Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Virol J ; 21(1): 217, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277738

RESUMEN

Japanese encephalitis is an acute infectious disease of the central nervous system caused by neurotropic Japanese encephalitis virus (JEV). As a member of TAM (Tyro3, Axl and Mertk) family, Mertk has involved in multiple biological processes by engaging with its bridging ligands Gas6 and Protein S, including invasion of pathogens, phagocytosis of apoptotic cells, inflammatory response regulation, and the maintenance of blood brain barrier (BBB) integrity. However, its role in encephalitis caused by JEV infection has not been studied in detail. Here, we found that Mertk-/- mice exhibited higher mortality and more rapid disease progression than wild-type mice after JEV challenge. There were no significant differences in viral load and cytokines expression level in peripheral tissues between Wild type and Mertk-/- mice. Furthermore, the absence of Mertk had little effect on the inflammatory response and immunopathological damage while it can cause an increased viral load in the brain. For the in vitro model of BBB, Mertk was shown to maintain the integrity of the BBB. In vivo, Mertk-/- mice exhibited higher BBB permeability and lower BBB integrity. Taken together, our findings demonstrate that Mertk acts as a protective factor in the development of encephalitis induced by JEV infection, which is mainly associated with its beneficial effect on BBB integrity, rather than its regulation of inflammatory response.


Asunto(s)
Barrera Hematoencefálica , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Tirosina Quinasa c-Mer , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Encéfalo/virología , Encéfalo/patología , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Carga Viral
2.
J Neuroinflammation ; 21(1): 231, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300526

RESUMEN

Viral encephalitis is characterized by inflammation of the brain parenchyma caused by a variety of viruses, among which the Japanese encephalitis (JE) virus (JEV) is a typical representative arbovirus. Neuronal death, neuroinflammation, and breakdown of the blood brain barrier (BBB) constitute vicious circles of JE progression. Currently, there is no effective therapy to prevent this damage. Growth arrest specific gene 6 (GAS6) is a secreted growth factor that binds to the TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine kinases and has been demonstrated to participate in neuroprotection and suppression of inflammation in many central nervous system (CNS) diseases which has great potential for JE intervention. In this study, we found that GAS6 expression in the brain was decreased and was reversely correlated with viral load and neuronal loss. Mice with GAS6/TAM signalling deficiency showed higher mortality and accelerated neuroinflammation during peripheral JEV infection, accompanied by BBB breakdown. GAS6 directly promoted the expression of tight junction proteins in bEnd.3 cells and strengthened BBB integrity, partly via AXL. Mice administered GAS6 were more resistant to JEV infection due to increased BBB integrity, as well as decreased viral load and neuroinflammation. Thus, targeted GAS6 delivery may represent a strategy for the prevention and treatment of JE especially in patients with impaired BBB.


Asunto(s)
Encefalitis Japonesa , Péptidos y Proteínas de Señalización Intercelular , Enfermedades Neuroinflamatorias , Animales , Ratones , Tirosina Quinasa del Receptor Axl , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Encefalitis Japonesa/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neuroinflamatorias/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética
3.
J Virol ; 98(9): e0063524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39158346

RESUMEN

Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE: This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antivirales , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Metabolismo de los Lípidos , Replicación Viral , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Ratones , Antivirales/farmacología , Humanos , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/virología , Proteínas Quinasas Activadas por AMP/metabolismo , Chalconas/farmacología , Triterpenos/farmacología , Proteínas no Estructurales Virales/metabolismo , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/metabolismo , Flavivirus/efectos de los fármacos , Línea Celular
4.
Eur J Neurosci ; 60(5): 4843-4860, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049535

RESUMEN

Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Dinámicas Mitocondriales , Músculo Esquelético , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/virología , Ratones , Encefalitis Japonesa/metabolismo , Dinámicas Mitocondriales/fisiología , Apoptosis/fisiología , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Autofagia/fisiología , Modelos Animales de Enfermedad
5.
Virol J ; 21(1): 128, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840203

RESUMEN

The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Proteínas del Envoltorio Viral , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/química , Animales , Línea Celular , Virulencia , Replicación Viral , Encefalitis Japonesa/virología , Humanos , Heparina/farmacología , Sustitución de Aminoácidos , Mutación Missense , Ratones , Mutación , Factores de Virulencia/genética , Glicoproteínas de Membrana
6.
APMIS ; 132(9): 638-645, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38837462

RESUMEN

Acute encephalitis syndrome (AES) is a major public health concern in India as the aetiology remains unknown in the majority of cases with the current testing algorithm. We aimed to study the incidence of Japanese encephalitis (JE) and determine the aetiology of non-JE AES cases to develop an evidence-based testing algorithm. Cerebrospinal fluid (CSF) samples were tested for Japanese encephalitis virus by ELISA and polymerase chain reaction (PCR). Multiplex real-time PCR was done for Dengue, Chikungunya, West Nile, Zika, Enterovirus, Epstein Barr Virus, Herpes Simplex Virus, Adenovirus, Cytomegalovirus, Herpesvirus 6, Parechovirus, Parvovirus B19, Varicella Zoster Virus, Scrub typhus, Rickettsia species, Leptospira, Salmonella species, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Plasmodium species and by ELISA for Mumps and Measles virus. Of the 3173 CSF samples, 461 (14.5%) were positive for JE. Of the 334 non-JE AES cases, 66.2% viz. Scrub typhus (25.7%), Mumps (19.5%), Measles (4.2%), Parvovirus B19 (3.9%) Plasmodium (2.7%), HSV 1 and 2 (2.4%), EBV and Streptococcus pneumoniae (2.1% each), Salmonella and HHV 6 (1.2% each) were predominant. Hence, an improved surveillance system and our suggested expanded testing algorithm can improve the diagnosis of potentially treatable infectious agents of AES in India.


Asunto(s)
Encefalopatía Aguda Febril , Humanos , India/epidemiología , Masculino , Adolescente , Femenino , Preescolar , Niño , Adulto Joven , Adulto , Encefalopatía Aguda Febril/epidemiología , Encefalopatía Aguda Febril/diagnóstico , Encefalopatía Aguda Febril/etiología , Encefalopatía Aguda Febril/virología , Lactante , Incidencia , Persona de Mediana Edad , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/virología , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Anciano , Tifus por Ácaros/epidemiología , Tifus por Ácaros/diagnóstico , Tifus por Ácaros/microbiología
7.
J Virol ; 98(5): e0195923, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38634598

RESUMEN

The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.


Asunto(s)
Culex , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Ácidos Siálicos , Acoplamiento Viral , Animales , Ratones , Línea Celular , Culex/virología , Culex/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/virología , Encefalitis Japonesa/metabolismo , Mosquitos Vectores/virología , Neuraminidasa/metabolismo , Neuraminidasa/genética , Ácidos Siálicos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Internalización del Virus
8.
Virus Res ; 345: 199376, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643856

RESUMEN

Zika virus (ZIKV) and Japanese encephalitis virus (JEV) are antigenically related flaviviruses that co-circulate in many countries/territories. The interaction between the two viruses needs to be determined. Recent findings by ourselves and other labs showed that JEV-elicited antibodies (Abs) and CD8+T cells exacerbate and protect against subsequent ZIKV infection, respectively. However, the impact of JEV envelope (E) protein domain III (EDIII)-induced immune responses on ZIKV infection is unclear. We show here that sera from JEV-EDIII-vaccinated mice cross-react with ZIKV-EDIII in vitro, and transfer of the same sera to mice significantly decreases death upon lethal ZIKV infection at a dose-dependent manner. Maternally acquired anti-JEV-EDIII Abs also significantly reduce the mortality of neonatal mice born to JEV-EDIII-immune mothers post ZIKV challenge. Similarly, transfer of ZIKV-EDIII-reactive IgG purified from JEV-vaccinated humans increases the survival of ZIKV-infected mice. Notably, transfer of an extremely low volume of JEV-EDIII-immune sera or ZIKV-EDIII-reactive IgG does not mediate the Ab-mediated enhancement (ADE) of ZIKV infection. Similarly, transfer of JEV-EDIII-elicited CD8+T cells protects recipient mice against ZIKV challenge. These results demonstrate that JEV-EDIII-induced immune components including Abs and T cells have protective roles in ZIKV infection, suggesting EDIII is a promising immunogen for developing effective and safety JEV vaccine.


Asunto(s)
Anticuerpos Antivirales , Linfocitos T CD8-positivos , Protección Cruzada , Virus de la Encefalitis Japonesa (Especie) , Proteínas del Envoltorio Viral , Infección por el Virus Zika , Virus Zika , Animales , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/inmunología , Linfocitos T CD8-positivos/inmunología , Virus Zika/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Proteínas del Envoltorio Viral/inmunología , Ratones , Virus de la Encefalitis Japonesa (Especie)/inmunología , Protección Cruzada/inmunología , Femenino , Reacciones Cruzadas , Encefalitis Japonesa/prevención & control , Encefalitis Japonesa/inmunología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Modelos Animales de Enfermedad , Inmunización
9.
Cureus ; 16(3): e55939, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38601378

RESUMEN

Background Instant infections in children due to acute encephalitis syndrome (AES) were reported in a tribal district of Bastar in Chattisgarh, India, between August 2018 and August 2019. Objective The study was conducted to explore the possibility of a viral cause indicating an outbreak. Methods Clinical surveys and serological investigation tests were conducted to identify the viral etiology. The Bastar area in Chhattisgarh reported factors such as paddy fields near homes, a high pig-to-cattle ratio, a significant presence of Culex vishnui mosquitoes, low socioeconomic status, and a lack of health awareness among the tribal people. Result This study, conducted at the Late Baliram Kashyap Memorial Government Medical College in Jagdalpur, Bastar, Chhattisgarh, India, analyzed 128 samples from fever cases out of 213 patients visiting the Japanese encephalitis virus (JEV) testing center. Among these samples, 71 cases exhibited AES, and subsequent JEV IgM ELISA testing identified 18 cases as JEV-positive, signifying recent JEV infections. Notably, the overwhelming majority (94.44%) of JEV-positive patients were under 16 years old, highlighting the heightened vulnerability of children to JEV illness in the Bastar region. Although male patients accounted for 61.11% of the JEV-positive cases compared to 38.88% of female patients, statistical analysis revealed that this gender disparity was not statistically significant (p-value = 0.18). Conclusion The study emphasizes the significance of identifying the etiology and delivering evidence-based care to patients with AES. Improved diagnosis and management of AES may result from a greater comprehension of the advantages and disadvantages associated with the application and administration of common laboratory and diagnostic algorithms.

10.
J Virol ; 98(4): e0177323, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38530012

RESUMEN

Dengue vaccine candidates have been shown to improve vaccine safety and efficacy by altering the residues or accessibility of the fusion loop on the virus envelope protein domain II (DIIFL) in an ex vivo animal study. The current study aimed to comprehensively investigate the impact of DIIFL mutations on the antigenicity, immunogenicity, and protective efficacy of Japanese encephalitis virus (JEV) virus-like particles (VLPs) in mice. We found the DIIFL G106K/L107D (KD) and W101G/G106K/L107D (GKD) mutations altered the binding activity of JEV VLP to cross-reactive monoclonal antibodies but had no effect on their ability to elicit total IgG antibodies in mice. However, JEV VLPs with KD or GKD mutations induced significantly less neutralizing antibodies against JEV. Only 46% and 31% of the KD and GKD VLPs-immunized mice survived compared to 100% of the wild-type (WT) VLP-immunized mice after a lethal JEV challenge. In passive protection experiments, naïve mice that received sera from WT VLP-immunized mice exhibited a significantly higher survival rate of 46.7% compared to those receiving sera from KD VLP- and GKD VLP-immunized mice (6.7% and 0%, respectively). This study demonstrated that JEV DIIFL is crucial for eliciting potently neutralizing antibodies and protective immunity against JEV. IMPORTANCE: Introduction of mutations into the fusion loop is one potential strategy for generating safe dengue and Zika vaccines by reducing the risk of severe dengue following subsequent infections, and for constructing live-attenuated vaccine candidates against newly emerging Japanese encephalitis virus (JEV) or Japanese encephalitis (JE) serocomplex virus. The monoclonal antibody studies indicated the fusion loop of JE serocomplex viruses primarily comprised non-neutralizing epitopes. However, the present study demonstrates that the JEV fusion loop plays a critical role in eliciting protective immunity in mice. Modifications to the fusion loop of JE serocomplex viruses might negatively affect vaccine efficacy compared to dengue and zika serocomplex viruses. Further studies are required to assess the impact of mutant fusion loop encoded by commonly used JEV vaccine strains on vaccine efficacy or safety after subsequent dengue virus infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Vacunas contra la Encefalitis Japonesa , Animales , Ratones , Aminoácidos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Dengue , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/prevención & control , Epítopos , Vacunas contra la Encefalitis Japonesa/genética , Proteínas del Envoltorio Viral/genética , Virus Zika , Infección por el Virus Zika
11.
Ann Med Surg (Lond) ; 86(3): 1540-1549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463109

RESUMEN

Japanese encephalitis virus (JEV), an RNA virus transmitted by Culex mosquitoes, primarily cycles between aquatic birds and mosquitoes with pigs as amplifying hosts, posing a significant global encephalitis threat. The emergence and spread of the JEV in new epidemiological regions, such as recent cases in Australia and nonendemic areas like Pune, India, raise significant concerns. With an estimated 68 000 clinical cases and 13 600 to 20 400 deaths annually, JEV poses a substantial global health threat. The virus primarily affects children, with a case-fatality ratio of 20-30% and long-term neurological sequelae in survivors. The changing epidemiology, influenced by factors like bird migration, climate change, and increased urbanization, contributes to the geographic expansion of JEV. The recent outbreaks underscore the potential for the virus to establish itself in nonendemic regions, posing a threat to populations previously considered at low-risk. With limited treatment options and high rates of neurological complications, continued surveillance, traveler vaccination, and research into treatments are crucial to mitigate the impact of JEV on human health. The evolving scenario necessitates proactive measures to prevent and control the spread of the virus in both endemic and newly affected areas.

12.
Front Cell Infect Microbiol ; 14: 1302314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343888

RESUMEN

Background: Japanese encephalitis (JE) is a notifiable infectious disease in China. Information on every case of JE is reported to the superior health administration department. However, reported cases include both laboratory-confirmed and clinically diagnosed cases. This study aimed to differentiate between clinical and laboratory-confirmed cases of Japanese encephalitis virus (JEV) infection, and improve the accuracy of reported JE cases by analyzing the acute-phase serum and cerebrospinal fluid of all reported JE cases in the Sichuan province from 2012 to 2022. Methods: All acute-phase serum and/or cerebrospinal fluid samples of the reported JE cases were screened for IgM(ImmunoglobulinM)to JEV using the enzyme-linked immunosorbent assay (ELISA), and the detection of the viral genes of JEV and 9 other pathogens including enterovirus (EV), using reverse transcription PCR was attempted. Epidemiological analyses of JE and non-JE cases based on sex, age, onset time, and geographical distribution were also performed. Results: From 2012 to 2022, 1558 JE cases were reported in the Sichuan province. The results of serological (JEV-specific IgM) and genetic testing for JEV showed that 81% (1262/1558) of the reported cases were confirmed as JEV infection cases (laboratory-confirmed cases). Among the 296 cases of non-JEV infection, 6 viruses were detected in the cerebrospinal fluid in 62 cases, including EV and the Epstein-Barr virus (EBV), constituting 21% (62/296) of all non-JE cases. Among the 62 non-JEV infection cases with confirmed pathogens, infections with EV and EBV included 17 cases each, herpes simplex virus (HSV-1/2) included 14 cases, varicella- zoster virus included 6 cases, mumps virus included 2 cases, and human herpes viruses-6 included 1 case. Additionally, there were five cases involving mixed infections (two cases of EV/EBV, one case of HSV-1/HSV-2, one case of EBV/HSV-1, and one case of EV/herpes viruses-6). The remaining 234 cases were classified as unknown viral encephalitis cases. Our analysis indicated that those aged 0-15 y were the majority of the patients among the 1558 reported JE cases. However, the incidence of laboratory-confirmed JE cases in the >40 y age group has increased in recent years. The temporal distribution of laboratory-confirmed cases of JE revealed that the majority of cases occurred from May to September each year, with the highest incidence in August. Conclusion: The results of this study indicate that there is a certain discrepancy between clinically diagnosed and laboratory-confirmed cases of JE. Each reported case should be based on laboratory detection results, which is of great importance in improving the accuracy of case diagnosis and reducing misreporting. Our results are not only important for addressing JE endemic to the Sichuan province, but also provide a valuable reference for the laboratory detection of various notifiable infectious diseases in China and other regions outside China.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Infecciones por Enterovirus , Enterovirus , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 1 , Adulto , Femenino , Humanos , Masculino , Anticuerpos Antivirales , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/epidemiología , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/epidemiología , Herpesvirus Humano 2 , Herpesvirus Humano 4 , Inmunoglobulina M , Recién Nacido , Lactante , Preescolar , Niño , Adolescente
13.
Front Cell Infect Microbiol ; 13: 1275823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053527

RESUMEN

West Nile virus (WNV) and Japanese encephalitis virus (JEV) are emerging mosquito-borne flaviviruses causing encephalitis globally. No specific drug or therapy exists to treat flavivirus-induced neurological diseases. The lack of specific therapeutics underscores an urgent need to determine the function of important host factors involved in flavivirus replication and disease progression. Interleukin-6 (IL-6) upregulation has been observed during viral infections in both mice and humans, implying that it may influence the disease outcome significantly. Herein, we investigated the function of IL-6 in the pathogenesis of neurotropic flavivirus infections. First, we examined the role of IL-6 in flavivirus-infected human neuroblastoma cells, SK-N-SH, and found that IL-6 neutralization increased the WNV or JEV replication and inhibited the expression of key cytokines. We further evaluated the role of IL-6 by infecting primary mouse cells derived from IL-6 knockout (IL-6-/-) mice and wild-type (WT) mice with WNV or JEV. The results exhibited increased virus yields in the cells lacking the IL-6 gene. Next, our in vivo approach revealed that IL-6-/- mice had significantly higher morbidity and mortality after subcutaneous infection with the pathogenic WNV NY99 or JEV Nakayama strain compared to WT mice. The non-pathogenic WNV Eg101 strain did not cause mortality in WT mice but resulted in 60% mortality in IL-6-/- mice, indicating that IL-6 is required for the survival of mice after the peripheral inoculation of WNV or JEV. We also observed significantly higher viremia and brain viral load in IL-6-/- mice than in WT mice. Subsequently, we explored innate immune responses in WT and IL-6-/- mice after WNV NY99 infection. Our data demonstrated that the IL-6-/- mice had reduced levels of key cytokines in the serum during early infection but elevated levels of proinflammatory cytokines in the brain later, along with suppressed anti-inflammatory cytokines. In addition, mRNA expression of IFN-α and IFN-ß was significantly lower in the infected IL-6-/- mice. In conclusion, these data suggest that the lack of IL-6 exacerbates WNV or JEV infection in vitro and in vivo by causing an increase in virus replication and dysregulating host immune response.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Ratones , Citocinas/metabolismo , Interleucina-6 , Fiebre del Nilo Occidental/genética , Virus del Nilo Occidental/genética
14.
Front Cell Infect Microbiol ; 13: 1239234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928180

RESUMEN

Promyelocytic leukemia (PML) protein constitutes an indispensable element within PML-nuclear bodies (PML-NBs), playing a pivotal role in the regulation of multiple cellular functions while coordinating the innate immune response against viral invasions. Simultaneously, numerous viruses elude immune detection by targeting PML-NBs. Japanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis, a severe neurological disease that affects humans and animals. However, the mechanism through which JEV evades immunity via PML-NBs has been scarcely investigated. In the present study, PK15 cells were infected with JEV, and the quantity of intracellular PML-NBs was enumerated. The immunofluorescence results indicated that the number of PML-NBs was significantly reduced in JEV antigen-positive cells compared to viral antigen-negative cells. Subsequently, ten JEV proteins were cloned and transfected into PK15 cells. The results revealed that JEV non-structural proteins, NS2B, NS3, NS4A, NS4B, and NS5, significantly diminished the quantity of PML-NBs. Co-transfection was performed with the five JEV proteins and various porcine PML isoforms. The results demonstrated that NS2B colocalized with PML4 and PML5, NS4A colocalized with PML1 and PML4, NS4B colocalized with PML1, PML3, PML4, and PML5, while NS3 and NS5 interacted with all five PML isoforms. Furthermore, ectopic expression of PML isoforms confirmed that PML1, PML3, PML4, and PML5 inhibited JEV replication. These findings suggest that JEV disrupts the structure of PML-NBs through interaction with PML isoforms, potentially leading to the attenuation of the host's antiviral immune response.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Antígenos Virales , Cuerpos Nucleares , Proteína de la Leucemia Promielocítica , Isoformas de Proteínas , Porcinos , Factores de Transcripción
15.
BMC Neurosci ; 24(1): 59, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932682

RESUMEN

BACKGROUND: Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that has no specific treatment except for supportive medical care. JEV is a neurotropic virus that affects the nervous system and triggers inflammation in the brain. METHODS: Melatonin is used as a sleep-inducing agent in neurophysiology and may serve as a protective agent against neurological and neurodegenerative diseases. Herein, we investigated the effects of melatonin and the critical roles of the serine/threonine protein phosphatase calcineurin during JEV infection in SK-N-SH neuroblastoma cells. RESULTS: Melatonin treatment decreased JEV replication and JEV-mediated neurotoxicity. Calcineurin activity was increased by JEV infection and inhibited by melatonin treatment. Through calcineurin regulation, melatonin decreased the JEV-mediated neuroinflammatory response and attenuated JEV-induced autophagy. CONCLUSIONS: Calcineurin inactivation has a protective effect in JEV-infected neuronal cells, and melatonin is a novel resource for the development of anti-JEV agents.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Melatonina , Animales , Humanos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Calcineurina/farmacología , Melatonina/farmacología , Autofagia
16.
Neuromolecular Med ; 25(4): 596-602, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37907819

RESUMEN

Integrated analysis of iron regulatory biomarkers and inflammatory response could be an important strategy for Japanese encephalitis viral (JEV) infection disease management. In the present study, the inflammatory response was assessed by measuring serum Interleukin-6 (IL-6) levels using ELISA, and the transcription levels of iron homeostasis regulators were analyzed via RT-PCR. Furthermore, inter-individual variation in the transferrin gene was analyzed by PCR-RFLP and their association with clinical symptoms, susceptibility, severity, and outcomes was assessed through binary logistic regression and classification and regression tree (CART) analysis. Our findings revealed elevated levels of IL-6 in serum as well as increased expression of hepcidin (HAMP), transferrin (TF), and transferrin receptor-1 (TFR1) mRNA in JEV infection cases. Moreover, we found a genetic variation in TF (rs4481157) associated with clinical symptoms of meningoencephalitis. CART analysis indicates that individuals with the wild-type TF genotype are more susceptible to moderate JEV infection, while those with the homozygous type are in the high-risk group to develop a severe JEV condition. In summary, the study highlights that JEV infection induces alteration in both IL-6 levels and iron regulatory processes, which play pivotal roles in the development of JEV disease pathologies.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Interleucina-6 , Humanos , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/genética , Encefalitis Japonesa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Hierro/metabolismo , Transferrinas/genética , Transferrinas/metabolismo , Regulación hacia Arriba , Progresión de la Enfermedad
17.
Bioinformation ; 19(5): 611-622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886150

RESUMEN

Japanese encephalitis (JE) is a single-stranded, mosquito-borne, positive-sense RNA flavivirus that causes one of the most severe encephalitides. There are treatments available for those who contact this illness; however, there are no known cures. This disease has a 30% fatality rate, and of the people who survive, 30-50% develops neurologic and psychiatric sequelae. The JE virus genome size is 10.98 kb and contains two coding DNA sequences (CDS), two genes, and 15 mature peptides; the CDS polyprotein is 10.3 kb. In this study, we used 29 genomics sequences of the JE virus reported from different countries and infecting different animals and analysed vast dimensions of the genomic annotation of JE comparatively to understand its evolutionary aspects. The extensive SNPs analysis revealed that KF907505.1, reported from Taiwan, has only three SNPs, similar to sequences reported from India. Repeat and polymorphism analyses revealed that the genome tends to be similar in most JE sequences.

18.
Virus Res ; 338: 199249, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37858731

RESUMEN

Flaviviruses are a major cause of viral diseases worldwide, for which effective treatments have yet to be discovered. The prion protein (PrPc) is abundantly expressed in brain cells and has been shown to play a variety of roles, including neuroprotection, cell homeostasis, and regulation of cellular signaling. However, it is still unclear whether PrPc can protect against flaviviruses. In this study, we investigated the role of PrPc in regulating autophagy flux and its potential antiviral activity during Japanese encephalitis virus (JEV) infection. Our in vivo experiment showed that JEV was more lethal to the PrPc knocked out mice which was further supported by histological analysis, western blot and rtPCR results from infected mice brain samples. Role of PrPc against viral propagation in vitro was verified through cell survival study, protein expression and RNA replication analysis, and adenoviral vector assay by overexpressing PrPc. Further analysis indicated that after virus entry, PrPc inhibited autophagic flux that prevented JEV replication inside the host cell. Our results from in vivo and in vitro investigations demonstrate that prion protein effectively inhibited JEV propagation by regulating autophagy flux which is used by JEV to release its genetic material and replication after entering the host cell, suggesting that prion protein may be a promising therapeutic target for flavivirus infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Ratones , Proteínas Priónicas/genética , Proteínas Priónicas/farmacología , Línea Celular , Antivirales/farmacología , Antivirales/uso terapéutico , Replicación Viral
19.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834294

RESUMEN

RNase H-dependent gapmer antisense oligonucleotides (ASOs) are a promising therapeutic approach via sequence-specific binding to and degrading target RNAs. However, the efficacy and mechanism of antiviral gapmer ASOs have remained unclear. Here, we investigated the inhibitory effects of gapmer ASOs containing locked nucleic acids (LNA gapmers) on proliferating a mosquito-borne flavivirus, Japanese encephalitis virus (JEV), with high mortality. We designed several LNA gapmers targeting the 3' untranslated region of JEV genomic RNAs. In vitro screening by plaque assay using Vero cells revealed that LNA gapmers targeting a stem-loop region effectively inhibit JEV proliferation. Cell-based and RNA cleavage assays using mismatched LNA gapmers exhibited an underlying mechanism where the inhibition of viral production results from JEV RNA degradation by LNA gapmers in a sequence- and modification-dependent manner. Encouragingly, LNA gapmers potently inhibited the proliferation of five JEV strains of predominant genotypes I and III in human neuroblastoma cells without apparent cytotoxicity. Database searching showed a low possibility of off-target binding of our LNA gapmers to human RNAs. The target viral RNA sequence conservation observed here highlighted their broad-spectrum antiviral potential against different JEV genotypes/strains. This work will facilitate the development of an antiviral LNA gapmer therapy for JEV and other flavivirus infections.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Oligonucleótidos Antisentido , Animales , Chlorocebus aethiops , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/metabolismo , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Ribonucleasa H/metabolismo , Células Vero , ARN Viral/genética , Antivirales/farmacología
20.
Dev Comp Immunol ; 148: 104902, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37536401

RESUMEN

Nucleophosmin (NPM1) is a multifunctional nucleolar protein that plays a role in cell cycle control, tumorigenesis, induction of the inflammatory cytokine, virus replication, as well as the cellular responses to a variety of stress stimuli. However, its physiological functions in pigs have not been well understood. Here, we cloned the porcine NPM1 (porNPM1) gene and analyzed the functions of the porNPM1 protein in pigs. The full-length porNPM1 gene encoded a 294-amino acid protein with 94.5%-99.3% sequence identity to its orthologues in mammals and was extensively expressed in various pig tissues at the mRNA level. The porNPM1 primarily localizes in the nucleus of ST cells, while it translocates from the nucleus to nucleoplasm upon UV irradiation or H2O2 treatment. Notably, JEV infection blocked the translocation of porNPM1 from the nucleolus to the nucleoplasm. Furthermore, porNPM1 interacted with the JEV C protein and facilitated JEV replication in ST cells. The overexpression and knockdown of porNPM1 respectively enhanced or impaired JEV replication, suggesting the important role of porNPM1 in JEV replication. Additionally, the purified ectodomain of porNPM1 induced the production of inflammatory cytokines (TNF-α, IL-6, and IL-8). Together, these data demonstrated that porNPM1 is involved in cellular stress stimuli, JEV replication, and induction of inflammatory cytokines.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Porcinos , Animales , Virus de la Encefalitis Japonesa (Especie)/fisiología , Citocinas/metabolismo , Nucleofosmina , Peróxido de Hidrógeno , Proteínas Nucleares/genética , Replicación Viral , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA