Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Kidney Dis ; 81(6): 635-646.e1, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36623684

RESUMEN

RATIONALE & OBJECTIVE: Focal segmental glomerulosclerosis (FSGS) is a major cause of pediatric nephrotic syndrome, and African Americans exhibit an increased risk for developing FSGS compared with other populations. Predisposing genetic factors have previously been described in adults. Here we performed genomic screening of primary FSGS in a pediatric African American population. STUDY DESIGN: Prospective cohort with case-control genetic association study design. SETTING & PARTICIPANTS: 140 African American children with chronic kidney disease from the Chronic Kidney Disease in Children (CKiD) cohort, including 32 cases with FSGS. PREDICTORS: Over 680,000 common single-nucleotide polymorphisms (SNPs) were tested for association. We also ran a pathway enrichment analysis and a human leucocyte antigen (HLA)-focused association study. OUTCOME: Primary biopsy-proven pediatric FSGS. ANALYTICAL APPROACH: Multivariate logistic regression models. RESULTS: The genome-wide association study revealed 169 SNPs from 14 independent loci significantly associated with FSGS (false discovery rate [FDR]<5%). We observed notable signals for genetic variants within the APOL1 (P=8.6×10-7; OR, 25.8 [95% CI, 7.1-94.0]), ALMS1 (P=1.3×10-7; 13.0% in FSGS cases vs 0% in controls), and FGFR4 (P=4.3×10-6; OR, 24.8 [95% CI, 6.3-97.7]) genes, all of which had previously been associated with adult FSGS, kidney function, or chronic kidney disease. We also highlighted novel, functionally relevant genes, including GRB2 (which encodes a slit diaphragm protein promoting podocyte structure through actin polymerization) and ITGB1 (which is linked to renal injuries). Our results suggest a major role for immune responses and antigen presentation in pediatric FSGS through (1) associations with SNPs in PTPRJ (or CD148, P=3.5×10-7), which plays a role in T-cell receptor signaling, (2) HLA-DRB1∗11:01 association (P=6.1×10-3; OR, 4.5 [95% CI, 1.5-13.0]), and (3) signaling pathway enrichment (P=1.3×10-6). LIMITATIONS: Sample size and no independent replication cohort with genomic data readily available. CONCLUSIONS: Our genetic study has identified functionally relevant risk factors and the importance of immune regulation for pediatric primary FSGS, which contributes to a better description of its molecular pathophysiological mechanisms. PLAIN-LANGUAGE SUMMARY: We assessed the genetic risk factors for primary focal segmental glomerulosclerosis (FSGS) by simultaneously testing over 680,000 genetic markers spread across the genome in 140 children, including 32 with FSGS lesions. Fourteen independent genetic regions were significantly associated with pediatric FSGS, including APOL1 and ALMS1-NAT8, which were previously found to be associated with FSGS and chronic kidney diseases in adults. Novel genes with relevant biological functions were also highlighted, such as GRB2 and FGFR4, which play a role in the kidney filtration barrier and in kidney cell differentiation, respectively. Finally, we revealed the importance of immune regulation in pediatric FSGS through associations involving cell surface proteins presenting antigens to the immune system and interacting with T-cell receptors.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Insuficiencia Renal Crónica , Adulto , Humanos , Niño , Glomeruloesclerosis Focal y Segmentaria/patología , Apolipoproteína L1/genética , Estudio de Asociación del Genoma Completo , Estudios Prospectivos , Factores de Riesgo , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética
2.
Front Cell Dev Biol ; 9: 616784, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195184

RESUMEN

Breast cancer is the most common malignant tumor in women, and its incidence is increasing each year. To effectively treat breast cancer, it is important to identify genes involved in its occurrence and development and to exploit them as potential drug therapy targets. Here, we found that potassium channel subfamily K member 6 (KCNK6) is significantly overexpressed in breast cancer, however, its function in tumors has not been reported. We further verified that KCNK6 expression is upregulated in breast cancer biopsies. Moreover, overexpressed KCNK6 was found to enhance the proliferation, invasion, and migration ability of breast cancer cells. These effects may occur by weakening cell adhesion and reducing cell hardness, thus affecting the malignant phenotype of breast cancer cells. Our study confirmed, for the first time, that increased KCNK6 expression in breast cancer cells may promote their proliferation, invasion, and migration. Moreover, considering that ion channels serve as therapeutic targets for many small molecular drugs in clinical treatment, targeting KCNK6 may represent a novel strategy for breast cancer therapies. Hence, the results of this study provide a theoretical basis for KCNK6 to become a potential molecular target for breast cancer treatment in the future.

3.
Immunity ; 49(1): 56-65.e4, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29958799

RESUMEN

Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.


Asunto(s)
Inflamasomas/metabolismo , Inflamación/fisiopatología , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Caspasa 1/deficiencia , Caspasa 1/metabolismo , Línea Celular , Inflamasomas/efectos de los fármacos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/fisiopatología , Macrófagos/trasplante , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Quinina/farmacología , ARN Interferente Pequeño/farmacología , Receptores Purinérgicos P2X7/deficiencia , Receptores Purinérgicos P2X7/metabolismo , Sepsis/metabolismo , Sepsis/fisiopatología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA