene in adult mice reportedly leads to loss of cilia on lung airway epithelium and to the development of bronchiectasis. In a series of experiments, IFT88 control mice and IFT88 KO mice received different preparations of Mabs lung inocula with lung CFU assessed out to approximately 8 weeks post-infection. In addition, cytokine levels in bronchoalveolar lavage (BAL) fluid, lung T cell subset analysis, and lung histopathology and morphometry were performed at various time points. Results: Mabs embedded in agarose beads persisted in the lungs of IFT88 KO mice out to approximately 8 weeks (54 days), while Mabs agarose beads in the lungs of IFT88 control mice was cleared from the lungs of all mice at this time point. T cells subset analysis showed a decrease in the percentage of CD4+FoxP3+ T cells in the total lymphocyte population in the lungs of IFT88 KO mice relative to IFT88 control mice. Proinflammatory cytokines were elevated in the BAL fluid from infected IFT88 KO mice compared to infected IFT88 control mice, and histopathology showed an increased inflammatory response and greater numbers of granulomas in the lungs of infected IFT88 KO mice compared to the lungs of infected IFT88 control mice. Scanning lung morphometry did not show a significant difference comparing lung airway area and lung airway perimeter between IFT88 KO mice and IFT88 control mice. Discussion: Persistent lung infection in our model was established using Mabs embedded in agarose beads. The utility of using IFT88 mice is that a significant difference in Mabs lung CFU is observed comparing IFT88 KO mice to IFT88 control mice thus allowing for studies assessing the mechanism(s) of Mabs lung persistence. Our finding of minimal differences in lung airway area and lung airway diameter comparing IFT88 KO mice to IFT88 control mice suggests that the development of a proinflammatory lung phenotype in IFT88 KO mice contributes to Mabs lung persistence independent of bronchiectasis. The contribution of cilia to immune regulation is increasingly recognized, and our results suggest that ciliopathy associated with structural lung disease may play a role in NTM pulmonary infection via alteration of the local immunologic lung milieu.


Asunto(s)
Bronquiectasia , Enfermedades Pulmonares , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Adulto , Humanos , Ratones , Animales , Mycobacterium abscessus/genética , Tórax , Infecciones por Mycobacterium no Tuberculosas/genética , Micobacterias no Tuberculosas , Citocinas , Pulmón
5.
Am J Respir Cell Mol Biol ; 67(2): 188-200, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608953

RESUMEN

We previously identified a novel molecular subtype of idiopathic pulmonary fibrosis (IPF) defined by increased expression of cilium-associated genes, airway mucin gene MUC5B, and KRT5 marker of basal cell airway progenitors. Here we show the association of MUC5B and cilia gene expression in human IPF airway epithelial cells, providing further rationale for examining the role of cilium genes in the pathogenesis of IPF. We demonstrate increased multiciliogenesis and changes in motile cilia structure of multiciliated cells both in IPF and bleomycin lung fibrosis models. Importantly, conditional deletion of a cilium gene, Ift88 (intraflagellar transport 88), in Krt5 basal cells reduces Krt5 pod formation and lung fibrosis, whereas no changes are observed in Ift88 conditional deletion in club cell progenitors. Our findings indicate that aberrant injury-activated primary ciliogenesis and Hedgehog signaling may play a causative role in Krt5 pod formation, which leads to aberrant multiciliogenesis and lung fibrosis. This implies that modulating cilium gene expression in Krt5 cell progenitors is a potential therapeutic target for IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Bleomicina/toxicidad , Cilios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , Transducción de Señal
6.
Anat Sci Int ; 97(4): 409-422, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35435578

RESUMEN

Primary cilia are ubiquitous hair-like organelles, usually projecting from the cell surface. They are essential for the organogenesis and homeostasis of various physiological functions, and their dysfunction leads to a plethora of human diseases. However, there are few reports on the role of primary cilia in the immune system; therefore, we focused on their role in the thymus that nurtures immature lymphocytes to full-fledged T cells. We detected primary cilia on the thymic epithelial cell (TEC) expressing transforming growth factor ß (TGF-ß) receptor in the basal body, and established a line of an intraflagellar transport protein 88 (Ift88) knockout mice lacking primary cilia in TECs (Ift88-TEC null mutant) to clarify their precise role in thymic organogenesis and T-cell differentiation. The Ift88-TEC null mutant mice showed stunted cilia or lack of cilia in TECs. The intercellular contact between T cells and the "thymic synapse" of medullary TECs was slightly disorganized in Ift88-TEC null mutants. Notably, the CD4- and CD8-single positive thymocyte subsets increased significantly. The absence or disorganization of thymic cilia downregulated the TGF-ß signaling cascade, increasing the number of single positive thymocytes. To our knowledge, this is the first study reporting the physiological role of primary cilia and Ift88 in regulating the differentiation of the thymus and T cells.


Asunto(s)
Células Epiteliales , Linfocitos T , Proteínas Supresoras de Tumor , Envejecimiento , Animales , Diferenciación Celular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/citología , Timo/citología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Supresoras de Tumor/genética
7.
Taiwan J Obstet Gynecol ; 61(2): 299-305, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35361391

RESUMEN

OBJECTIVE: During early pregnancy, the proliferation placental cells is crucial for proper implantation and formation of maternal-fetal circulation. Platelet-derived growth factor-AA (PDGF-AA) has been detected in placenta during early pregnancy; however, the role of PDGF-AA in placental cell growth has not been studied extensively. Primary cilium, a centrosome-based cellular protrusion, is an signaling hub for regulating development and differentiation. Importantly, the receptor of PDGF-AA (Pdgfr-α) is detected in the primary cilium and primary cilia-mediated PDGF-AA signaling regulates development and differentiation. Here we would like to investigate whether PDGF-AA regulates placental cell growth and whether primary cilia play roles in this process. MATERIALS AND METHODS: Human placental choriocarcinoma JAR cells were treated with PDGF-AA followed by examining cell growth. Primary cilia and subcellular localization of Pdgfr-α were observed by immunofluorescence staining. Manipulation of primary cilia was performed by treating cells with roscovitine or by transfecting cells with siRNA against IFT88. RESULTS: Here we showed that PDGF-AA induced JAR cell proliferation. In addition, JAR cells grew primary cilia where Pdgfr-α was detected. More importantly, pharmacological inhibition of primary cilia formation or depletion of cilia-related gene, IFT88, alleviated PDGF-AA induced JAR cell proliferation. CONCLUSION: Thus, our study show that PDGF-AA facilitates human placental choriocarcinomaJARcell growth via primary cilia.


Asunto(s)
Coriocarcinoma , Cilios , Proliferación Celular , Femenino , Humanos , Placenta , Factor de Crecimiento Derivado de Plaquetas/farmacología , Embarazo
8.
Physiol Rep ; 10(5): e15206, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35274831

RESUMEN

Loss of nephron primary cilia due to disruption of the Ift88 gene results in sex- and age-specific phenotypes involving renal cystogenesis, blood pressure (BP) and urinary Na+ excretion. Previous studies demonstrated that male mice undergoing induction of nephron-specific Ift88 gene disruption at 2 months of age developed reduced BP and increased salt-induced natriuresis when pre-cystic (2 months post-induction) and became hypertensive associated with frankly cystic kidneys by 9 months post-induction; in contrast, female Ift88 KO mice manifested no unique phenotype 2 months post-induction and had mildly reduced BP 9 months post-induction. The current study utilized these Ift88 KO mice to investigate associated changes in renal Na+ transporter and channel protein expression. At 2 months post-induction, pre-cystic male Ift88 KO mice had reduced high salt diet associated total NKCC2 levels while female mice had no alterations in Na+ transporters or channels. At 9 months post-induction, cystic male Ift88 KO mice had increased total and phosphorylated NHE3 levels together with reduced NKCC2, phosphorylated and/or total NCC, and ENaC-α expression on normal and high salt diets. In contrast, female Ift88 KO mice at 9 months post-induction had no changes in Na+ transporters or channels beyond an increase in phosphorylated-NCC during high salt intake. Thus, reduced BP in pre-cystic, and elevated BP in renal cystic, male Ift88 KO mice are associated with unique sex-dependent changes in nephron Na+ transporter/channel expression.


Asunto(s)
Quistes , Hipertensión , Animales , Presión Sanguínea/fisiología , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Nefronas/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo
9.
Dev Biol ; 485: 50-60, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35257720

RESUMEN

Sperm flagella formation is a complex process that requires cargo transport systems to deliver structural proteins for sperm flagella assembly. Two cargo transport systems, the intramanchette transport (IMT) and intraflagellar transport (IFT), have been shown to play critical roles in spermatogenesis and sperm flagella formation. IMT exists only in elongating spermatids, while IFT is responsible for delivering cargo proteins in the developing cilia/flagella. Our laboratory discovered that mouse meiosis expressed gene 1 (MEIG1), a gene essential for sperm flagella formation, is present in the manchette of elongating spermatids. IFT complex components, IFT20 and IFT88, are also present in the manchette of the elongating spermatids. Given that the three proteins have the same localization in elongating spermatids and are essential for normal spermatogenesis and sperm flagella formation, we hypothesize that they are in the same complex, which is supported by co-immunoprecipitation assay using mouse testis extracts. In the Meig1 knockout mice, neither IFT20 nor IFT88 was present in the manchette in the elongating spermatids even though their localizations were normal in spermatocytes and round spermatids. However, MEIG1 was still present in the manchette in elongating spermatids of the conditional Ift20 knockout mice. In the sucrose gradient assay, both IFT20 and IFT88 proteins drifted from higher density fractions to lighter ones in the Meig1 knockout mice. MEIG1 distribution was not changed in the conditional Ift20 knockout mice. Finally, testicular IFT20 and IFT88 protein and mRNA levels were significantly reduced in Meig1 knockout mice. Our data suggests that MEIG1 is a key protein in determining the manchette localization of certain IFT components, including IFT20 and IFT88, in male germ cells.


Asunto(s)
Espermátides , Espermatogénesis , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Masculino , Meiosis , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Proteínas/metabolismo , Cola del Espermatozoide/metabolismo , Espermátides/metabolismo , Espermatocitos , Espermatogénesis/genética
10.
Biochem Biophys Res Commun ; 584: 19-25, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34753064

RESUMEN

The primary cilium is a sensory organelle at the cell surface with integral functions in cell signaling. It contains a microtubular axoneme that is rooted in the basal body (BB) and serves as a scaffold for the movement of intraflagellar transport (IFT) particles by Kinesin-2 along the cilium. Ift88, a member of the anterograde moving IFT-B1 complex, as well as the Kinesin-2 subunit Kif3a are required for cilia formation. To facilitate signaling, the cilium restricts the access of molecules to its membrane ("ciliary gate"). This is thought to be mediated by cytoskeletal barriers ("subciliary domains") originating from the BB subdistal/distal appendages, the periciliary membrane compartment (PCMC) as well as the transition fibers and zone (TF/TZ). The PCMC is a poorly characterized membrane domain surrounding the ciliary base with exclusion of certain apical membrane proteins. Here we describe that Ift88, but not Kinesin-2, is required for the establishment of the PCMC in MDCK cells. Likewise, in C. elegans mutants of the Ift88 ortholog osm-5 fail to establish the PCMC, while Kinesin-2 deficient osm-3 mutants form PCMCs normally. Furthermore, disruption of IFT-B1 into two subcomplexes, while disrupting ciliogenesis, does not interfere with PCMC formation. Our findings suggest that cilia are not a prerequisite for the formation of the PCMC, and that separate machineries with partially overlapping functions are required for the establishment of each.


Asunto(s)
Membrana Celular/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Cinesinas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Cuerpos Basales/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Perros , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal
11.
J Am Soc Nephrol ; 32(9): 2210-2222, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34045314

RESUMEN

BACKGROUND: Primary cilia regulation of renal function and BP in health and disease is incompletely understood. This study investigated the effect of nephron ciliary loss on renal physiology, BP, and ensuing cystogenesis. METHODS: Mice underwent doxycycline (DOX)-inducible nephron-specific knockout (KO) of the Ift88 gene at 2 months of age using a Cre-LoxP strategy. BP, kidney function, and renal pathology were studied 2 and 9 months after DOX (Ift88 KO) or vehicle (control). RESULTS: At 2 months post-DOX, male, but not female, Ift88 KO, compared with sex-matched control, mice had reduced BP, enhanced salt-induced natriuresis, increased urinary nitrite and nitrate (NOx) excretion, and increased kidney NOS3 levels, which localized to the outer medulla; the reductions in BP in male mice were prevented by L-NAME. At 9 months post-DOX, male, but not female, Ift88 KO mice had polycystic kidneys, elevated BP, and reduced urinary NOx excretion. No differences were observed in plasma renin concentration, plasma aldosterone, urine vasopressin, or urine PGE2 between Ift88 KO and control mice at 2 or 9 months post-DOX. CONCLUSIONS: Nephron cilia disruption in male, but not female, mice (1) reduces BP prior to cyst formation, (2) increases NOx production that may account for the lower BP prior to cyst formation, and (3) induces polycystic kidneys that are associated with hypertension and reduced renal NO production.


Asunto(s)
Presión Sanguínea/fisiología , Nefronas/fisiopatología , Enfermedades Renales Poliquísticas/etiología , Proteínas Supresoras de Tumor/genética , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Natriuresis , Nitratos/orina , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitritos/orina , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Factores Sexuales
12.
Kidney Int ; 98(5): 1225-1241, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32610050

RESUMEN

Polycystin-1 (PC1) and -2 (PC2), products of the PKD1 and PKD2 genes, are mutated in autosomal dominant polycystic kidney disease (ADPKD). They localize to the primary cilia; however, their ciliary function is in dispute. Loss of either the primary cilia or PC1 or PC2 causes cyst formation. However, loss of both cilia and PC1 or PC2 inhibits cyst growth via an unknown pathway. To help define a pathway, we studied cilium length in human and mouse kidneys. We found cilia are elongated in kidneys from patients with ADPKD and from both Pkd1 and Pkd2 knockout mice. Cilia elongate following polycystin inactivation. The role of intraflagellar transport proteins in Pkd1-deficient mice is also unknown. We found that inactivation of Ift88 (a gene expressing a core component of intraflagellar transport) in Pkd1 knockout mice, as well as in a new Pkd2 knockout mouse, shortened the elongated cilia, impeded kidney and liver cystogenesis, and reduced cell proliferation. Multi-stage in vivo analysis of signaling pathways revealed ß-catenin activation as a prominent, early, and sustained event in disease onset and progression in Pkd2 single knockout but not in Pkd2.Ift88 double knockout mouse kidneys. Additionally, AMPK, mTOR and ERK pathways were altered in Pkd2 single knockout mice but only AMPK and mTOR pathway alteration were rescued in Pkd2.Ift88 double knockout mice. Thus, our findings advocate an essential role of polycystins in the structure and function of the primary cilia and implicate ß-catenin as a key inducer of cystogenesis downstream of the primary cilia. Our data suggest that modulating cilium length and/or its associated signaling events may offer novel therapeutic approaches for ADPKD.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Cilios , Quistes/genética , Humanos , Riñón , Hígado , Ratones , Ratones Noqueados , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética
13.
Am J Physiol Renal Physiol ; 318(5): F1306-F1312, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32308017

RESUMEN

Defects in the function of primary cilia are commonly associated with the development of renal cysts. On the other hand, the intact cilium appears to contribute a cystogenic signal whose effectors remain unclear. As integrin-ß1 is required for the cystogenesis caused by the deletion of the polycystin 1 gene, we asked whether it would be similarly important in the cystogenetic process caused by other ciliary defects. We addressed this question by investigating the effect of integrin-ß1 deletion in a ciliopathy genetic model in which the Ift88 gene, a component of complex B of intraflagellar transport that is required for the proper assembly of cilia, is specifically ablated in principal cells of the collecting ducts. We showed that the renal cystogenesis caused by loss of Ift88 is prevented when integrin-ß1 is simultaneously depleted. In parallel, pathogenetic manifestations of the disease, such as increased inflammatory infiltrate and fibrosis, were also significantly reduced. Overall, our data indicate that integrin-ß1 is also required for the renal cystogenesis caused by ciliary defects and point to integrin-ß1-controlled pathways as common drivers of the disease and as possible targets to interfere with the cystogenesis caused by ciliary defects.


Asunto(s)
Cilios/metabolismo , Integrina beta1/metabolismo , Enfermedades Renales Quísticas/metabolismo , Riñón/metabolismo , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Cilios/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Mediadores de Inflamación/metabolismo , Integrina beta1/genética , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Enfermedades Renales Quísticas/prevención & control , Macrófagos/metabolismo , Macrófagos/patología , Ratones Noqueados , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1865(10): 2694-2705, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31348989

RESUMEN

Leber congenital amaurosis (LCA) is the most serious form of inherited retinal dystrophy that leads to blindness or severe visual impairment within a few months after birth. Approximately 1-2% of the reported cases are caused by mutations in the LCA5 gene. This gene encodes a ciliary protein called LCA5 that is localized to the connecting cilium of photoreceptors. The retinal phenotypes caused by LCA5 mutations and the underlying pathological mechanisms are still not well understood. In this study, we knocked out the lca5 gene in zebrafish using CRISPR/Cas9 technology. An early onset visual defect is detected by the ERG in 7 dpf lca5-/- zebrafish. Histological analysis by HE staining and immunofluorescence reveal progressive degeneration of rod and cone photoreceptors, with a pattern that cones are more severely affected than rods. In addition, ultrastructural analysis by transmission electron microscopy shows disordered and broken membrane discs in rods' and cones' outer segments, respectively. In our lca5-/- zebrafish, the red-cone opsin and cone α-transducin are selectively mislocalized to the inner segment and synaptic terminal. Moreover, we found that Ift88, a key component of the intraflagellar transport complex, is retained in the outer segments. These data suggest that the intraflagellar transport complex-mediated outer segment protein trafficking might be impaired due to lca5 deletion, which finally leads to a type of retinal degeneration mimicking the phenotype of cone-rod dystrophy in human. Our work provides a novel animal model to study the physiological function of LCA5 and develop potential treatments of LCA.


Asunto(s)
Distrofias de Conos y Bastones/genética , Predisposición Genética a la Enfermedad/genética , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Transporte de Proteínas/fisiología , Pez Cebra/genética , Animales , Sistemas CRISPR-Cas , Cilios/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Técnicas de Inactivación de Genes , Humanos , Amaurosis Congénita de Leber/patología , Proteínas Asociadas a Microtúbulos , Fenotipo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
15.
Birth Defects Res ; 111(11): 659-665, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30953423

RESUMEN

BACKGROUND: Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect with multifactorial etiology. Genetic studies have identified numerous gene variants in association with NSCLP. IFT88 (intraflagellar transport 88) has been suggested to play a major role in craniofacial development, as Ift88 mutant mice exhibit cleft palate and mutations in IFT88 were identified in individuals with NSCLP. OBJECTIVE: To investigate the association of IFT88 single nucleotide gene variants (SNVs) with NSCLP in a large family data set consisting of non-Hispanic white (NHW) and Hispanic families. METHODS: Nine SNVs in/nearby IFT88 were genotyped in 482 NHW families and 301 Hispanic NSCLP families. Genotyping was performed using TaqMan® chemistry. Single- and pairwise-SNV association analyses were performed for all families stratified by ethnicity and family history of NSCLP using the family-based association test (FBAT), and association in the presence of linkage (APL). Bonferroni correction was used to adjust for multiple testing and p values ≤.0055 were considered statistically significant. RESULTS: Significant association was found between IFT88 rs9509311 and rs2497490 and NSCLP in NHW all families (p = .004 and .005, respectively), while nominal associations were found for rs7998361 and rs9509307 (p < .05). Pairwise association analyses also showed nominal associations between NSCLP in both NHW and Hispanic data sets (p < .05). No association was found between individual variants in IFT88 and NSCLP in Hispanics. CONCLUSIONS: Our results suggest that variation in IFT88 may contribute to NSCLP risk, particularly in multiplex families from a non-Hispanic white population.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Proteínas Supresoras de Tumor/genética , Etnicidad , Predisposición Genética a la Enfermedad , Genotipo , Hispánicos o Latinos/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Proteínas Supresoras de Tumor/metabolismo , Población Blanca/genética
16.
Arch Oral Biol ; 101: 43-50, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30878609

RESUMEN

OBJECTIVE: The development of the maxillary bone is under strict molecular control because of its complicated structure. Primary cilia play a critical role in craniofacial development, since defects in primary cilia are known to cause congenital craniofacial dysmorphologies as a wide spectrum of human diseases: the ciliopathies. The primary cilia also are known to regulate bone formation. However, the role of the primary cilia in maxillary bone development is not fully understood. DESIGN: To address this question, we generated mice with a mesenchymal conditional deletion ofIft88 using the Wnt1Cre mice (Ift88fl/fl;Wnt1Cre). The gene Ift88 encodes a protein that is required for the function and formation of primary cilia. RESULTS: It has been shown thatIft88fl/fl;Wnt1Cre mice exhibit cleft palate. Here, we additionally observed excess bone formation in the Ift88 mutant maxillary process. We also found ectopic apoptosis in the Ift88 mutant maxillary process at an early stage of development. To investigate whether the ectopic apoptosis is related to the Ift88 mouse maxillary phenotypes, we generated Ift88fl/fl;Wnt1Cre;p53-/- mutants to reduce apoptosis. The Ift88fl/fl;Wnt1Cre;p53-/- mice showed no excess bone formation, suggesting that the cells evading apoptosis by the presence of Ift88 in wild-type mice limit bone formation in maxillary development. On the other hand, the palatal cleft was retained in the Ift88fl/fl;Wnt1Cre;p53-/- mice, indicating that the excess bone formation or abnormal apoptosis was independent of the cleft palate phenotype in Ift88 mutant mice. CONCLUSIONS: Ift88 limits bone formation in the maxillary process by suppressing apoptosis.


Asunto(s)
Apoptosis , Desarrollo Óseo , Cilios , Osteogénesis , Proteínas Supresoras de Tumor/genética , Animales , Eliminación de Gen , Humanos , Maxilar , Ratones , Ratones Noqueados , Hueso Paladar
17.
Oncotarget ; 8(25): 40693-40704, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28489570

RESUMEN

We performed transcriptome sequencing for hepatocellular carcinoma (HCC) and adjacent non-tumorous tissues to investigate the molecular basis of HCC. Nine HCC patients were recruited and differentially expressed genes (DEGs) were identified. Candidate fusion transcripts were also identified. A total of 1943 DEGs were detected, including 690 up-regulated and 1253 down-regulated genes, and enriched in ten pathways including cell cycle, DNA replication, p53, complement and coagulation cascades, etc. Seven candidate fusion genes were detected and CRYL1-IFT88 was successfully validated in the discovery sequencing sample and another 5 tumor samples with the recurrent rate of about 9.52% (6/63). The full length of CRYL1-IFT88 was obtained by 3' and 5' RACE. The function of the fusion transcript is closed to CRYL1 because it contained most of domain of CRYL1. According to the bioinformatics analysis, IFT88, reported as a tumor suppressor, might be seriously depressed in the tumor cell with this fusion because the transcript structure of IFT88 was totally changed. The function depression of IFT88 caused by gene fusion CRYL1-IFT88 might be associated with tumorigenesis or development of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Cristalinas/genética , Perfilación de la Expresión Génica , Neoplasias Hepáticas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , Secuencia de Bases , Femenino , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Mech Dev ; 139: 10-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26825015

RESUMEN

The primary cilium, a microtubule-based organelle found in most cells, is a centre for mechano-sensing fluid movement and cellular signalling, notably through the Hedgehog pathway. We recently found that each lens fibre cell has an apically situated primary cilium that is polarised to the side of the cell facing the anterior pole of the lens. The direction of polarity is similar in neighbouring cells so that in the global view, lens fibres exhibit planar cell polarity (PCP) along the equatorial-anterior polar axis. Ciliogenesis has been associated with the establishment of PCP, although the exact relationship between PCP and the role of cilia is still controversial. To test the hypothesis that the primary cilia have a role in coordinating the precise alignment/orientation of the fibre cells, IFT88, a key component of the intraflagellar transport (IFT) complex, was removed specifically from the lens at different developmental stages using several lens-specific Cre-expressing mouse lines (MLR10- and LR-Cre). Irrespective of which Cre-line was adopted, both demonstrated that in IFT88-depleted cells, the ciliary axoneme was absent or substantially shortened, confirming the disruption of primary cilia formation. However no obvious histological defects were detected even when IFT88 was removed from the lens placode as early as E9.5. Specifically, the lens fibres aligned/oriented towards the poles to form the characteristic Y-shaped sutures as normal. Consistent with this, in primary lens epithelial explants prepared from these conditional knockout mouse lenses, the basal bodies still showed polarised localisation at the apical surface of elongating cells upon FGF-induced fibre differentiation. We further investigated the lens phenotype in knockouts of Bardet-Biedl Syndrome (BBS) proteins 4 and 8, the components of the BBSome complex which modulate ciliary function. In these BBS4 and 8 knockout lenses, again we found the pattern of the anterior sutures formed by the apical tips of elongating/migrating fibres were comparable to the control lenses. Taken together, these results indicate that primary cilia do not play an essential role in the precise cellular alignment/orientation of fibre cells. Thus, it appears that in the lens cilia are not required to establish PCP.


Asunto(s)
Cilios/fisiología , Cristalino/ultraestructura , Animales , Polaridad Celular , Células Cultivadas , Proteínas del Citoesqueleto , Células Epiteliales/ultraestructura , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Supresoras de Tumor/genética
19.
Dev Biol ; 409(1): 55-71, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26542012

RESUMEN

Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia.


Asunto(s)
Cilios/metabolismo , Neuronas Dopaminérgicas/metabolismo , Embrión de Mamíferos/citología , Proteínas Hedgehog/metabolismo , Mesencéfalo/citología , Mesencéfalo/embriología , Neurogénesis , Animales , Cilios/ultraestructura , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuroglía/metabolismo , Fenotipo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Receptor Smoothened , Células Madre/citología , Células Madre/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
20.
J Biol Chem ; 290(20): 12765-78, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25825494

RESUMEN

Anterograde intraflagellar transport (IFT) employing kinesin-2 molecular motors has been implicated in trafficking of photoreceptor outer segment proteins. We generated embryonic retina-specific (prefix "emb") and adult tamoxifen-induced (prefix "tam") deletions of KIF3a and IFT88 in adult mice to study photoreceptor ciliogenesis and protein trafficking. In (emb)Kif3a(-/-) and in (emb)Ift88(-/-) mice, basal bodies failed to extend transition zones (connecting cilia) with outer segments, and visual pigments mistrafficked. In contrast, (tam)Kif3a(-/-) and (tam)Ift88(-/-) photoreceptor axonemes disintegrated slowly post-induction, starting distally, but rhodopsin and cone pigments trafficked normally for more than 2 weeks, a time interval during which the outer segment is completely renewed. The results demonstrate that visual pigments transport to the retinal outer segment despite removal of KIF3 and IFT88, and KIF3-mediated anterograde IFT is responsible for photoreceptor transition zone and axoneme formation.


Asunto(s)
Axonema/metabolismo , Cinesinas/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Rodopsina/metabolismo , Animales , Axonema/genética , Cuerpos Basales/metabolismo , Cinesinas/genética , Ratones , Ratones Noqueados , Transporte de Proteínas/fisiología , Células Fotorreceptoras Retinianas Conos/citología , Rodopsina/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA