Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Pharmacol Res ; 179: 106209, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398238

RESUMEN

Targeted therapies using tyrosine kinase inhibitors (TKIs) against epidermal growth factor receptor (EGFR) have improved the outcomes of patients with non-small cell lung cancer (NSCLC). However, due to genetic mutations of EGFR or activation of other oncogenic pathways, cancer cells can develop resistance to TKIs, resulting in usually temporary and reversible therapeutic effects. Therefore, new anticancer agents are urgently needed to treat drug-resistant NSCLC. In this study, we found that acetyltanshinone IIA (ATA) displayed much stronger potency than erlotinib in inhibiting the growth of drug-resistant NSCLC cells and their-derived xenograft tumors. Our analyses revealed that ATA achieved this effect by the following mechanisms. First, ATA could bind p70S6K at its ATP-binding pocket to prevent phosphorylation, and second by increasing the ubiquitination of p70S6K to cause its degradation. Since phosphorylation of S6 ribosome protein (S6RP) by p70S6K can induce protein synthesis at the ribosome, the dramatic reduction of p70S6K after ATA treatment led to great reductions of new protein synthesis on several cell cycle-related proteins including cyclin D3, aurora kinase A, polo-like kinase, cyclin B1, survivin; and reduced the levels of EGFR and MET. In addition, ATA treatment increased the levels of p53 and p21 proteins, which blocked cell cycle progression in the G1/S phase. Taken together, as ATA can effectively block multiple signaling pathways essential for protein synthesis and cell proliferation, ATA can potentially be developed into a multi-target anti-cancer agent to treat TKI-resistant NSCLC.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patología , Mutación , Fenantrenos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas S6 Ribosómicas 70-kDa
2.
Pharmacol Res ; 177: 106092, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35066108

RESUMEN

Kinsenoside (KD) exhibits anti-inflammatory and immunosuppressive effects. Dendritic cells (DCs) are critical regulators of the pathologic inflammatory milieu in liver fibrosis (LF). Herein, we explored whether and how KD repressed development of LF via DC regulation and verified the pathway involved in the process. Given our analysis, both KD and adoptive transfer of KD-conditioned DCs conspicuously reduced hepatic histopathological damage, proinflammatory cytokine release and extracellular matrix deposition in CCl4-induced LF mice. Of note, KD restrained the LF-driven rise in CD86, MHC-II, and CCR7 levels and, simultaneously, upregulated PD-L1 expression on DCs specifically, which blocked CD8+T cell activation. Additionally, KD reduced DC glycolysis, maintained DCs immature, accompanied by IL-12 decrease in DCs. Inhibiting DC function by KD disturbed the communication of DCs and HSCs with the expression or secretion of α-SMA and Col-I declined in the liver. Mechanistically, KD suppressed the phosphorylation of PI3K-AKT driven by LF or PI3K agonist, followed by enhanced nuclear transport of FoxO1 and upregulated interaction of FoxO1 with the PD-L1 promoter in DCs. PI3K inhibitor or si-IL-12 acting on DC could relieve LF, HSC activation and diminish the effect of KD. In conclusion, KD suppressed DC maturation with promoted PD-L1 expression via PI3K-AKT-FoxO1 and decreased IL-12 secretion, which blocked activation of CD8+T cells and HSCs, thereby alleviating liver injury and fibro-inflammation in LF.


Asunto(s)
Hepatitis , Fosfatidilinositol 3-Quinasas , 4-Butirolactona/análogos & derivados , Animales , Antígeno B7-H1 , Células Dendríticas/metabolismo , Proteína Forkhead Box O1 , Inflamación/tratamiento farmacológico , Interleucina-12 , Ratones , Monosacáridos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Biomed Pharmacother ; 130: 110575, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32768883

RESUMEN

Emerging evidence indicates that the enhancement of microglial autophagy inhibits the NLRP3 inflammasome mediated neuroinflammation in Alzheimer's disease (AD). Meanwhile, low density lipoprotein receptor-related protein 1 (LRP1) highly expressed in microglia is able to negatively regulate neuroinflammation and positively regulate autophagy. In addition, we have previously reported that an active lychee seed fraction enriching polyphenol (LSP) exhibits anti-neuroinflammation in Aß-induced BV-2 cells. However, its molecular mechanism of action is still unclear. In this study, we aim to investigate whether LSP inhibits the NLRP3 inflammasome mediated neuroinflammation and clarify its molecular mechanism in Aß-induced BV-2 cells and APP/PS1 mice. The results showed that LSP dose- and time-dependently activated autophagy by increasing the expression of Beclin 1 and LC3II in BV-2 cells, which was regulated by the upregulation of LRP1 and its mediated AMPK signaling pathway. In addition, both the Western blotting and fluorescence microscopic results demonstrated that LSP could significantly suppress the activation of NLRP3 inflammasome by inhibiting the expression of NLRP3, ASC, the cleavage of caspase-1, and the release of IL-1ß in Aß(1-42)-induced BV-2 cells. In addition, the siRNA LRP1 successfully abolished the effect of LSP on the activation of AMPK and its mediated autophagy, as well as the inhibition of NLRP3 inflammasome. Furthermore, LSP rescued PC-12 cells which were induced by the conditioned medium from Aß(1-42)-treated BV-2 cells. Moreover, LSP improved the cognitive function and inhibited the NLRP3 inflammasome in APP/PS1 mice. Taken together, LSP inhibited the NLRP3 inflammasome-mediated neuroinflammation in the in vitro and in vivo models of AD, which was closely associated with the LRP1/AMPK-mediated autophagy. Thus, the findings from this study further provide evidences for LSP serving as a potential drug for the treatment of AD in the future.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos beta-Amiloides , Inflamasomas/antagonistas & inhibidores , Litchi , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos , Polifenoles/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Autofagia/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Interferente Pequeño , Ratas , Semillas
4.
Pharmacol Res ; 147: 104396, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31404628

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in anti-NSCLC are still unknown. In the present experiment, polyphyllin VI (PPVI) was successfully isolated from TTM with guidance of the anti-proliferative effect in A549 cells, and the cell death of PPVI treated A549 and H1299 cells was closely linked with the increased intracellular ROS levels. In addition, PPVI induced apoptosis by promoting the protein expression of Bax/Bcl2, caspase-3 and caspase-9, and activated autophagy by improving LC3 II conversion and GFP-LC3 puncta formation in A549 and H1299 cells. The mechanism study found that the activity of mTOR which regulates cell growth, proliferation and autophagy was significantly suppressed by PPVI. Accordingly, the PI3K/AKT and MEK/ERK pathways positively regulating mTOR were inhibited, and AMPK negatively regulating mTOR was activated. In addition, the downstream of mTOR, ULK1 at Ser 757 which downregulates autophagy was inhibited by PPVI. The apoptotic cell death induced by PPVI was confirmed, and it was significantly suppressed by the overexpression of AKT, ERK and mTOR, and the induced autophagic cell death which was depended on the Atg7 was decreased by the inhibitors, such as LY294002 (LY), Bafilomycin A1 (Baf), Compound C (CC) and SBI-0206965 (SBI). Furthermore, the mTOR signaling pathway was regulated by the increased ROS as the initial signal in A549 and H1299 cells. Finally, the anti-tumor growth activity of PPVI in vivo was validated in A549 bearing athymic nude mice. Taken together, our data have firstly demonstrated that PPVI is the main component in TTM that exerts the anti-proliferative effect by inducing apoptotic and autophagic cell death in NSCLC via the ROS-triggered mTOR signaling pathway, and PPVI may be a promising candidate for the treatment of NSCLC in future.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Saponinas/farmacología , Saponinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Muerte Celular Autofágica/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Trillium
5.
Biomed Pharmacother ; 118: 109289, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401398

RESUMEN

Multidrug resistance protein 1 (MRP1/ABCC1) actively transports a variety of drugs, toxic molecules and important physiological substrates across the plasma membrane. It can confer broad-spectrum multidrug resistance and can decrease the bioavailability of many important drugs. Substrates of MRP1 include anti-cancer agents, antibiotics, antivirals, antidepressants and anti-inflammatory drugs. Using calcein as a fluorescent reporter in a high content uptake assay, we recently reported the identification of 12 MRP1 inhibitors after screening an anti-cancer library of 386 compounds. Here, we describe the development of a new high content imaging-based uptake assay using doxorubicin as a fluorescent reporter. Screening the same anti-cancer library of 386 compounds, the new assay identified a total of 28 MRP1 inhibitors including 16 inhibitors that have not been previously reported as inhibitors of MRP1. Inhibition of MRP1 activity was confirmed using flow cytometry and confocal microscopy-based transport assays. Six drugs (afatinib, celecoxib, doramapimod, mifepristone, MK-2206 and rosiglitazone) were evaluated for their ability to reverse resistance of MRP1-overexpressing H69AR lung cancer cells against vincristine, doxorubicin and etoposide. Mifepristone and doramapimod were most effective in reversal of resistance against vincristine while mifepristone and rosiglitazone were most successful in resensitizing H69AR cells against doxorubicin. Furthermore, resistance towards etoposide was completely reversed in the presence of celecoxib or doramapimod. Selected drugs were also evaluated for resistance reversal in HEK cells that overexpress P-glycoprotein or breast cancer resistance protein. Our results indicate mifepristone and doramapimod as pan inhibitors of these three drug transporters while celecoxib exhibited selective MRP1 inhibition. Together, our findings signify the importance of MRP1 in drug discovery and demonstrate the effectiveness and value of doxorubicin-based high content screening approach. Anti-cancer agents that exhibit MRP1 inhibition may be used to reverse multidrug resistance or to improve the efficacy and reduce the toxicity of various cancer chemotherapies. On the other hand, anti-cancer drugs that did not interact with MRP1 carry a low risk for developing MRP1-mediated resistance.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Fluoresceínas/química , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/química , Bioensayo , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Células HEK293 , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Reproducibilidad de los Resultados
6.
Eur J Pharm Sci ; 134: 116-137, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30981885

RESUMEN

Autophagy is an evolutionarily conserved catabolic mechanism, by which eukaryotic cells recycle or degrades internal constituents through membrane-trafficking pathway. Thus, autophagy provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Recent findings revealed a close relationship between autophagy and malignant transformation. However, due to the complex dual role of autophagy in tumor survival or cell death, efforts to develop efficient treatment strategies targeting the autophagy/cancer relation have largely been unsuccessful. Here we review the two-faced role of autophagy in cancer as a tumor suppressor or as a pro-oncogenic mechanism. In this sense, we also review the shared regulatory pathways that play a role in autophagy and malignant transformation. Finally, anti-cancer therapeutic agents used as either inhibitors or inducers of autophagy have been discussed.


Asunto(s)
Autofagia/efectos de los fármacos , Autofagia/fisiología , Neoplasias/metabolismo , Animales , Antineoplásicos , Genes Supresores de Tumor , Humanos , Terapia Molecular Dirigida , Neoplasias/terapia , Oncogenes , Microambiente Tumoral
7.
Eur J Pharmacol ; 818: 235-240, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29107673

RESUMEN

Tranilast is an anti-allergy medication that inhibits the release of chemical mediators such as histamine. However, the mechanisms underlying its anti-allergy effects are not fully understood. Interleukin (IL)-33, a novel member of the IL-1 cytokine family, promotes T helper type 2 immune responses and plays a pathogenic role in allergic disorders. In the present study, we examined the effects of tranilast on IL-33 production by RAW264.7 macrophages. Lipopolysaccharide (LPS) increased both IL-33 mRNA expression and IL-33 protein synthesis. Tranilast significantly inhibited LPS-induced IL-33 protein production by RAW264.7 macrophages in a dose-dependent manner; these same effects were observed on IL-33 mRNA levels in RAW264.7 macrophages and a primary culture of macrophages. LPS markedly activated Akt in RAW264.7 macrophages, whereas tranilast suppressed LPS-induced Akt activation. The effects of tranilast on Akt activation appeared to be responsible for the decrease in IL-33 production. Our present findings suggest that the inhibition of IL-33 production by tranilast might contribute to the anti-allergy effects of this medication.


Asunto(s)
Interleucina-33/biosíntesis , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , ortoaminobenzoatos/farmacología , Animales , Células de la Médula Ósea/citología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-33/genética , Lipopolisacáridos/farmacología , Macrófagos/citología , Ratones , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
8.
Eur J Pharmacol ; 814: 274-282, 2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-28864209

RESUMEN

The present study was performed to investigate the potential role of Danshensu in therapeutic angiogenesis in ischemic myocardium and endothelial progenitor cells (EPCs) function. The rat model of myocardial infarction (MI) injury was induced by left anterior descending coronary artery ligation for 14 days. Danshensu significantly alleviated myocardial ischemia injury by ameliorating left ventricular function and reducing infarct size. Furthermore, Danshensu potentiated post-ischemia neovascularization as evidenced by increased microvessel density in infarction boundary zone, as well as the expression of marker proteins vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Moreover, Danshensu notably promoted stromal cell-derived factor-1α (SDF-1α) level in plasma and C-X-C chemokine receptor type 4 (CXCR4) expression in peri-infarction myocardium, and AMD3100 (CXCR4 antagonist) could reverse the angiogenic and cardioprotective effects of Danshensu. For in vitro study, EPCs were isolated from bone marrow of rats. On the one hand, Danshensu provided significant cytoprotection against hypoxia insult by boosting EPCs viability and inhibiting apoptosis, and upregulated Akt phosphorylation. On the other hand, Danshensu enhanced proangiogenic functions of EPCs on cell migration and tube formation, and increased SDF-1α and CXCR4 expression. Likewise, the cytoprotection and proangiogenic functions of Danshensu on EPCs were partly negated by LY294002 (PI3K antagonist) and CXCR4 siRNA, respectively. Taken together, our results suggested that the cardioprotection of Danshensu in MI rats may be related to promoting myocardial neovascularization. The possible mechanisms may involve improving EPCs survival in hypoxia condition through Akt phosphorylation, and accelerating EPCs proangiogenic functions through SDF-1α/CXCR4 axis.


Asunto(s)
Quimiocina CXCL12/metabolismo , Células Endoteliales/patología , Lactatos/farmacología , Infarto del Miocardio/fisiopatología , Neovascularización Patológica/tratamiento farmacológico , Receptores CXCR4/metabolismo , Células Madre/patología , Animales , Movimiento Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Corazón/efectos de los fármacos , Corazón/fisiopatología , Lactatos/uso terapéutico , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Neuropharmacology ; 119: 26-39, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28373074

RESUMEN

Sensorineural hearing loss (SNHL) is mainly caused by the damage of cochlear hair cells (HCs). As HCs and supporting cells (SCs) do not proliferate in postnatal mammals, the loss of HCs and SCs is irreversible, emphasizing the importance of preserving their numbers to prevent SNHL. It is known that insulin-like growth factor 1 (IGF1) is instrumental in the treatment of SNHL. Our previous study indicates that IGF1 protects HCs against aminoglycoside by activating IGF1 receptor and its two major downstream pathways, PI3K/AKT and MEK/ERK, in SCs, which results in the upregulation of the expression of the Netrin1-encoding gene (Ntn1). However, the mechanisms underlying IGF1-induced protection of HCs via SC activation as well as the role of NTN1 in this process have not been elucidated. Here, we demonstrated that NTN1, similar to IGF1, promoted HC survival. NTN1 blocking antibody attenuated IGF1-induced HC protection from aminoglycoside, indicating that NTN1 is the effector molecule of IGF1 signaling during HC protection. In situ hybridization demonstrated that IGF1 potently induced Ntn1 expression in SCs. NTN1 receptors were abundantly expressed in the cochlea; among them, UNC5B mediated IGF1 protective effects on HCs, as NTN1 binding to UNC5B inhibited HC apoptosis. These results provide new insights into the mechanisms underlying IGF1 protection of cochlear HCs, suggesting a possibility of using NTN1 as a new treatment for SNHL.


Asunto(s)
Cóclea/citología , Células Ciliadas Auditivas/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/farmacología , Animales , Animales Recién Nacidos , Antibacterianos/farmacología , Anticuerpos/farmacología , Caspasa 3/metabolismo , Recuento de Células , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Endogámicos ICR , Neomicina/farmacología , Factores de Crecimiento Nervioso/inmunología , Receptores de Netrina , Netrina-1 , Técnicas de Cultivo de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Supresoras de Tumor/inmunología
10.
J Ethnopharmacol ; 198: 174-183, 2017 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28011163

RESUMEN

ETHNO-PHARMACOLOGICAL RELEVANCE: Lactucopicrin is one of constitutes in Cichorium intybus L, which is commonly known as chicory in worldwide. It has been used for traditional usage such as antianalgesics, antidepressants and antihyperglycemics AIM OF STUDY: We investigated the neurotrophin-mediated neuroprotective effect of lactucopicrin in in vitro and examined for the underlying mechanism. MATERIALS AND METHOD: To verify the neuroprotective effect of lactucopicrin, we investigated the inhibitory AChE activity, neurite outgrowth-related downstream signaling in murine neuroblastoma N2a and neurotrophins secretion in rat C6 glioma cells. RESULTS: Lactucopicrin inhibited the AChE activity and increased intracellular Ca2+ levels with a substantial rise in muscarinic acetylcholine receptor M1 (CHRM1) expression in N2a cells. Moreover, lactucopicrin actively promoted neurite outgrowth via Ca2+-mediated activation of Ca2+/calmodulin-dependent protein kinase-II (CaMKII). It further activates transcription factor 1 (ATF1) along with modulating the levels of tropomyosin receptor kinase A, extracellular signal-regulated kinase 1 and 2, AKT, and synaptophysin 1 in N2a cells. Additionally, the levels of neurotrophins including NGF, BDNF, and NT3 were increased by treatment of lactucopicrin in C6 cells. The effects of lactucopicrin on NGF secretion and neuritogenesis were maintained even in the presence of phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002, indicating that lactucopicrin exerts its effect on neuritogenesis in a PI3K-independent manner. CONCLUSION: Our results suggest that the natural compound lactucopicrin may be a promising neurotrophin-mediated neuroprotective candidate for neurodegenerative diseases.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Calcio/metabolismo , Inhibidores de la Colinesterasa/farmacología , Lactonas/farmacología , Neuritas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proteínas/fisiología , Sesquiterpenos/farmacología , Animales , Línea Celular Tumoral , Ratones , Neuritas/fisiología , Ratas
11.
J Ethnopharmacol ; 194: 733-739, 2016 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-27769945

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Evodiae Fructus (EF) is the dried, unripe fruit of Evodia rutaecarpa Benth., and one of the main components of traditional herbal prescriptions issued for the treatment of sterility caused by irregular menstruation in Korea. However, scientific evidence regarding the efficacy and action mechanism of EF is lacking. AIM OF THE STUDY: In this study, the authors established an in vitro screening tool to identify promising new drug candidates in herbal medicines for the prevention and treatment of premature ovarian failure. The protective effects of EF extracts against 4-vinylcyclohexene diepoxide (VCD)-induced ovotoxicity were investigated and the molecular mechanism responsible was sought. MATERIAL AND METHODS: EF extract was prepared by boiling EF in water and its quality was confirmed by high performance liquid chromatography. CHO-K1 (Chinese hamster ovary cells) and COV434 (human ovarian granulosa cells) cells were plated, pretreated with EF extract for 2h and then treated with 1.5mM or 0.5mM VCD for 24h, respectively. Cell viabilities were measured using an MTT assay, and protein levels were determined by western blotting. RESULTS: VCD significantly suppressed the viability of both CHO-K1 and COV434 cells in a dose-dependent manner and induced the apoptosis of CHO-K1 cells at 1.5mM. EF extract dose-dependently blocked the ovotoxicity induced by treatment with VCD. Furthermore, EF extract significantly activated Akt and downstream effectors such as mTOR and GSK-3ß in CHO-K1 cells. The ability of EF extract to prevent cytotoxicity by VCD was antagonized by pretreatment of LY294002, a PI3K/Akt inhibitor. CONCLUSION: EF has the ability to protect ovary cells against VCD-induced ovotoxicity, probably via Akt activation. These results suggest that the beneficial effects of EF might be useful for preventing premature ovarian failure or unexplained infertility caused by environmental factors.


Asunto(s)
Ciclohexenos/toxicidad , Activación Enzimática/efectos de los fármacos , Evodia/química , Células de la Granulosa/efectos de los fármacos , Ovario/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Compuestos de Vinilo/toxicidad , Animales , Apoptosis/efectos de los fármacos , Células CHO , Línea Celular , Cricetinae , Cricetulus , Femenino , Humanos
12.
Biochem Pharmacol ; 122: 90-98, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27666600

RESUMEN

Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2µg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piranos/farmacología , Timidilato Sintasa/metabolismo , Antibacterianos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Regulación hacia Abajo , Quimioterapia Combinada , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Timidilato Sintasa/genética
13.
Eur J Pharmacol ; 781: 69-75, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27085898

RESUMEN

This study focused on the anti-proliferation effects of ursolic acid (UA) in rat primary vascular smooth muscle cells (VSMCs) and investigated underlying molecular mechanism of action. Rat primary VSMCs were pretreated with UA (10, 20 or 30µM) or amino guanidine (AG, 50µM) for 12h or with PI3K inhibitor LY294002 for 30min or with Akt inhibitor MK2206 for 24h, then 10% fetal bovine serum was used to induce proliferation. CCK-8 was used to assess cell proliferation. To explore the mechanism, cells were treated with UA (10, 20 or 30µM), LY294002 or MK2206, or transient transfected to inhibit miRNA-21 (miRNA-21) or to overexpress PTEN, then quantitative real-time PCR was used to assess the mRNA levels of miRNA-21 and phosphatase and tensin homolog (PTEN) for cells treated with UA or miRNA-21 inhibitor; western blotting was used to measure the protein levels of PTEN and PI3K. UA exerted significant anti-proliferation effects in rat primary VSMCs. Furthermore, UA inhibited the expression of miRNA-21 and subsequently enhanced the expression of PTEN. PTEN was found to inhibit the expression of PI3K. In conclusion, UA exerts anti-proliferation effects in rat primary VSMCs, which is associated with the inhibition of miRNA-21 expression and modulation of PTEN/PI3K signaling pathway.


Asunto(s)
MicroARNs/antagonistas & inhibidores , Músculo Liso Vascular/citología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Triterpenos/farmacología , Animales , Aterosclerosis/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Cromonas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Masculino , MicroARNs/genética , Morfolinas/farmacología , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Triterpenos/uso terapéutico , Ácido Ursólico
14.
Biochem Pharmacol ; 105: 91-100, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26921637

RESUMEN

Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 µM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Mitomicina/toxicidad , Proteína Oncogénica v-akt/metabolismo , Recombinasa Rad51/biosíntesis , Antibióticos Antineoplásicos/toxicidad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mitomicina/uso terapéutico , Proteína Oncogénica v-akt/antagonistas & inhibidores , Recombinasa Rad51/antagonistas & inhibidores , Xantófilas/toxicidad
15.
Pharmacol Res ; 102: 218-34, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26375988

RESUMEN

Selenium supplement has been shown in clinical trials to reduce the risk of different cancers including lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better understanding of the downstream cellular targets of MSA will provide information on its mechanism of action and will help to optimize its use in combination therapies with PI3K inhibitors. For this study, the effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and reactive oxygen species production were analysed in A549 cells. FOXO3a subcellular localization was examined in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate that MSA induces FOXO3a nuclear translocation in A549 cells and in U2OS cells that stably express GFP-FOXO3a. Interestingly, sodium selenite, another selenium compound, did not induce any significant effects on FOXO3a translocation despite inducing apoptosis. Single strand break of DNA, disruption of tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied by induction of apoptosis are late events occurring after 24h of MSA treatment in A549 cells. Our findings suggest that FOXO3a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent with synergistic antiproliferative effects with cisplatin.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Compuestos de Organoselenio/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Células 3T3 , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Proteína Forkhead Box O3 , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
16.
Pharmacol Res ; 95-96: 71-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25836921

RESUMEN

Curcumin (CUR) has been proven to be clinically effective in rheumatoid arthritis (RA) therapy, but its low oral bioavailability eclipses existent evidence that attempts to explain the underlying mechanism. Small intestine, the only organ exposed to a relatively high concentration of CUR, is the main site that generates gut hormones which are involved in the pathogenesis of RA. This study aims at addressing the hypothesis that one or more gut hormones serve as an intermediary agent for the anti-arthritic action of CUR. The protein and mRNA levels of gut hormones in CUR-treated rats were analyzed by ELISA and RT-PCR. Somatostatin (SOM) depletor and receptor antagonist were used to verify the key role of SOM in CUR-mediated anti-arthritic effect. The mechanisms underlying CUR-induced upregulation of SOM levels were explored by cellular experiments and immunohistochemical staining. The data showed that oral administration of CUR (100 mg/kg) for consecutive two weeks in adjuvant-induced arthritis rats still exhibited an extremely low plasma exposure despite of a dramatic amelioration of arthritis symptoms. When injected intraperitoneally, CUR lost anti-arthritic effect in rats, suggesting that it functions in an intestine-dependent manner. CUR elevated SOM levels in intestines and sera, and SOM depletor and non-selective SOM receptor antagonist could abolish the inhibitory effect of CUR on arthritis. Immunohistochemical assay demonstrated that CUR markedly increased the number of SOM-positive cells in both duodenum and jejunum. In vitro experiments demonstrated that CUR could augment SOM secretion from intestinal endocrine cells, and this effect could be hampered by either MEK1/2 or Ca(2+)/calmodulin-dependent kinase II (CAMKII) inhibitor. In summary, oral administration of CUR exhibits anti-arthritic effect through augmenting SOM secretion from the endocrine cells in small intestines via cAMP/PKA and Ca(2+)/CaMKII signaling pathways.


Asunto(s)
Antirreumáticos/farmacología , Artritis Experimental/tratamiento farmacológico , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Curcumina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Intestino Delgado/efectos de los fármacos , Somatostatina/metabolismo , Administración Oral , Animales , Antirreumáticos/administración & dosificación , Antirreumáticos/farmacocinética , Antirreumáticos/uso terapéutico , Artritis Experimental/metabolismo , Curcumina/administración & dosificación , Curcumina/farmacocinética , Curcumina/uso terapéutico , Relación Dosis-Respuesta a Droga , Intestino Delgado/metabolismo , Masculino , Ratas Sprague-Dawley , Transducción de Señal
17.
Biochem Pharmacol ; 93(1): 42-8, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25449602

RESUMEN

Phytoestrogens could offer multiple beneficial effects on the cardiovascular system. Here, we have examined the effects of coumestrol (CMT) on carotid baroreceptors activity (CBA) and the possible mechanisms in male rats. The functional parameters of carotid baroreceptors were measured by recording sinus nerve afferent discharge in anesthetized male rats with perfused isolated carotid sinus. The levels of protein expression were determined by using ELISA and Western blotting. CMT (1 to 100µmolL(-1)) inhibited CBA, which shifted the functional curve of the carotid baroreceptor to the right and downward, with a marked decrease in the peak slope and the peak integral value of carotid sinus nerve discharge in a concentration dependent manner. These effects were not blocked by a specific estrogen receptor antagonist ICI 182,780, but were completely abolished by nitric oxide (NO) synthase inhibitor l-NAME (N(G)-nitro-l-arginine methyl ester). Furthermore, a NO donor, SIN-1(3-morpholion-sydnon-imine), could potentiate these inhibitory effects of CMT. CMT stimulated the phosphorylation of Ser(1176)-eNOS (endothelial nitric oxide synthase) in a dose-dependent manner in carotid bifurcation tissue over a perfusion period of 15min. The rapid activation of eNOS by CMT was blocked by a highly selective PKA (protein kinase A) inhibitor H89. In addition, inhibition of PI3K (phosphatidylinositol-3-kinase) and ERK (extracellular signal-regulated kinase) pathways had no effect on eNOS activation by CMT. CMT inhibited CBA via eNOS activation and NO synthesis. These effects were mediated by the cAMP/PKA pathway and were unrelated to the estrogenic effect.


Asunto(s)
Seno Carotídeo/metabolismo , Cumestrol/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , AMP Cíclico/fisiología , Óxido Nítrico/metabolismo , Presorreceptores/metabolismo , Anestesia/métodos , Animales , Seno Carotídeo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Técnicas de Cultivo de Órganos , Presorreceptores/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
18.
Eur J Pharmacol ; 747: 71-87, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25498792

RESUMEN

Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Furanos/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/efectos de los fármacos , Lignanos/farmacología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas 14-3-3/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Becaplermina , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Estrelladas Hepáticas/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-sis/farmacología , ARN Interferente Pequeño/genética
19.
Adv Drug Deliv Rev ; 79-80: 30-9, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24819220

RESUMEN

Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Animales , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Humanos , Modelos Biológicos , Terapia Molecular Dirigida , Neoplasias/irrigación sanguínea , Neovascularización Patológica/patología , Ingeniería de Tejidos/métodos
20.
Vascul Pharmacol ; 61(2-3): 56-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24685819

RESUMEN

Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway plays an essential role in the regulation of vascular tone. The present study aimed to determine its role in hypoxic coronary vasoconstriction. Isometric tension of isolated porcine coronary arteries was measured with organ chamber technique; the protein levels of phosphorylated and total MLC were examined by Western blotting; the activities of PI3K and Rho kinase were determined by the phosphorylation of their respective target protein Akt and MTPT1. Acute hypoxia induced a rapid contraction followed by a short-term relaxation and then a sustained contraction in porcine coronary arteries. The rapid but not the sustained contraction was abolished by endothelium removal. The sustained contraction was attenuated by inhibitors of PI3K (LY294002) and Akt (Akt-I). The attenuation effect caused by LY294002 was not affected by nifedipine, but was abolished by Y27632, an inhibitor of Rho kinase. The sustained hypoxic contraction was associated with altered phosphorylation of MLC and Akt, which was inhibited by LY294002. The sustained hypoxic contraction was also accompanied with increased phosphorylation of MYPT1, which was inhibited by LY294002 and Y27632. This study demonstrates that sustained hypoxia causes porcine coronary artery to contract in an endothelium-independent manner. An increased PI3K/Akt/Rho kinase signaling may be involved.


Asunto(s)
Vasos Coronarios/fisiopatología , Hipoxia/fisiopatología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Amidas/farmacología , Animales , Cromonas/farmacología , Endotelio Vascular/metabolismo , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Piridinas/farmacología , Transducción de Señal , Porcinos , Factores de Tiempo , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA