Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 918
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(41): e2415934121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39356664

RESUMEN

The propeller-shaped blades of the PIEZO1 and PIEZO2 ion channels partition into the plasma membrane and respond to indentation or stretching of the lipid bilayer, thus converting mechanical forces into signals that can be interpreted by cells, in the form of calcium flux and changes in membrane potential. While PIEZO channels participate in diverse physiological processes, from sensing the shear stress of blood flow in the vasculature to detecting touch through mechanoreceptors in the skin, the molecular details that enable these mechanosensors to tune their responses over a vast dynamic range of forces remain largely uncharacterized. To survey the molecular landscape surrounding PIEZO channels at the cell surface, we employed a mass spectrometry-based proteomic approach to capture and identify extracellularly exposed proteins in the vicinity of PIEZO1. This PIEZO1-proximal interactome was enriched in surface proteins localized to cell junctions and signaling hubs within the plasma membrane. Functional screening of these interaction candidates by calcium imaging and electrophysiology in an overexpression system identified the adhesion molecule CADM1/SynCAM that slows the inactivation kinetics of PIEZO1 with little effect on PIEZO2. Conversely, we found that CADM1 knockdown accelerates inactivation of endogenous PIEZO1 in Neuro-2a cells. Systematic deletion of CADM1 domains indicates that the transmembrane region is critical for the observed effects on PIEZO1, suggesting that modulation of inactivation is mediated by interactions in or near the lipid bilayer.


Asunto(s)
Canales Iónicos , Canales Iónicos/metabolismo , Canales Iónicos/genética , Humanos , Molécula 1 de Adhesión Celular/metabolismo , Molécula 1 de Adhesión Celular/genética , Membrana Celular/metabolismo , Células HEK293 , Proteómica/métodos , Mecanotransducción Celular , Animales
2.
Proc Natl Acad Sci U S A ; 121(41): e2409097121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39365813

RESUMEN

The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain. However, this cleft is not conserved in HyNaCs. Here, we combined molecular modeling and site-directed mutagenesis and identified a putative binding pocket for Hydra-RFamides in the extracellular domain of the heterotrimeric HyNaC2/3/5. This pocket localizes to only one of the three subunit interfaces, indicating that this trimeric ion channel binds a single peptide ligand. We engineered an unnatural amino acid at the putative binding pocket entrance, which allowed covalent tethering of Hydra RFamide to the channel, thereby trapping the channel in an open conformation. The identified pocket localizes to the same region as the acidic pocket of acid-sensing ion channels (ASICs), which binds peptide ligands. The pocket in HyNaCs is less acidic, and both electrostatic and hydrophobic interactions contribute to peptide binding. Collectively, our results reveal a conserved ligand-binding pocket in HyNaCs and ASICs and indicate independent evolution of peptide-binding cavities in the two subgroups of peptide-gated ion channels.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Hydra , Animales , Humanos , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/química , Secuencia de Aminoácidos , Sitios de Unión , FMRFamida/metabolismo , Hydra/metabolismo , Hydra/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Neuropéptidos/metabolismo , Neuropéptidos/genética , Neuropéptidos/química , Péptidos/metabolismo , Péptidos/química , Unión Proteica , Xenopus
3.
Br J Pharmacol ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402010

RESUMEN

PIEZO1 is a eukaryotic membrane protein that assembles as trimers to form calcium-permeable, non-selective cation channels with exquisite capabilities for mechanical force sensing and transduction of force into effect in diverse cell types that include blood cells, endothelial cells, epithelial cells, fibroblasts and stem cells and diverse systems that include bone, lymphatics and muscle. The channel has wide-ranging roles and is considered as a target for novel therapeutics in ailments spanning cancers and cardiovascular, dental, gastrointestinal, hepatobiliary, infectious, musculoskeletal, nervous system, ocular, pregnancy, renal, respiratory and urological disorders. The identification of PIEZO1 modulators is in its infancy but useful experimental tools emerged for activating, and to a lesser extent inhibiting, the channels. Elementary structure-activity relationships are known for the Yoda series of small molecule agonists, which show the potential for diverse physicochemical and pharmacological properties. Intriguing effects of Yoda1 include the stimulated removal of excess cerebrospinal fluid. Despite PIEZO1's broad expression, opportunities are suggested for selective positive or negative modulation without intolerable adverse effects. Here we provide a focused, non-systematic, narrative review of progress with this pharmacology and discuss potential future directions for research in the area.

4.
ACS Appl Mater Interfaces ; 16(39): 52059-52067, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39307971

RESUMEN

The spatiotemporal regulation of ion transport in living cell membrane channels has immense potential for providing novel therapeutic approaches for the treatment of currently intractable diseases. So far, most strategies suffer from uncontrolled ion transport and limited tumor therapy effects. On the premise of low toxicity to healthy tissues, enhancing the degree of ion overloading and the effect of tumor treatment still remains a challenging concern. Herein, an innovative strategy for synergistic ion channel therapy and hypoxic microenvironment activated chemotherapy is proposed. Biocompatible AQ4N/black phosphorus quantum dot clusters@liposomes (AQ4N/BPCs@Lip) nanocomplexes are site-specifically immobilized on the living cell membrane by a metabolic labeling strategy, eliminating the need for modifying or genetically encoding channel structures. Ascribing to the localized temperature increase of BPCs under NIR light irradiation, Ca2+ overinflux can be remotely controlled and the overloading degree was increased; moreover, the local released AQ4N can only be activated in the tumor cell, while it has no toxicity to normal cells. Compared with single intracellular Ca2+ overloading, the tumor cell viabilities decrease 2-fold with synergetic Ca2+ overloading-induced ion channel therapy and hypoxic microenvironment activated chemotherapeutics. Our study demonstrates the example of a remote-controlled ion influx and drug delivery system for tumor therapy.


Asunto(s)
Fósforo , Puntos Cuánticos , Microambiente Tumoral , Puntos Cuánticos/química , Humanos , Fósforo/química , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Liposomas/química , Calcio/metabolismo , Calcio/química , Línea Celular Tumoral , Canales Iónicos/metabolismo , Canales Iónicos/química , Supervivencia Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
5.
Mar Drugs ; 22(9)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39330263

RESUMEN

Acid-sensing ion channels (ASICs), which act as proton-gating sodium channels, have garnered attention as pharmacological targets. ASIC1a isoform, notably prevalent in the central nervous system, plays an important role in synaptic plasticity, anxiety, neurodegeneration, etc. In the peripheral nervous system, ASIC1a shares prominence with ASIC3, the latter well established for its involvement in pain signaling, mechanical sensitivity, and inflammatory hyperalgesia. However, the precise contributions of ASIC1a in peripheral functions necessitate thorough investigation. To dissect the specific roles of ASICs, peptide ligands capable of modulating these channels serve as indispensable tools. Employing molecular modeling, we designed the peptide targeting ASIC1a channel from the sea anemone peptide Ugr9-1, originally targeting ASIC3. This peptide (A23K) retained an inhibitory effect on ASIC3 (IC50 9.39 µM) and exhibited an additional inhibitory effect on ASIC1a (IC50 6.72 µM) in electrophysiological experiments. A crucial interaction between the Lys23 residue of the A23K peptide and the Asp355 residue in the thumb domain of the ASIC1a channel predicted by molecular modeling was confirmed by site-directed mutagenesis of the channel. However, A23K peptide revealed a significant decrease in or loss of analgesic properties when compared to the wild-type Ugr9-1. In summary, using A23K, we show that negative modulation of the ASIC1a channel in the peripheral nervous system can compromise the efficacy of an analgesic drug. These results provide a compelling illustration of the complex balance required when developing peripheral pain treatments targeting ASICs.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Analgésicos , Péptidos , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Analgésicos/farmacología , Analgésicos/química , Péptidos/farmacología , Péptidos/química , Ratones , Anémonas de Mar , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Dolor/tratamiento farmacológico , Masculino , Modelos Moleculares , Mutagénesis Sitio-Dirigida
6.
Adv Cancer Res ; 164: 93-110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39306371

RESUMEN

Cancer remains a complex and multifaceted disease, characterized by a myriad of molecular and cellular alterations that collectively drive tumorigenesis and progression. Hanahan and Weinberg's concept of cancer hallmarks has offered a framework for comprehending the various but related aspects of cancer biology. Initially defined as a set of six hallmarks, further investigation has added more characteristics to this list that also contribute to the malignant phenotype. Changes in cellular energetics, proliferative signaling, and resistance to cell death are three of these hallmarks that have been thoroughly investigated and described. But new discoveries in the field of cancer biology have brought attention to the importance of another aspect of the biology of cancer: the dysregulation of membrane potential.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Animales , Potenciales de la Membrana/fisiología , Transducción de Señal
7.
Neurosci Bull ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231899

RESUMEN

In neurons and myocytes, selective ion channels in the plasma membrane play a pivotal role in transducing chemical or sensory stimuli into electrical signals, underpinning neural and cardiac functionality. Recent advancements in biomedical research have increasingly spotlighted the interaction between ion channels and electromagnetic fields, especially terahertz (THz) radiation. This review synthesizes current findings on the impact of THz radiation, known for its deep penetration and non-ionizing properties, on ion channel kinetics and membrane fluid dynamics. It is organized into three parts: the biophysical effects of THz exposure on cells, the specific modulation of ion channels by THz radiation, and the potential pathophysiological consequences of THz exposure. Understanding the biophysical mechanisms underlying these effects could lead to new therapeutic strategies for diseases.

8.
Cell Commun Signal ; 22(1): 422, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223673

RESUMEN

Post-translational SUMOylation of nuclear and cytosolic proteins maintains homeostasis in eukaryotic cells and orchestrates programmed responses to changes in metabolic demand or extracellular stimuli. In excitable cells, SUMOylation tunes the biophysical properties and trafficking of ion channels. Ion channel SUMOylation status is determined by the opposing enzyme activities of SUMO ligases and deconjugases. Phosphorylation also plays a permissive role in SUMOylation. SUMO deconjugases have been identified for several ion channels, but their corresponding E3 ligases remain unknown. This study shows PIAS3, a.k.a. KChAP, is a bona fide SUMO E3 ligase for Kv4.2 and HCN2 channels in HEK cells, and endogenous Kv4.2 and Kv4.3 channels in cardiomyocytes. PIAS3-mediated SUMOylation at Kv4.2-K579 increases channel surface expression through a rab11a-dependent recycling mechanism. PKA phosphorylation at Kv4.2-S552 reduces the current mediated by Kv4 channels in HEK293 cells, cardiomyocytes, and neurons. This study shows PKA mediated phosphorylation blocks Kv4.2-K579 SUMOylation in HEK cells and cardiomyocytes. Together, these data identify PIAS3 as a key downstream mediator in signaling cascades that control ion channel surface expression.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Miocitos Cardíacos , Proteínas Inhibidoras de STAT Activados , Canales de Potasio Shal , Sumoilación , Humanos , Células HEK293 , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Animales , Miocitos Cardíacos/metabolismo , Canales de Potasio Shal/metabolismo , Canales de Potasio Shal/genética , Fosforilación , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
9.
Int J Nanomedicine ; 19: 7709-7727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099788

RESUMEN

Introduction: Dysregulated calcium homeostasis and consequentially aberrant Ca2+ signalling could enhance survival, proliferation and metastasis in various cancers. Despite rapid development in exploring the ion channel functions in relation to cancer, most of the mechanisms accounting for the impact of ion channel modulators have yet to be fully clarified. Although harnessing small interfering RNA (siRNA) to specifically silence gene expression has the potential to be a pivotal approach, its success in therapeutic intervention is dependent on an efficient delivery system. Nanoparticles have the capacity to strongly bind siRNAs. They remain in the circulation and eventually deliver the siRNA payload to the target organ. Afterward, they interact with the cell surface and enter the cell via endocytosis. Finally, they help escape the endo-lysosomal degradation system prior to unload the siRNAs into cytosol. Carbonate apatite (CA) nanocrystals primarily is composed of Ca2+, carbonate and phosphate. CA possesses both anion and cation binding domains to target negatively charged siRNA molecules. Methods: Hybrid CA was synthesized by complexing CA NPs with a hydrophilic polysaccharide - hyaluronic acid (HA). The average diameter of the composite particles was determined using Zetasizer and FE-SEM and their zeta potential values were also measured. Results and Discussion: The stronger binding affinity and cellular uptake of a fluorescent siRNA were observed for HA-CA NPs as compared to plain CA NPs. Hybrid CA was electrostatically bound individually and combined with three different siRNAs to silence expression of calcium ion channel and transporter genes, TRPC6, TRPM8 and SLC41A1 in a human breast cancer cell line (MCF-7) and evaluate their potential for treating breast cancer. Hybrid NPs carrying TRPC6, TRPM8 and SLC41A1 siRNAs could significantly enhance cytotoxicity both in vitro and in vivo. The resultant composite CA influenced biodistribution of the delivered siRNA, facilitating reduced off target distribution and enhanced breast tumor targetability.


Asunto(s)
Apatitas , Neoplasias de la Mama , Ácido Hialurónico , Nanopartículas , ARN Interferente Pequeño , Humanos , Apatitas/química , Apatitas/farmacología , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/genética , Ácido Hialurónico/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Nanopartículas/química , Femenino , Animales , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Células MCF-7 , Proliferación Celular/efectos de los fármacos , Ratones
10.
Front Pharmacol ; 15: 1408156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119605

RESUMEN

One of the reasons to suggest olive oil consumption for a healthy life is its potential to induce robust lipidomic remodeling through membrane modification by dietary lipids. This remodeling might, in turn, modulate essential lipid-protein interactions while maintaining accurate transmembrane protein/domain orientation. Oleic acid, the primary compound in olive oil, has been suggested as a modulator of ion channel function. In this study, we explored whether this lipid could rescue the trafficking of mutated transmembrane proteins. In our initial approach, we supplemented the cell culture medium of HEK-293 cells expressing cyclic nucleotide channels tagged using green fluorescent protein (CNG-GFP) with olive oil or oleic acid. In addition to wild-type channels, we also expressed R272Q and R278W mutant channels, two non-functional intracellularly retained channels related to retinopathies. We used fluorescence microscopy and patch-clamp in the inside-out configuration to assess changes in the cell localization and function of the tested channels. Our results demonstrated that olive oil and oleic acid facilitated the transport of cyclic nucleotide-gated R272Q mutant channels towards the plasma membrane, rendering them electrophysiologically functional. Thus, our findings reveal a novel property of olive oil as a membrane protein traffic inductor.

11.
Int J Biol Macromol ; 277(Pt 4): 134587, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122079

RESUMEN

The efficacy of single chemotherapy drugs in cancer treatment is often limited. Combining administration targeting multiple targets has emerged as an effective strategy to improve cancer treatment. Ursolic acid, a triterpenoid compound in various natural foods, was identified as a novel inhibitor of lung cancer specific target TMEM16A. The IC50 of ursolic acid on the whole-cell current of TMEM16A was 13.85 ± 1.64 µM. Molecular dynamics simulations and site-directed mutagenesis experiments indicated the binding sites of ursolic acid on TMEM16A as L381, R535, E623, and C625. Ursolic acid significantly inhibited the proliferation and migration of LA795 cells, while promoting cancer cell apoptosis. Mechanistic studies revealed that ursolic acid inhibited lung cancer through the MAPK and EMT pathways, and induced DNA and membrane damage. Next, a degradable and self-repairing hydrogel drug-loading system was designed to enhance the targeting effect of the ursolic acid and cisplatin drug combination. In vivo experiments showed that the hydrogel-loaded ursolic acid and cisplatin enhanced the antitumor activity and reduced the toxicity. This study presents a novel approach of multi-target combination therapy using ursolic acid and cisplatin, combined with the targeted delivery capability of the hydrogel system, which significantly improves the therapeutic efficacy in lung cancer.


Asunto(s)
Cisplatino , Hidrogeles , Neoplasias Pulmonares , Triterpenos , Ácido Ursólico , Triterpenos/farmacología , Triterpenos/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Cisplatino/farmacología , Humanos , Hidrogeles/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ratones , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Simulación de Dinámica Molecular , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos
12.
Sci Rep ; 14(1): 19822, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192025

RESUMEN

Our study probed the differences in ion channel gene expression in the endometrium of women with Recurrent Implantation Failure (RIF) compared to fertile women. We analyzed the relative expression of genes coding for T-type Ca2+, ENaC, CFTR, and KCNQ1 channels in endometrial samples from 20 RIF-affected and 10 control women, aged 22-35, via microarray analysis and quantitative real-time PCR. Additionally, we examined DNA methylation in the regulatory region of KCNQ1 using ChIP real-time PCR. The bioinformatics component of our research included Gene Ontology analysis, protein-protein interaction networks, and signaling pathway mapping to identify key biological processes and pathways implicated in RIF. This led to the discovery of significant alterations in the expression of ion channel genes in RIF women's endometrium, most notably an overexpression of CFTR and reduced expression of SCNN1A, SCNN1B, SCNN1G, CACNA1H, and KCNQ1. A higher DNA methylation level of KCNQ1's regulatory region was also observed in RIF patients. Gene-set enrichment analysis highlighted a significant presence of genes involved with ion transport and membrane potential regulation, particularly in sodium and calcium channel complexes, which are vital for cation movement across cell membranes. Genes were also enriched in broader ion channel and transmembrane transporter complexes, underscoring their potential extensive role in cellular ion homeostasis and signaling. These findings suggest a potential involvement of ion channels in the pathology of implantation failure, offering new insights into the mechanisms behind RIF and possible therapeutic targets.


Asunto(s)
Metilación de ADN , Implantación del Embrión , Endometrio , Humanos , Femenino , Endometrio/metabolismo , Adulto , Implantación del Embrión/genética , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Regulación de la Expresión Génica , Adulto Joven , Canales Iónicos/genética , Canales Iónicos/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Perfilación de la Expresión Génica , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo
13.
Bull Exp Biol Med ; 177(2): 231-234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39093477

RESUMEN

Acute nociceptive pain in mice caused by subcutaneous (intraplantar) injection of TRPV1 ion channel agonist capsaicin (1.6 µg/mouse) and the effects of protein kinase A inhibitor H-89 (0.05 mg/mouse, intraplantar injection) and NMDA receptor channel antagonists MK-801 (7.5 and 15 µg/mouse, topical application) and hemantane (0.5 mg/mouse, topical application) on the pain were assessed. MK-801 and hemantane were found to reduce the duration of the pain response. H-89 did not significantly affect the pain in animals, but preliminary administration of this drug abolished the antinociceptive effect of MK-801 (7.5 µg/mouse) and weakens the effect of hemantane (0.5 mg/mouse).


Asunto(s)
Analgésicos , Capsaicina , Maleato de Dizocilpina , Receptores de N-Metil-D-Aspartato , Animales , Capsaicina/farmacología , Ratones , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Masculino , Maleato de Dizocilpina/farmacología , Analgésicos/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Dolor Nociceptivo/tratamiento farmacológico , Dolor Nociceptivo/inducido químicamente , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos
14.
Front Cell Dev Biol ; 12: 1414935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108834

RESUMEN

Ion channels are integral membrane proteins mediating ion flow in response to changes in their environment. Among the different types of ion channels reported to date, the super-family of TRP channels stands out since its members have been linked to many pathophysiological processes. The family comprises 6 subfamilies and 28 members in mammals, which are widely distributed throughout most tissues and organs and have an important role in several aspects of cellular physiology. It has been evidenced that abnormal expression, post-translational modifications, and channel trafficking are associated with several pathologies, such as cancer, cardiovascular disease, diabetes, and brain disorders, among others. In this review, we present an updated summary of the mechanisms involved in the subcellular trafficking of TRP channels, with a special emphasis on whether different post-translational modifications and naturally occurring mutagenesis affect both expression and trafficking. Additionally, we describe how such changes have been associated with the development and progress of diverse pathologies associated with the gain or loss of functional phenotypes. The study of these processes will not only contribute to a better understanding the role of TRP channels in the different tissues but will also present novel possible therapeutic targets in diseases where their activity is dysregulated.

15.
Heliyon ; 10(12): e33452, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39027429

RESUMEN

Ion channels are widely present in cell membranes, serving as crucial pathways for the movement of ions enter and exit cells. Variations in the expression of ion channels are crucial for regulating cellular functions. Among the genes associated with leukemia, certain genes encode ion channels. When these ion channels experience dysfunction or changes in expression, they can impact the physiological functions and signal transduction of hematopoietic cells, thereby regulating leukemia cell proliferation, differentiation, invasion/migration, and apoptosis. This article will provide a comprehensive review of the research progress on the expression and function of various ion channels in leukemia, thoroughly exploring their roles and mechanisms in the onset and progression of the disease, providing new insights and ideas for identifying potential biomarkers and developing new treatment methods for leukemia, thereby promoting innovations in future leukemia diagnosis and therapy.

16.
Nano Lett ; 24(29): 8834-8842, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38997245

RESUMEN

Fatal dendritic growth in lithium metal batteries is closely related to the composition and thickness of the modified separator. Herein, an ultrathin nanocoating composed of monolayer montmorillonite (MMT), poly(vinyl alcohol) (PVA) on a polypropylene separator is prepared. The MMT was exfoliated into monolayers (only 0.96 nm) by intercalating PVA under ultrasound, followed by cross-linking with glutaraldehyde. The thickness of the nanocoating on the polypropylene separator, as determined using the pull-up method, is only 200-500 nm with excellent properties. As a result, the lithium-symmetric battery composed of it has a low overpotential (only 40 mV) and a long lifespan of more than 7900 h at high current density, because ion transport is unimpeded and Li+ flows uniformly through the ordered ion channels between the MMT layers. Additionally, the separator exhibited excellent cycling stability in Li-S batteries. This study offers a new idea for fabricating ultrathin clay/polymer modified separators for metal anode stable cycling at high current densities.

17.
Toxins (Basel) ; 16(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39057947

RESUMEN

Molecular imaging has revolutionised the field of biomedical research by providing a non-invasive means to visualise and understand biochemical processes within living organisms. Optical fluorescent imaging in particular allows researchers to gain valuable insights into the dynamic behaviour of a target of interest in real time. Ion channels play a fundamental role in cellular signalling, and they are implicated in diverse pathological conditions, making them an attractive target in the field of molecular imaging. Many venom peptides exhibit exquisite selectivity and potency towards ion channels, rendering them ideal agents for molecular imaging applications. In this review, we illustrate the use of fluorescently-labelled venom peptides for disease diagnostics and intraoperative imaging of brain tumours and peripheral nerves. Finally, we address challenges for the development and clinical translation of venom peptides as nerve-targeted imaging agents.


Asunto(s)
Imagen Molecular , Péptidos , Humanos , Animales , Imagen Molecular/métodos , Péptidos/química , Ponzoñas/química , Receptores de Péptidos/metabolismo , Colorantes Fluorescentes/química
18.
Front Cardiovasc Med ; 11: 1374881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045008

RESUMEN

Background: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation. Methods: We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry. Results: In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT). Conclusions: While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.

19.
J Biol Chem ; 300(8): 107568, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39019215

RESUMEN

Acid-sensing ion channel 1 (ASIC1) is critical in acidotoxicity and significantly contributes to neuronal death in cerebral stroke. Pharmacological inhibition of ASIC1 has been shown to reduce neuronal death. However, the potential of utilizing exosomes derived from pluripotent stem cells to achieve inhibition of Asic1 remains to be explored. Developing qualified exosome products with precise and potent active ingredients suitable for clinical application is also ongoing. Here, we adopt small RNA-seq to interrogate the miRNA contents in exosomes of pluripotent stem cell induced mesenchymal stem cell (iMSC). RNA-seq was used to compare the oxygen-glucose deprivation-damaged neurons before and after the delivery of exosomes. We used Western blot to quantify the Asic1 protein abundance in neurons before and after exosome treatment. An in vivo test on rats validated the neuroprotective effect of iMSC-derived exosome and its active potent miRNA hsa-mir-125b-5p. We demonstrate that pluripotent stem cell-derived iMSCs produce exosomes with consistent miRNA contents and sustained expression. These exosomes efficiently rescue injured neurons, alleviate the pathological burden, and restore neuron function in rats under oxygen-glucose deprivation stress. Furthermore, we identify hsa-mir-125b-5p as the active component responsible for inhibiting the Asic1a protein and protecting neurons. We validated a novel therapeutic strategy to enhance acidosis resilience in cerebral stroke by utilizing exosomes derived from pluripotent stem cells with specific miRNA content. This holds promise for cerebral stroke treatment with the potential to reduce neuronal damage and improve clinical patient outcomes.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Acidosis , Exosomas , MicroARNs , Animales , Humanos , Masculino , Ratas , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/genética , Acidosis/metabolismo , Isquemia Encefálica/metabolismo , Exosomas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética
20.
Br J Pharmacol ; 181(22): 4546-4570, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39081110

RESUMEN

BACKGROUND AND PURPOSE: Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH: Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS: High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS: Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T , Proliferación Celular , Neoplasias del Colon , Gosipol , Humanos , Gosipol/farmacología , Gosipol/análogos & derivados , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Proliferación Celular/efectos de los fármacos , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Calcio/metabolismo , Línea Celular Tumoral , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA