Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Biomaterials ; 313: 122798, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39244823

RESUMEN

Despite the development of antibody-drug conjugates, the fragment Fab-based drug conjugates offer some unique capabilities in terms of safety, clearance, penetration and others. Current methods for preparing Fab drug conjugates are limited by the availability and stability of Fab proteins, leaving reports on this rare. Here, we found that a single-chain scaffold of Fab enables stabilization of the paired structure and supports high-yield expression in bacteria cytoplasm. Furthermore, we conjugated anti-neoplastic agent SN38 to the C-terminus by sortase A ligation and generated a homogenous Fab conjugate with the drug-to-Fab ratio of 1. The resulting anti-HER2 Fab-SN38 conjugate demonstrated potent and antigen-dependent cell-killing ability with the aid of its special cathepsin-triggered cyclization-promoted release mechanism. In vivo, Fab-SN38 can prevent growths of HER2-positive tumors in athymic mice and be well tolerated to the treatment at 7 mg/kg per dose. Anti-tumor activity, high dose tolerance and penetration advantage observed in this study would merit Fab conjugate investigation in target chemotherapy.

2.
Breast Cancer ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122876

RESUMEN

BACKGROUND: Targeted treatment of different types of cancers through highly expressed cancer cell surface receptors by fusion proteins is an efficient method for cancer therapy. The HER2 receptor is a member of the tyrosine kinase receptors family, which plays a notable role in breast cancer tumor development. About 25-30% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2). METHODS: In this study, we evaluated the particulars of a designed recombinant protein formed by HER2-specific Mab Herceptin linked with Arazyme on a HER2-overexpressing breast cancer cell line (SKBR3). Arazyme, a metalloprotease produced by Serratia proteamaculans was fused to the variable area of light and heavy chains of the Herceptin. The cytotoxic assay of the Arazyme-linker-Herceptin in the SKBR3 and MDA-MB-468 cells was evaluated by the MTT and flow cytometry techniques. The Caspase­3 activity determination and adhesion assay were performed to evaluate the antitumor activity of the Arazyme-linker-Herceptin against SKBR3 cells. Furthermore, RT-PCR was used to measure the expression levels of the Bcl-2, Bax, MMP2, MMP9, and RIP3 genes. RESULTS: The Arazyme-linker-Herceptin showed higher cytotoxicity in SKBR3 cells compared to MDA-MB-468 cells. In addition, flow cytometry results revealed that the Arazyme-linker-Herceptin can significantly induce apoptosis in the HER2-overexpressing breast cancer cell line (SKBR3), which was confirmed by Bax upregulation and the decrease in adhesion of tumor cells and MMP2/MMP9. CONCLUSION: The findings of this study demonstrated that the Arazyme-linker-Herceptin induced apoptosis and decreased metastatic genes in SKBR3 cells; however, further research is required to confirm the effectiveness of the fusion protein.

3.
Front Biosci (Landmark Ed) ; 29(8): 275, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39206902

RESUMEN

BACKGROUND: Many plant secondary metabolites (PSMs) were shown to intercalate into DNA helix or interact with DNA grooves. This may influence histone-DNA interactions changeing chromatin structure and genome functioning. METHODS: Nucleosome stability and linker histone H1.2, H1.4 and H1.5 localizations were studied in HeLa cells after the treatment with 15 PSMs, which are DNA-binders and possess anticancer activity according to published data. Chromatin remodeler CBL0137 was used as a control. Effects of PSMs were studied using fluorescent microscopy, flowcytometry, quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), western-blotting. RESULTS: We showed that 1-hour treatment with CBL0137 strongly inhibited DNA synthesis and caused intensive linker histone depletion consistent with nucleosome destabilization. None of PSMs caused nucleosome destabilization, while most of them demonstrated significant influence on linker histone localizations. In particular, cell treatment with 11 PSMs at non-toxic concentrations induced significant translocation of the histone H1.5 to nucleoli and most of PSMs caused depletion of the histones H1.2 and H1.4 from chromatin fraction. Curcumin, resveratrol, berberine, naringenin, and quercetin caused significant redistribution of all three variants of the studied linker histones showing some overlap of PSM effects on linker histone DNA-binding. We demonstrated that PSMs, which induced the most significant redistribution of the histone H1.5 (berberine, curcumin and naringenin), influence the proportion of cells synthesizing DNA, expressing or non-expressing cyclin B and influence cell cycle distribution. Berberine induction of H1.5 translocations to nucleoli was shown to occur independently on the phases of cell cycle (metaphase was not analyzed). CONCLUSIONS: For the first time we revealed PSM influence on linker histone location in cell nuclei that opens a new direction of PSM research as anticancer agents.


Asunto(s)
Cromatina , Histonas , Histonas/metabolismo , Humanos , Células HeLa , Cromatina/metabolismo , Nucleosomas/metabolismo , Nucleosomas/efectos de los fármacos , Metabolismo Secundario , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos/farmacología
4.
J Control Release ; 375: 74-89, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39216599

RESUMEN

In this work, we conceived and developed antibody-drug conjugates (ADCs) that could efficiently release the drug after enzymatic cleavage of the linker moiety by tumoral proteases. The antibody-drug linkers we used are the result of a rational optimization of a previously reported PEGylated linker, PUREBRIGHT® MA-P12-PS, which showed excellent drug loading capacities but lacked an inbuilt drug discharge mechanism, thus limiting the potency of the resulting ADCs. To address this limitation, we chose to incorporate a protease-sensitive trigger into the linker to favor the release of a "PEGless" drug inside the tumor cells and, therefore, obtain potent ADCs. Currently, most marketed ADCs are based on the Val-Cit dipeptide followed by a self-immolative spacer for releasing the drug in its unmodified form. Here, we selected two untraditional peptide sequences, a Phe-Gly dipeptide and a Val-Ala-Gly tripeptide and placed one or the other in between the drug on one side (N-terminus) and the rest of the linker, including the PEG moiety, on the other side (C-terminus), without a self-immolative group. We found that both linkers responded to cathepsin B, a reference lysosomal enzyme, and liberated a PEG-free drug catabolite, as desired. We then used the two linkers to generate ADCs based on trastuzumab (a HER2-targeting antibody) and DM1 (a microtubule-targeted cytotoxic agent) with an average drug-to-antibody ratio (DAR) of 4 or 8. The ADCs showed restored cytotoxicity in vitro, which was proportional to the DM1 loading and generally higher for the ADCs bearing Val-Ala-Gly in their structure. In an ovarian cancer mouse model, the DAR 8 ADC based on Val-Ala-Gly behaved better than Kadcyla® (an approved ADC of DAR 3.5 used as control throughout this study), leading to a higher tumor volume reduction and more prolonged median survival. Taken together, our results depict a successful linker optimization process and encourage the application of the Val-Ala-Gly tripeptide as an alternative to other existing protease-sensitive triggers for ADCs.

5.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034396

RESUMEN

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Asunto(s)
Epítopos de Linfocito B , Epítopos de Linfocito T , Vacunología , Humanos , Epítopos de Linfocito T/inmunología , Vacunología/métodos , Epítopos de Linfocito B/inmunología , Vacunas Combinadas/inmunología , Genómica/métodos , Escherichia coli Enterohemorrágica/inmunología , Salmonella/inmunología , Animales , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Vacunas contra Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/inmunología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/prevención & control , Antígenos Bacterianos/inmunología , Desarrollo de Vacunas/métodos , Vacunas Bacterianas/inmunología
6.
Adv Sci (Weinh) ; : e2402278, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953328

RESUMEN

The development of innovative strategies for cell membranes engineering is of prime interest to explore and manipulate cell-cell interactions. Herein, an enzyme-sensitive recognition marker that can be introduced on cell surface via bioorthogonal chemistry is designed. Once functionalized in this fashion, the cells gain the ability to assemble with cell partners coated with the complementary marker through non-covalent click chemistry. The artificial cell adhesion induces natural biological processes associated with cell proximity such as inhibiting cancer cell proliferation and migration. On the other hand, the enzymatic activation of the stimuli-responsive marker triggers the disassembly of cells, thereby restoring the tumor cell proliferation and migration rates. Thus, the study shows that the ready-to-use complementary markers are valuable tools for controlling the formation and the breaking of bonds between cells, offering an easy way to investigate biological processes associated to cell proximity.

7.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000079

RESUMEN

Antineoplastic therapy is one of the main research themes of this century. Modern approaches have been implemented to target and heighten the effect of cytostatic drugs on tumors and diminish their general/unspecific toxicity. In this context, antibody-drug conjugates (ADCs) represent a promising and successful strategy. The aim of this review was to assess different aspects regarding ADCs. They were presented from a chemical and a pharmacological perspective and aspects like structure, conjugation and development particularities alongside effects, clinical trials, safety issues and perspectives and challenges for future use of these drugs were discussed. Representative examples include but are not limited to the following main structural components of ADCs: monoclonal antibodies (trastuzumab, brentuximab), linkers (pH-sensitive, reduction-sensitive, peptide-based, phosphate-based, and others), and payloads (doxorubicin, emtansine, ravtansine, calicheamicin). Regarding pharmacotherapy success, the high effectiveness expectation associated with ADC treatment is supported by the large number of ongoing clinical trials. Major aspects such as development strategies are first discussed, advantages and disadvantages, safety and efficacy, offering a retrospective insight on the subject. The second part of the review is prospective, focusing on various plans to overcome the previously identified difficulties.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/uso terapéutico , Inmunoconjugados/química , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/química
8.
J Transl Med ; 22(1): 604, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951906

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a recurrent, heterogeneous, and invasive form of breast cancer. The treatment of TNBC patients with paclitaxel and fluorouracil in a sequential manner has shown promising outcomes. However, it is challenging to deliver these chemotherapeutic agents sequentially to TNBC tumors. We aim to explore a precision therapy strategy for TNBC through the sequential delivery of paclitaxel and fluorouracil. METHODS: We developed a dual chemo-loaded aptamer with redox-sensitive caged paclitaxel for rapid release and non-cleavable caged fluorouracil for slow release. The binding affinity to the target protein was validated using Enzyme-linked oligonucleotide assays and Surface plasmon resonance assays. The targeting and internalization abilities into tumors were confirmed using Flow cytometry assays and Confocal microscopy assays. The inhibitory effects on TNBC progression were evaluated by pharmacological studies in vitro and in vivo. RESULTS: Various redox-responsive aptamer-paclitaxel conjugates were synthesized. Among them, AS1411-paclitaxel conjugate with a thioether linker (ASP) exhibited high anti-proliferation ability against TNBC cells, and its targeting ability was further improved through fluorouracil modification. The fluorouracil modified AS1411-paclitaxel conjugate with a thioether linker (FASP) exhibited effective targeting of TNBC cells and significantly improved the inhibitory effects on TNBC progression in vitro and in vivo. CONCLUSIONS: This study successfully developed fluorouracil-modified AS1411-paclitaxel conjugates with a thioether linker for targeted combination chemotherapy in TNBC. These conjugates demonstrated efficient recognition of TNBC cells, enabling targeted delivery and controlled release of paclitaxel and fluorouracil. This approach resulted in synergistic antitumor effects and reduced toxicity in vivo. However, challenges related to stability, immunogenicity, and scalability need to be further investigated for future translational applications.


Asunto(s)
Aptámeros de Nucleótidos , Preparaciones de Acción Retardada , Liberación de Fármacos , Fluorouracilo , Nucleolina , Paclitaxel , Fosfoproteínas , Proteínas de Unión al ARN , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química , Humanos , Paclitaxel/uso terapéutico , Paclitaxel/farmacología , Línea Celular Tumoral , Animales , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Proteínas de Unión al ARN/metabolismo , Fosfoproteínas/metabolismo , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Ratones Endogámicos BALB C
9.
Biosensors (Basel) ; 14(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38920591

RESUMEN

The overall 5-year survival rate of ovarian cancer (OC) is generally low as the disease is often diagnosed at an advanced stage of progression. To save lives, OC must be identified in its early stages when treatment is most effective. Early-stage OC causes the upregulation of lysophosphatidic acid (LPA), making the molecule a promising biomarker for early-stage detection. An LPA assay can additionally stage the disease since LPA levels increase with OC progression. This work presents two methods that demonstrate the prospective application for detecting LPA: the electromagnetic piezoelectric acoustic sensor (EMPAS) and a chemiluminescence-based iron oxide nanoparticle (IONP) approach. Both methods incorporate the protein complex gelsolin-actin, which enables testing for detection of the biomarker as the binding of LPA to the complex results in the separation of gelsolin from actin. The EMPAS was characterized with contact angle goniometry and atomic force microscopy, while gelsolin-actin-functionalized IONPs were characterized with transmission electron microscopy and Fourier transform infrared spectroscopy. In addition to characterization, LPA detection was demonstrated as a proof-of-concept in Milli-Q water, buffer, or human serum, highlighting various LPA assays that can be developed for the early-stage detection of OC.


Asunto(s)
Biomarcadores de Tumor , Lisofosfolípidos , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Técnicas Biosensibles , Gelsolina , Actinas , Detección Precoz del Cáncer
10.
Drug Discov Today ; 29(8): 104057, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844064

RESUMEN

Antibody-drug conjugates (ADCs), from prototypes in the 1980s to first- and second-generation products in the 2000s, and now in their multiformats, have progressed tremendously to meet oncological challenges. Currently, 13 ADCs have been approved for medical practice, with over 200 candidates in clinical trials. Moreover, ADCs have evolved into different formats, including bispecific ADCs, probody-drug conjugates, pH-responsive ADCs, target-degrading ADCs, and immunostimulating ADCs. Technologies from biopharmaceutical industries have a crucial role in the clinical transition of these novel biotherapeutics. In this review, we highlight several features contributing to the prosperity of bioindustrial ADC development. Various proprietary technologies from biopharmaceutical companies are discussed. Such advances in biopharmaceutical industries are the backbone for the success of ADCs in development and clinical application.


Asunto(s)
Biotecnología , Desarrollo de Medicamentos , Industria Farmacéutica , Inmunoconjugados , Inmunoconjugados/uso terapéutico , Inmunoconjugados/administración & dosificación , Humanos , Biotecnología/métodos , Industria Farmacéutica/métodos , Desarrollo de Medicamentos/métodos , Desarrollo de Medicamentos/tendencias , Animales
11.
Bioorg Med Chem Lett ; 110: 129861, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38942127

RESUMEN

Proteolysis targeting chimeras (PROTACs) are heterobifunctional small-molecule degraders made of a linker connecting a target-binding moiety to a ubiquitin E3 ligase-binding moiety. The linker unit is known to influence the physicochemical and pharmacokinetic properties of PROTACs, as well as the properties of ternary complexes, in turn impacting on their degradation activity in cells and in vivo. Our LRRK2 PROTAC XL01126, bearing a trans-cyclohexyl group in the linker, is a better and more cooperative degrader than its corresponding cis- analogue despite its much weaker binary binding affinities. Here, we investigate how this subtle stereocenter alteration in the linker affects the ligand binding affinity to the E3 ligase VHL. We designed a series of molecular matched pairs, truncating from the full PROTACs down to the VHL ligand, and find that across the series the trans-cyclohexyl compounds showed consistently weaker VHL-binding affinity compared to the cis- counterparts. High-resolution co-crystal structures revealed that the trans linker exhibits a rigid stick-out conformation, while the cis linker collapses into a folded-back conformation featuring a network of intramolecular contacts and long-range interactions with VHL. These observations are noteworthy as they reveal how a single stereochemical inversion within a PROTAC linker impacts conformational rigidity and binding mode, in turn fine-tuning differentiated propensity to binary and ternary complex formation, and ultimately cellular degradation activity.


Asunto(s)
Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Humanos , Sitios de Unión , Ligandos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Proteolisis/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/química , Ciclohexanos/química
12.
Pancreatology ; 24(6): 899-908, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942662

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading cause of cancer death worldwide. PDACs are characterized by centrosome aberrations, but whether centrosome-related genes influence patient outcomes has not been tested. METHODS: Publicly available RNA-sequencing data of patients diagnosed with PDAC were interrogated with unsupervised approaches to identify centrosome protein-encoding genes with prognostic relevance. Candidate genes were validated by immunohistochemistry and multiplex immunofluorescence in a set of clinical PDAC and normal pancreatic tissues. RESULTS: Results showed that two genes CEP250 and CEP170, involved in centrosome linker and centriolar subdistal appendages, were expressed at high levels in PDAC tissues and were correlated with prognosis of PDAC patients in independent databases. Large clustered γ-tubulin-labelled centrosomes were linked together by aberrant circular and planar-shaped CEP250 arrangements in CEP250-high expressing PDACs. Furthermore, PDACs displayed prominent centrosome separation and reduced CEP164-centrosomal labelling associated with acetylated-tubulin staining compared to normal pancreatic tissues. Interestingly, in a small validation cohort, CEP250-high expressing patients had shorter disease free- and overall-survival and almost none of those who received gemcitabine plus nab-paclitaxel first-line therapy achieved a clinical response. In contrast, weak CEP250 expression was associated with long-term survivors or responses to medical treatments. CONCLUSIONS: Alteration of the centriolar cohesion and appendages has effect on the survival of patients with PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Ciclo Celular , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Pronóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Resultado del Tratamiento , Centrosoma/metabolismo
13.
Bioorg Chem ; 149: 107504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850783

RESUMEN

The notable characteristics of recently emerged Antibody-Drug Conjugates (ADCs) encompass the targeting of Human Epidermal growth factor Receptor 2 (HER2) through monoclonal antibodies (mAbs) and a high ratio of drug to antibody (DAR). The achievements of Kadcyla® (T-DM1) and Enhertu® (T-Dxd) have demonstrated that HER2-targeting antibodies, such as trastuzumab, have shown to be competitive in terms of efficacy and price for development. Furthermore, with the arrival of T-Dxd and Trodelvy®, high-DAR (7-8) ADCs, which differ from the moderate DAR (3-4) ADCs that were formerly regarded as conventional, are being acknowledged for their worth. Following this trend of drug development, we endeavored to develop a high-DAR ADC using a straightforward approach involving the utilization of DM1, a highly potent substance, in combination with the widely recognized trastuzumab. To achieve a high DAR, DM1 was conjugated to reduced cysteine through the simple design and synthesis of various dimaleimide linkers with differing lengths. Using LC and MS analysis, we have demonstrated that our synthesis methodology is uncomplicated and efficacious, yielding trastuzumab-based ADCs that exhibit a remarkable degree of uniformity. These ADCs have been experimentally substantiated to exert an inhibitory effect on cancer cells in vitro, thus affirming their value as noteworthy additions to the realm of ADCs.


Asunto(s)
Ado-Trastuzumab Emtansina , Inmunoconjugados , Receptor ErbB-2 , Trastuzumab , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Ado-Trastuzumab Emtansina/química , Trastuzumab/química , Trastuzumab/farmacología , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Maleimidas/química , Maleimidas/síntesis química , Relación Dosis-Respuesta a Droga , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Maitansina/química , Maitansina/farmacología , Maitansina/síntesis química , Maitansina/análogos & derivados , Línea Celular Tumoral , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/síntesis química , Antineoplásicos Inmunológicos/farmacología
14.
Bioengineering (Basel) ; 11(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38927853

RESUMEN

The significant growth of the global protein drug market, including fusion proteins, emphasizes the crucial role of optimizing amino acid sequences to enhance the productivity and bioefficacy. Among these fusion proteins, RBP-IIIA-IB, comprising retinol-binding protein in conjunction with the albumin domains, IIIA and IB, has displayed efficacy in alleviating liver fibrosis by inhibiting the activation of hepatic stellate cells (HSCs). This study aimed to address the issue of the low productivity in RBP-IIIA-IB. To induce structural changes, the linking sequence, EVDD, between domain IIIA and IB in RBP-IIIA-IB was modified to DGPG, AAAA, and GGPA. Among these, RBP-IIIA-AAAA-IB demonstrated an increase in yield (>4-fold) and a heightened inhibition of HSC activation. Furthermore, we identified amino acid residues that could form disulfide bonds when substituted with cysteine. Through the mutation of N453S-V480S in RBP-IIIA-AAAA-IB, the productivity further increased by over 9-fold, accompanied by an increase in anti-fibrotic activity. Overall, there was a more than 30-fold increase in the fusion protein's yield. These findings demonstrate the effectiveness of modifying linker sequences and introducing extra disulfide bonds to improve both the production yield and biological efficacy of fusion proteins.

15.
Int J Nanomedicine ; 19: 5739-5761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882545

RESUMEN

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have the capability to induce specific protein degradation. While playing a revolutionary role in effectively degrading the protein of interest (POI), PROTACs encounter certain limitations that impede their clinical translation. These limitations encompass off-target effects, inadequate cell membrane permeability, and the hook effect. The advent of nanotechnology presents a promising avenue to surmount the challenges associated with conventional PROTACs. The utilization of nano-proteolysis targeting chimeras (nano-PROTACs) holds the potential to enhance specific tissue accumulation, augment membrane permeability, and enable controlled release. Consequently, this approach has the capacity to significantly enhance the controllable degradation of target proteins. Additionally, they enable a synergistic effect by combining with other therapeutic strategies. This review comprehensively summarizes the structural basis, advantages, and limitations of PROTACs. Furthermore, it highlights the latest advancements in nanosystems engineered for delivering PROTACs, as well as the development of nano-sized PROTACs employing nanocarriers as linkers. Moreover, it delves into the underlying principles of nanotechnology tailored specifically for PROTACs, alongside the current prospects of clinical research. In conclusion, the integration of nanotechnology into PROTACs harbors vast potential in enhancing the anti-tumor treatment response and expediting clinical translation.


Asunto(s)
Neoplasias , Proteolisis , Humanos , Neoplasias/tratamiento farmacológico , Proteolisis/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Nanopartículas/química , Nanomedicina/métodos , Nanotecnología/métodos , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química
16.
J Appl Toxicol ; 44(9): 1426-1445, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38782376

RESUMEN

Legubicin is a novel conjugate of doxorubicin and a legumain-cleavable peptide linker. It has been developed to ameliorate the side effects of doxorubicin. Biodistribution in tumor-bearing mice, acute tolerance, and potential systemic toxic effects in Sprague-Dawley rats and beagle dogs of legubicin were assessed. Legubicin exists mainly as a protein complex in plasma after entering the circulation. Compared with conventional doxorubicin at an equal molar dose in mice, we found higher exposure to doxorubicin in tumor (approximately 1.7-fold increase) while lower exposure in normal tissues (an ~3.26-, 3.46-, and 1.29-fold reduction in heart, kidney, and plasma, respectively) in tumor-bearing mice after intravenous injection of legubicin. The acute maximum tolerance dose (MTD) of legubicin was >16 mg/kg doxorubicin equivalent in female rats, 11 mg/kg doxorubicin equivalent in male rats (LD50 of conventional doxorubicin is 10.51 mg/kg), and >8 mg/kg doxorubicin equivalent in dogs (MTD of conventional doxorubicin is 1.5 mg/kg). Four-week repeat-dose toxicity studies of intravenous legubicin were conducted in rats (5, 10, and 25 mg/kg/dose once weekly) and dogs (3/1.5, 10/5, and 20/10 mg/kg/dose once weekly); the dose levels were reduced from the second dose due to intolerable legubicin-associated toxicity at 20 mg/kg. Major organs of toxicity included the gastrointestinal tract, lymphoid and hematopoietic organs, kidney, skin, liver, reproductive organs, and peripheral nerves, which are all associated with doxorubicin. However, cardiotoxicity was only noted at MTD dose levels. Altogether, our results confirm an improved safety profile of legubicin over conventional doxorubicin and support its clinical benefit for treating cancer.


Asunto(s)
Doxorrubicina , Ratas Sprague-Dawley , Animales , Doxorrubicina/farmacocinética , Doxorrubicina/análogos & derivados , Doxorrubicina/toxicidad , Distribución Tisular , Femenino , Masculino , Perros , Ratas , Ratones , Cisteína Endopeptidasas , Dosis Máxima Tolerada , Dosificación Letal Mediana , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidad , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/toxicidad
17.
Biochim Biophys Acta Bioenerg ; 1865(3): 149049, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38801856

RESUMEN

Phycobilisome (PBS) is a large pigment-protein complex in cyanobacteria and red algae responsible for capturing sunlight and transferring its energy to photosystems (PS). Spectroscopic and structural properties of various PBSs have been widely studied, however, the nature of so-called complex-complex interactions between PBS and PSs remains much less explored. In this work, we have investigated the function of a newly identified PBS linker protein, ApcG, some domain of which, together with a loop region (PB-loop in ApcE), is possibly located near the PBS-PS interface. Using Synechocystis sp. PCC 6803, we generated an ApcG deletion mutant and probed its deletion effect on the energetic coupling between PBS and photosystems. Steady-state and time-resolved spectroscopic characterization of the purified ΔApcG-PBS demonstrated that ApcG removal weakly affects the photophysical properties of PBS for which the spectroscopic properties of terminal energy emitters are comparable to those of PBS from wild-type strain. However, analysis of fluorescence decay imaging datasets reveals that ApcG deletion induces disruptions within the allophycocyanin (APC) core, resulting in the emergence (splitting) of two spectrally diverse subgroups with some short-lived APC. Profound spectroscopic changes of the whole ΔApcG mutant cell, however, emerge during state transition, a dynamic process of light scheme adaptation. The mutant cells in State I show a substantial increase in PBS-related fluorescence. On the other hand, global analysis of time-resolved fluorescence demonstrates that in general ApcG deletion does not alter or inhibit state transitions interpreted in terms of the changes of the PSII and PSI fluorescence emission intensity. The results revealed yet-to-be discovered mechanism of ApcG-docking induced excitation energy transfer regulation within PBS or to Photosystems.


Asunto(s)
Proteínas Bacterianas , Transferencia de Energía , Ficobilisomas , Synechocystis , Ficobilisomas/metabolismo , Ficobilisomas/química , Synechocystis/metabolismo , Synechocystis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética , Péptidos/metabolismo , Péptidos/química
18.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710741

RESUMEN

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta3 , Quinasas Asociadas a rho , Quinasas Asociadas a rho/metabolismo , Fosforilación , Diferenciación Celular/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Factor de Crecimiento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacología , Amidas/farmacología , Proteínas de Unión al GTP rho/metabolismo
19.
Xenobiotica ; : 1-13, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738708

RESUMEN

1. Over the past two decades antibody-drug conjugates (ADCs) have emerged as a highly effective drug delivery technology. ADCs utilize a monoclonal antibody, a chemical linker, and a therapeutic payload to selectively deliver highly potent pharmaceutical agents to specific cell types.2. Challenges such as premature linker cleavage and clearance due to linker hydrophobicity have adversely impacted the stability and safety of ADCs. While there are various solutions to these challenges, our team has focused on replacement of hydrophobic ValCit linkers (cleaved by CatB) with Asn-containing linkers that are cleaved by lysosomal legumain.3. Legumain is abundantly present in lysosomes and is known to play a role in tumor microenvironment dynamics. Herein, we directly compare the lysosomal cleavage, cytotoxicity, plasma stability, and efficacy of a traditional cathepsin cleavable ADC to a matched Asn-containing legumain-cleavable ADC.4. We demonstrate that Asn-containing linker sequences are specifically cleaved by lysosomal legumain and that Asn-linked MMAE ADCs are broadly active against a variety of tumors, even those with low legumain expression. Finally, we show that AsnAsn-linked ADCs exhibit comparable or improved efficacy to traditional ValCit-linked ADCs. Our study paves the way for replacement of the traditional ValCit linker technology with more hydrophilic Asn-containing peptide linker sequences.

20.
Methods Mol Biol ; 2807: 163-171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743228

RESUMEN

Mammalian cells have developed and optimized defense mechanisms to prevent or hamper viral infection. The early transcriptional silencing of incoming viral DNAs is one such antiviral strategy and seems to be of fundamental importance, since most cell types silence unintegrated retroviral DNAs. In this chapter, a method for chromatin immunoprecipitation of unintegrated DNA is described. This technique allows investigators to examine histone and co-factor interactions with unintegrated viral DNAs as well as to analyze histone modifications in general or in a kinetic fashion at various time points during viral infection.


Asunto(s)
Inmunoprecipitación de Cromatina , Genoma Viral , Histonas , Retroviridae , Histonas/metabolismo , Humanos , Inmunoprecipitación de Cromatina/métodos , Retroviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Animales , ADN Viral/genética , Anticuerpos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA