Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069038

RESUMEN

The angiopoietin-1 receptor (Tie2) marks specific nucleus pulposus (NP) progenitor cells, shows a rapid decline during aging and intervertebral disc degeneration, and has thus sparked interest in its utilization as a regenerative agent against disc degeneration. However, the challenge of maintaining and expanding these progenitor cells in vitro has been a significant hurdle. In this study, we investigated the potential of laminin-511 to sustain Tie2+ NP progenitor cells in vitro. We isolated cells from human NP tissue (n = 5) and cultured them for 6 days on either standard (Non-coat) or iMatrix-511 (laminin-511 product)-coated (Lami-coat) dishes. We assessed these cells for their proliferative capacity, activation of Erk1/2 and Akt pathways, as well as the expression of cell surface markers such as Tie2, GD2, and CD24. To gauge their regenerative potential, we examined their extracellular matrix (ECM) production capacity (intracellular type II collagen (Col2) and proteoglycans (PG)) and their ability to form spherical colonies within methylcellulose hydrogels. Lami-coat significantly enhanced cell proliferation rates and increased Tie2 expression, resulting in a 7.9-fold increase in Tie2-expressing cell yields. Moreover, the overall proportion of cells positive for Tie2 also increased 2.7-fold. Notably, the Col2 positivity rate was significantly higher on laminin-coated plates (Non-coat: 10.24% (±1.7%) versus Lami-coat: 26.2% (±7.5%), p = 0.010), and the ability to form spherical colonies also showed a significant improvement (Non-coat: 40.7 (±8.8)/1000 cells versus Lami-coat: 70.53 (±18.0)/1000 cells, p = 0.016). These findings demonstrate that Lami-coat enhances the potential of NP cells, as indicated by improved colony formation and proliferative characteristics. This highlights the potential of laminin-coating in maintaining the NP progenitor cell phenotype in culture, thereby supporting their translation into prospective clinical cell-transplantation products.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Disco Intervertebral/metabolismo , Estudios Prospectivos , Células Madre/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Laminina/farmacología , Laminina/metabolismo , Células Cultivadas
2.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993299

RESUMEN

Using the timely re-activation of WNT signalling in neuralizing human induced pluripotent stem cells (hiPSCs), we have produced neural progenitor cells with a gene expression profile typical of human embryonic dentate gyrus (DG) cells. Notably, in addition to continuous WNT signalling, a specific laminin isoform is crucial to prolonging the neural stem state and to extending progenitor cell proliferation for over 200 days in vitro. Laminin 511 is indeed specifically required to support proliferation and to inhibit differentiation of hippocampal progenitor cells for extended time periods when compared with a number of different laminin isoforms assayed. Global gene expression profiles of these cells suggest that a niche of laminin 511 and WNT signalling is sufficient to maintain their capability to undergo typical hippocampal neurogenesis. Moreover, laminin 511 signalling sustains the expression of a set of genes responsible for the maintenance of a hippocampal neurogenic niche. Finally, xenograft of human DG progenitors into the DG of adult immunosuppressed host mice produces efficient integration of neurons that innervate CA3 layer cells spanning the same area of endogenous hippocampal neuron synapses.


Asunto(s)
Células Madre Pluripotentes Inducidas , Laminina , Animales , Diferenciación Celular/genética , Giro Dentado , Hipocampo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Laminina/metabolismo , Ratones , Neurogénesis/genética , Vía de Señalización Wnt
3.
Stem Cells Dev ; 31(21-22): 706-719, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35726387

RESUMEN

In human induced pluripotent stem cells (hiPSCs), laminin-511/α6ß1 integrin interacts with E-cadherin, an intercellular adhesion molecule, to induce the activation of the phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway. The interaction between laminin-511/α6ß1 integrin and E-cadherin, an intercellular adhesion molecule, results in protection against apoptosis through the proto-oncogene tyrosine-protein kinase Fyn(Fyn)-RhoA-ROCK signaling pathway and the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathway for cell death). In this article, the impact of laminin-511 on hiPSC on α6ß1 integrin-Fyn-RhoA-ROCK signaling is discussed and explored along with validation experiments. PIK3CA mRNA (mean [standard deviation {SD}]: iMatrix-511, 1.00 [0.61]; collagen+MFGE8, 0.023 [0.02]; **P < 0.01; n = 6) and PIK3R1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.79]; collagen+MFGE8, 0.040 [0.06]; *P < 0.05; n = 6) were upregulated by iMatrix-511 resulting from an increased expression of Integrin α6 mRNA (mean [SD]: iMatrix-511, 1.00 [0.42]; collagen+MFGE8, 0.23 [0.05]; **P < 0.01; n = 6). The iMatrix-511 increased the expression of p120-Catenin mRNA (mean [SD]: iMatrix-511, 1.00 [0.71]; collagen+MFGE8, 0.025 [0.03]; **P < 0.01; n = 6) and RAC1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.28]; collagen+MFGE8, 0.39 [0.15]; **P < 0.01; n = 6) by increasing the expression of E-cadherin mRNA (mean [SD]: iMatrix-511, 1.00 [0.38]; collagen+MFGE8, 0.16 [0.11]; **P < 0.01; n = 6). As a result, iMatrix-511 increased the expression of P190 RhoGAP (GTPase-activating proteins) mRNA, such as ARHGAP1 mRNA (mean [SD]: iMatrix-511, 1.00 [0.57]; collagen+MFGE8, 0.032 [0.03]; **P < 0.01; n = 6), ARHGAP4 mRNA (mean [SD]: iMatrix-511, 1.00 [0.56]; collagen+MFGE8, 0.039 [0.049]; **P < 0.01; n = 6), and ARHGAP5 mRNA (mean [SD]: iMatrix-511, 1.00 [0.39]; collagen+MFGE8, 0.063 [0.043]; **P < 0.01; n = 6). Western blotting showed that phospho-Rac1 remained in the cytoplasm and phospho-Fyn showed nuclear transition in iPSCs cultured on iMatrix-511. Proteome analysis showed that PI3K signaling was enhanced and cytoskeletal actin was activated in iPSCs cultured on iMatrix-511. In conclusion, laminin-511 strongly activated the cell survival by promoting α6ß1 integrin-Fyn-RhoA-ROCK signaling in hiPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Laminina , Humanos , Integrina alfa6beta1/metabolismo , Laminina/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Colágeno/metabolismo , ARN Mensajero , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
4.
Curr Issues Mol Biol ; 44(4): 1539-1551, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35723363

RESUMEN

BACKGROUND: The interaction between cancer cells and laminin (Ln) is a key event in tumor invasion and metastasis. Previously, we determined the effect of full-length Ln511 on gastric cancer cells. However, the interactions between the Ln511-E8 fragment, a truncated protein of Ln511, and gastric cancer cells have not been investigated. METHODS: We investigated the adhesion properties of gastric cancer cells to full-length Ln511 and Ln511-E8 fragments. RESULTS: The proliferation of four gastric cancer cell lines (SH-10-TC, MKN74, SC-6-JCK, and MKN45) was highest on the Ln511-E8 fragment. Further, a larger cytoplasm was observed in SH-10-TC and MKN74 cells cultured on full-length Ln511 or Ln511-E8 fragments. The percentage of adhesive cells was highest on the Ln511-E8 fragment in all four cell lines. Moreover, adhesion of the gastric cancer cells to Ln511-E8 fragment-coated plates was reduced by the Cdc42 GTPase inhibitor in a dose-dependent manner, suggesting the involvement of Cdc42 in the Ln511-E8 fragment-induced enhanced adhesion of gastric cancer cells. CONCLUSIONS: The Ln511-E8 fragment had a greater impact on the adhesion, morphology, and proliferation of gastric cancer cells than full-length laminin. Thus, the Ln511-E8 fragment is suitable for investigating the interaction between gastric cancer cells and extracellular matrices in tumor invasion and metastasis.

5.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409129

RESUMEN

Given their vital role in the homeostasis of the limbal stem cell niche, limbal melanocytes have emerged as promising candidates for tissue engineering applications. This study aimed to isolate and characterize a population of melanocyte precursors in the limbal stroma, compared with melanocytes originating from the limbal epithelium, using magnetic-activated cell sorting (MACS) with positive (CD117/c-Kit microbeads) or negative (CD326/EpCAM or anti-fibroblast microbeads) selection approaches. Both approaches enabled fast and easy isolation and cultivation of pure limbal epithelial and stromal melanocyte populations, which differed in phenotype and gene expression, but exhibited similar functional properties regarding proliferative potential, pigmentation, and support of clonal growth of limbal epithelial stem/progenitor cells (LEPCs). In both melanocyte populations, limbus-specific matrix (laminin 511-E8) and soluble factors (LEPC-derived conditioned medium) stimulated melanocyte adhesion, dendrite formation, melanogenesis, and expression of genes involved in UV protection and immune regulation. The findings provided not only a novel protocol for the enrichment of pure melanocyte populations from limbal tissue applying easy-to-use MACS technology, but also identified a population of stromal melanocyte precursors, which may serve as a reservoir for the replacement of damaged epithelial melanocytes and an alternative resource for tissue engineering applications.


Asunto(s)
Limbo de la Córnea , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Melanocitos/metabolismo , Nicho de Células Madre/fisiología , Células Madre/metabolismo
6.
Biochem Biophys Res Commun ; 474(1): 91-96, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27103433

RESUMEN

The drug discovery research for cholestatic liver diseases has been hampered by the lack of a well-established human cholangiocyte model. Functional cholangiocyte-like cells differentiated from human induced pluripotent stem (iPS) cells are expected to be a promising candidate for such research, but there remains no well-established method for differentiating cholangiocytes from human iPS cells. In this study, we searched for a suitable extracellular matrix to promote cholangiocyte differentiation from human iPS cells, and found that both laminin 411 and laminin 511 were suitable for this purpose. The gene expression levels of the cholangiocyte markers, aquaporin 1 (AQP1), SRY-box 9 (SOX9), cystic fibrosis transmembrane conductance regulator (CFTR), G protein-coupled bile acid receptor 1 (GPBAR1), Jagged 1 (JAG1), secretin receptor (SCTR), and γ-glutamyl transferase (GGT1) were increased by using laminin 411 or laminin 511 as a matrix. In addition, the percentage of AQP1-positive cells was increased from 61.8% to 92.5% by using laminin 411 or laminin 511. Furthermore, the diameter and number of cysts consisted of cholangiocyte-like cells were increased when using either matrix. We believe that the human iPS cell-derived cholangiocyte-like cells, which were generated by using our differentiation technology, would be useful for the drug discovery research of cholestatic liver diseases.


Asunto(s)
Conductos Biliares/citología , Células Epiteliales/citología , Células Epiteliales/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Laminina/metabolismo , Conductos Biliares/crecimiento & desarrollo , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA