Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
Biomark Res ; 12(1): 62, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886769

RESUMEN

Inhibitors of Bruton's tyrosine kinase (BTKi) and chimeric antigen receptor T-cell (CAR-T) therapy targeting CD19 are paradigm-shifting advances in treating patients with aggressive mantle cell lymphoma (MCL). However, clinical relapses following BTKi and CD19-directed CAR-T treatments are a fast-growing medical challenge. Development of novel therapies to overcome BTKi resistance (BTKi-R) and BTKi-CAR-T dual resistance (Dual-R) are urgently needed. Our single-cell RNA sequencing data revealed major transcriptomic reprogramming, with great enrichment of MYC-targets evolving as resistance to these therapies developed. Interestingly, cyclin-dependent kinase 9 (CDK9), a critical component of the positive transcription elongation factor-b complex, was among the top upregulated genes in Dual-R vs. BTKi-R samples. We therefore hypothesized that targeting CDK9 may turn off MYC-driven tumor survival and drug resistance. Enitociclib (formerly VIP152) is a selective CDK9 inhibitor whose potency against MCL has not been assessed. In this study, we found that enitociclib was highly potent in targeting lymphoma cells, with the half-maximal inhibitory concentration (IC50) ranging from 32 to 172 nM in MCL and diffuse large B-cell lymphoma cell lines. It inhibited CDK9 phosphorylation and downstream events including de novo synthesis of the short-lived proteins c-MYC, MCL-1, and cyclin D1, and induced apoptosis in a caspase-3-dependent manner. Enitociclib potently inhibited in vivo tumor growth of cell line-derived and patient-derived xenografts having therapeutic resistance. Our data demonstrate the potency of enitociclib in overcoming therapeutic resistance in MCL models and provide evidence in favor of its clinical investigation.

2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928234

RESUMEN

Mcl-1 (myeloid cell leukemia 1), a member of the Bcl-2 family, is upregulated in various types of cancer. Peptides representing the BH3 (Bcl-2 homology 3) region of pro-apoptotic proteins have been demonstrated to bind the hydrophobic groove of anti-apoptotic Mcl-1, and this interaction is responsible for regulating apoptosis. Structural studies have shown that, while there is high overall structural conservation among the anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins, differences in the surface groove of these proteins facilitates binding specificity. This binding specificity is crucial for the mechanism of action of the Bcl-2 family in regulating apoptosis. Bim-based peptides bind specifically to the hydrophobic groove of Mcl-1, emphasizing the importance of these interactions in the regulation of cell death. Molecular docking was performed with BH3-like peptides derived from Bim to identify high affinity peptides that bind to Mcl-1 and to understand the molecular mechanism of their interactions. The interactions of three identified peptides, E2gY, E2gI, and XXA1_F3dI, were further evaluated using 250 ns molecular dynamics simulations. Conserved hydrophobic residues of the peptides play an important role in their binding and the structural stability of the complexes. Understanding the molecular basis of interaction of these peptides will assist in the development of more effective Mcl-1 specific inhibitors.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Péptidos , Unión Proteica , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Humanos , Péptidos/química , Péptidos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Sitios de Unión , Secuencia de Aminoácidos , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/química
3.
PeerJ ; 12: e17538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912051

RESUMEN

Background: Gynostemma pentaphyllum (Thunb.) Makino, a well-known edible and medicinal plant, has anti-aging properties and is used to treataging-associated conditions such as diabetes, metabolic syndrome, and cardiovascular diseases. Gypenosides (GYPs) are the primary constituents of G. pentaphyllum. Increasing evidence indicates that GYPs are effective at preserving mitochondrial homeostasis and preventing heart failure (HF). This study aimed to uncover the cardioprotective mechanisms of GYPs related to mitochondrial regulation. Methods: The bioactive components in GYPs and the potential targets in treating HF were obtained and screened using the network pharmacology approach, followed by drug-disease target prediction and enrichment analyses. The pharmacological effects of GYPs in cardioprotection, mitochondrial function, mitochondrial quality control, and underlying mechanisms were further investigated in Doxorubicin (Dox)-stimulated H9c2 cardiomyocytes. Results: A total of 88 bioactive compounds of GYPs and their respective 71 drug-disease targets were identified. The hub targets covered MAPK, EGFR, PI3KCA, and Mcl-1. Enrichment analysis revealed that the pathways primarily contained PI3K/Akt, MAPK, and FoxO signalings, as well as calcium regulation, protein phosphorylation, apoptosis, and mitophagy process. In Dox-stimulated H9c2 rat cardiomyocytes, pretreatment with GYPs increased cell viability, enhanced cellular ATP content, restored basal oxygen consumption rate (OCR), and improved mitochondrial membrane potential (MMP). Furthermore, GYPs improved PINK1/parkin-mediated mitophagy without influencing mitochondrial fission/fusion proteins and the autophagic LC3 levels. Mechanistically, the phosphorylation of PI3K, Akt, GSK-3ß, and the protein level of Mcl-1 was upregulated by GYP treatment. Conclusion: Our findings reveal that GYPs exert cardioprotective effects by rescuing the defective mitophagy, and PI3K/Akt/GSK-3ß/Mcl-1 signaling is potentially involved in this process.


Asunto(s)
Cardiotónicos , Glucógeno Sintasa Quinasa 3 beta , Gynostemma , Mitofagia , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Miocitos Cardíacos , Fosfatidilinositol 3-Quinasas , Extractos Vegetales , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Gynostemma/química , Mitofagia/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cardiotónicos/farmacología , Extractos Vegetales/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Ratas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Línea Celular
4.
J Virol ; : e0040524, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874362

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions. Here, we report that the viral oncoprotein Tax represses FBXW7 activity, resulting in the stabilization of activated Notch intracellular domain, c-MYC, Cyclin E, and myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1). Mechanistically, we demonstrate that Tax directly binds to FBXW7 in the nucleus, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 substrates. In support of the nuclear role of Tax, a non-degradable form of the nuclear factor kappa B subunit 2 (NFκB2/p100) was found to delocalize Tax to the cytoplasm, thereby preventing Tax interactions with FBXW7 and Tax-mediated inhibition of FBXW7. Finally, we characterize a Tax mutant that is unable to interact with FBXW7, unable to block FBXW7 tumor suppressor functions, and unable to effectively transform fibroblasts. These results demonstrate that HTLV-I Tax can inhibit FBXW7 functions without genetic mutations to promote an oncogenic state. These results suggest that Tax-mediated inhibition of FBXW7 is likely critical during the early stages of the cellular transformation process. IMPORTANCE: F-box and WD repeat domain containing 7 (FBXW7), a critical tumor suppressor of human cancers, is frequently mutated or epigenetically suppressed. Loss of FBXW7 functions is associated with stabilization and increased expression of oncogenic factors such as Cyclin E, c-Myc, Mcl-1, mTOR, Jun, and Notch. In this study, we demonstrate that the human retrovirus human T-cell leukemia virus type 1 oncoprotein Tax directly interacts with FBXW7, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 cellular substrates. We further demonstrate that a Tax mutant unable to interact with and inactivate FBXW7 loses its ability to transform primary fibroblasts. Collectively, our results describe a novel mechanism used by a human tumor virus to promote cellular transformation.

5.
Cell Rep Med ; 5(6): 101585, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38781960

RESUMEN

RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Here, using single-cell, multi-omics technologies, we seek to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We identify that RAS pathway mutations induce transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs) and downstream monocytic populations in response to cell-intrinsic and -extrinsic inflammatory signaling that also impair the functions of immune cells. HSPCs expand at disease progression after therapy with HMA or the BCL2 inhibitor venetoclax and rely on the NF-κB pathway effector MCL1 to maintain survival. Our study has implications for the development of therapies to improve the survival of patients with RAS pathway-mutated CMML.


Asunto(s)
Apoptosis , Leucemia Mielomonocítica Crónica , Mutación , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Leucemia Mielomonocítica Crónica/patología , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Humanos , Apoptosis/efectos de los fármacos , Animales , Mutación/genética , Ratones , Transducción de Señal/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Progresión de la Enfermedad , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , FN-kappa B/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Crisis Blástica/patología , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/genética , Crisis Blástica/metabolismo
6.
J Biol Chem ; 300(6): 107375, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762181

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive breast cancer sub-type with limited treatment options and poor prognosis. Currently, standard treatments for TNBC include surgery, chemotherapy, and anti-PDL1 therapy. These therapies have limited efficacy in advanced stages. Myeloid-cell leukemia 1 (MCL1) is an anti-apoptotic BCL2 family protein. High expression of MCL1 contributes to chemotherapy resistance and is associated with a worse prognosis in TNBC. MCL1 inhibitors are in clinical trials for TNBC, but response rates to these inhibitors can vary and predictive markers are lacking. Currently, we identified a 4-member (AXL, ETS1, IL6, EFEMP1) gene signature (GS) that predicts MCL1 inhibitor sensitivity in TNBC cells. Factors encoded by these genes regulate signaling pathways to promote MCL1 inhibitor resistance. Small molecule inhibitors of the GS factors can overcome resistance and sensitize otherwise resistant TNBC cells to MCL1 inhibitor treatment. These findings offer insights into potential therapeutic strategies and tumor stratification for MCL1 inhibitor use in TNBC.


Asunto(s)
Resistencia a Antineoplásicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Neoplasias de la Mama Triple Negativas , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Femenino , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Interleucina-6/metabolismo , Interleucina-6/genética , Proteína Proto-Oncogénica c-ets-1
7.
J Cancer ; 15(10): 3173-3182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706892

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common malignant head and neck carcinoma type. Myeloid cell leukemia-1 (MCL-1), an anti-apoptotic BCL-1 protein, has been verified to be among the most highly upregulated pathologic proteins in human cancers linked to tumor relapse, poor prognosis and therapeutic resistance. Herein, therapeutic targeting MCL-1 is an attractive focus for cancer treatment. The present study found that butein, a potential phytochemical compound, exerted profound antitumor effects on OSCC cells. Butein treatment significantly inhibited cell viability, proliferation capacity and colony formation ability, and activated cell apoptotic process. Further potential mechanism investigation showed that promoting MCL-1 ubiquitination and degradation is the major reason for butein-mediated OSCC cell cytotoxicity. Our results uncovered that butein could facilitate E3 ligase FBW7 combined with MCL-1, which contributed to an increase in the ubiquitination of MCL-1 Ub-K48 and degradation. The results of both in vitro cell experiments and in vivo xenograft models imply a critical antitumor function of butein with the well-tolerated feature, and it might be an attractive and promising agent for OSCC treatment.

8.
Cells ; 13(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38607071

RESUMEN

Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.


Asunto(s)
Amidas , Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Glioblastoma , Pirimidinas , Sulfonamidas , Animales , Ratones , Temozolomida/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Metotrexato/farmacología , Metotrexato/uso terapéutico , Citarabina/farmacología , Citarabina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Apoptosis
9.
Front Oncol ; 14: 1394393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651147

RESUMEN

Introduction: BCL-2 family proteins are important for tumour cell survival and drug resistance in multiple myeloma (MM). Although proteasome inhibitors are effective anti-myeloma drugs, some patients are resistant and almost all eventually relapse. We examined the function of BCL-2 family proteins in stromal-mediated resistance to carfilzomib-induced cytotoxicity in MM cells. Methods: Co-cultures employing HS5 stromal cells were used to model the interaction with stroma. MM cells were exposed to CFZ in a 1-hour pulse method. The expression of BCL-2 family proteins was assessed by flow cytometry and WB. Pro-survival proteins: MCL-1, BCL-2 and BCL-XL were inhibited using S63845, ABT-199 and A-1331852 respectively. Changes in BIM binding partners were examined by immunoprecipitation and WB. Results: CFZ induced dose-dependent cell death of MM cells, primarily mediated by apoptosis. Culture of MM cells on HS-5 stromal cells resulted in reduced cytotoxicity to CFZ in a cell contact-dependent manner, upregulated expression of MCL-1 and increased dependency on BCL-XL. Inhibiting BCL-XL or MCL-1 with BH-3 mimetics abrogated stromal-mediated protection only at high doses, which may not be achievable in vivo. However, combining BH-3 mimetics at sub-therapeutic doses, which alone were without effect, significantly enhanced CFZ-mediated cytotoxicity even in the presence of stroma. Furthermore, MCL-1 inhibition led to enhanced binding between BCL-XL and BIM, while blocking BCL-XL increased MCL-1/BIM complex formation, indicating the cooperative role of these proteins. Conclusion: Stromal interactions alter the dependence on BCL-2 family members, providing a rationale for dual inhibition to abrogate the protective effect of stroma and restore sensitivity to CFZ.

10.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38666914

RESUMEN

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

11.
Biochem Pharmacol ; 224: 116242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679209

RESUMEN

Although the anticancer activity of ONC212 has been reported, the precise mechanism underlying its apoptotic effects remains unclear. In this study, we investigated the apoptotic mechanism of ONC212 in acute myeloid leukemia (AML) cells. ONC212 induces apoptosis, MCL1 downregulation, and mitochondrial depolarization in AML U937 cells. Ectopic MCL1 expression alleviates mitochondria-mediated apoptosis in ONC212-treated U937 cells. ONC212 triggers AKT phosphorylation, inducing NOX4-dependent ROS production and promoting HuR transcription. HuR-mediated ATF4 mRNA stabilization stimulates NOXA and SLC35F2 expression; ONC212-induced upregulation of NOXA leads to MCL1 degradation. The synergistic effect of ONC212 on YM155 cytotoxicity was dependent on increased SLC35F2 expression. In addition, YM155 feedback facilitated the activation of the ONC212-induced signaling pathway. A similar mechanism explains ONC212- and ONC212/YM155-induced AML HL-60 cell death. The continuous treatment of U937 cells with the benzene metabolite hydroquinone (HQ) generated U937/HQ cells, exhibiting enhanced responsiveness to the cytotoxic effects of ONC212. In U937/HQ cells, ONC212 triggered apoptosis through NOXA-mediated MCL1 downregulation, enhancing YM155 cytotoxicity. Collectively, our data suggested that ONC212 upregulated SLC35F2 expression and triggered NOXA-mediated MCL1 degradation in U937, U937/HQ, and HL-60 cells by activating the AKT/NOX4/HuR/ATF4 pathway. The ONC212-induced signaling pathway showed anti-AML activity and enhanced YM155 cytotoxicity.


Asunto(s)
Imidazoles , Leucemia Mieloide Aguda , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Naftoquinonas , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Células U937 , Imidazoles/farmacología , Naftoquinonas/farmacología , Células HL-60 , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sinergismo Farmacológico , Compuestos de Bencilo , Compuestos Heterocíclicos con 3 Anillos , Sulfonamidas , Compuestos Bicíclicos Heterocíclicos con Puentes
12.
Biomaterials ; 309: 122573, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38677222

RESUMEN

The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) gene editing has attracted extensive attentions in various fields, however, its clinical application is hindered by the lack of effective and safe delivery system. Herein, we reported a cationic micelle nanoparticle composed of cholesterol-modified branched small molecular PEI (PEI-CHO) and biodegradable PEG-b-polycarbonate block copolymer (PEG-PC), denoted as PEG-PC/PEI-CHO/pCas9, for the CRISPR/Cas9 delivery to realize genomic editing in cancer. Specifically, PEI-CHO condensed pCas9 into nanocomplexes, which were further encapsulated into PEG-PC nanoparticles (PEG-PC/PEI-CHO/pCas9). PEG-PC/PEI-CHO/pCas9 had a PEG shell, protecting DNA from degradation by nucleases. Enhanced cellular uptake of PEG-PC/PEI-CHO/pCas9 nanoparticles was observed as compared to that mediated by Lipo2k/pCas9 nanoparticles, thus leading to significantly elevated transfection efficiency after escaping from endosomes via the proton sponge effect of PEI. In addition, the presence of PEG shell greatly improved biocompatibility, and significantly enhanced the in vivo tumor retention of pCas9 compared to PEI-CHO/pCas9. Notably, apparent downregulation of GFP expression could be achieved both in vitro and in vivo by using PEG-PC/PEI-CHO/pCas9-sgGFP nanoparticles. Furthermore, PEG-PC/PEI-CHO/pCas9-sgMcl1 induced effective apoptosis and tumor suppression in a HeLa tumor xenograft mouse model by downregulating Mcl1 expression. This work may provide an alternative paradigm for the efficient and safe genome editing in cancer.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Micelas , Nanopartículas , Edición Génica/métodos , Nanopartículas/química , Sistemas CRISPR-Cas/genética , Animales , Humanos , Neoplasias/terapia , Neoplasias/genética , Ratones Desnudos , Ratones , Polietilenglicoles/química , Línea Celular Tumoral , Ratones Endogámicos BALB C , Polímeros/química
13.
FASEB J ; 38(8): e23625, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661028

RESUMEN

Platinum resistance remains a major contributor to the poor prognosis of ovarian cancer. Anti-apoptotic protein myeloid cell leukemia-1 (MCL-1) has emerged as a promising target for overcoming drug resistance, but different cancer cells utilize distinct protein degradation pathways to alter MCL-1 level. We systematically investigated E3 ligases to identify novel candidates that mediate platinum resistance in ovarian cancer. Transcription Elongation Factor B (TCEB3) has been identified as a novel E3 ligase recognition subunit that targets MCL-1 in the cytoplasm during platinum treatment other than its traditional function of targeting the Pol II in the nuclear compartment. TCEB3 expression is downregulated in platinum-resistant cell lines and this low expression is associated with poor prognosis. The ubiquitination of MCL-1 induced by TCEB3 leads to cell death in ovarian cancer. Moreover, platinum treatment increased the cytoplasm proportion of TCEB3, and the cytoplasm localization of TCEB3 is important for its targeting of MCL-1. This study emphasizes the dual function of TCEB3 in homeostasis maintenance and in cell fate determination under different conditions, and provides a new insight into drug resistance in ovarian cancer.


Asunto(s)
Apoptosis , Resistencia a Antineoplásicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Neoplasias Ováricas , Ubiquitinación , Humanos , Femenino , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Línea Celular Tumoral , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteolisis , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Animales , Ratones
14.
J Mol Model ; 30(4): 108, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499818

RESUMEN

CONTEXT: BIM (Bcl-2 interacting mediator of apoptosis)-derived peptides that specifically target over-expressed Mcl-1 (myeloid cell leukemia-1) protein and induce apoptosis are potentially anti-cancer agents. Since the helicity of BIM-derived peptides has a crucial role in their functionality, a range of strategies have been used to increase the helicity including the introduction of unnatural residues and stapling methods that have some drawbacks such as the accumulation in the liver. To avoid these drawbacks, this study aimed to design a more helical peptide by utilizing bioinformatics algorithms and molecular dynamics simulations without exploiting unnatural residues and stapling methods. MM-PBSA results showed that the mutations of A4fE and A2eE in analogue 5 demonstrate a preference towards binding with Mcl-1. As evidenced by Circular dichroism results, the helicity increases from 18 to 34%, these findings could enhance the potential of analogue 5 as an anti-cancer agent targeting Mcl-1. The applied strategies in this research could shed light on the in silico peptide design. Moreover, analogue 5 as a drug candidate can be evaluated in vitro and in vivo studies. METHODS: The sequence of the lead peptide was determined using the ApInAPDB database and PRALINE program. Contact finder and PDBsum web server softwares were used to determine the contact involved amino acids in complex with Mcl-1. All identified salt bridge contributing residues were unaltered to preserve the binding affinity. After proposing novel analogues, their secondary structures were predicted by Cham finder web server software and GOR, Neural Network, and Chou-Fasman algorithms. Finally, molecular dynamics simulations run for 100 ns were done using the GROMACS, version 5.0.7, with the CHARMM36 force field. MM-PBSA was used to assess binding affinity specificity in targeting Mcl-1 and Bcl-xL (B-cell lymphoma extra-large).


Asunto(s)
Antineoplásicos , Proteínas Reguladoras de la Apoptosis , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Péptidos/farmacología , Apoptosis , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Proteína bcl-X
15.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474118

RESUMEN

c-Met is a tyrosine-kinase receptor, and its aberrant activation plays critical roles in tumorigenesis, invasion, and metastatic spread in many human tumors. PHA-665752 (PHA) is an inhibitor of c-Met and has antitumor effects on many hematological malignancies and solid cancers. However, the activation and expression of c-Met and its role and the antitumor effect of PHA on human oral squamous cell carcinoma (OSCC) cells remain unclear. Here, we investigated the activation and expression of c-Met and the effects of PHA on the growth of a highly tumorigenic HSC-3 human OSCC cell line with high c-Met phosphorylation and expression. Of note, c-Met was highly expressed and phosphorylated on Y1234/1235 in HSC-3 cells, and PHA treatment significantly suppressed the growth and induced apoptosis of these cells. Moreover, PHA that inhibited the phosphorylation (activation) of c-Met further caused the reduced phosphorylation and expression levels of Src, protein kinase B (PKB), mammalian target of rapamycin (mTtor), and myeloid cell leukemia-1 (Mcl-1) in HSC-3 cells. In addition, the antiangiogenic property of PHA in HSC-3 cells was shown, as evidenced by the drug's suppressive effect on the expression of hypoxia-inducible factor-1α (HIF-1α), a critical tumor angiogenic transcription factor. Importantly, genetic ablation of c-Met caused the reduced growth of HSC-3 cells and decreased Src phosphorylation and HIF-1α expression. Together, these results demonstrate that c-Met is highly activated in HSC-3 human oral cancer cells, and PHA exhibits strong antigrowth, proapoptotic, and antiangiogenic effects on these cells, which are mediated through regulation of the phosphorylation and expression of multiple targets, including c-Met, Src, PKB, mTOR, Mcl-1, and HIF-1α.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Sulfonas , Humanos , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Indoles , Subunidad alfa del Factor 1 Inducible por Hipoxia , Línea Celular Tumoral
16.
Mol Cell ; 84(7): 1338-1353.e8, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38503284

RESUMEN

MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid ß-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.


Asunto(s)
Ácidos Grasos , Mitocondrias , Animales , Ratones , Apoptosis , Coenzima A Ligasas/genética , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Oxidación-Reducción
17.
Cell J ; 26(2): 121-129, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38459729

RESUMEN

OBJECTIVE: Enhanced cell survival and drug resistance in tumor cells have been linked to the overexpression of antiapoptotic members of the Bcl-2 family proteins, including Bcl-2 and Mcl-1. The aim of this study was to explore the impact of formononetin and dihydroartemisinin combination on the growth and apoptosis of acute myeloid leukemia (AML) cells. MATERIALS AND METHODS: In this experimental study, the cell survival and cell proliferation were tested by MTT assay and trypan blue staining. The evaluation of cell apoptosis was conducted using Hoechst 33342 staining and a colorimetric assay to measure caspase-3 activity. To determine the mRNA levels of Mcl-1, Bcl-2, Bax, and Cyclin D1, a quantitative real-time polymerase chain reaction (qRT-PCR) was performed. RESULTS: We showed that treatment with either formononetin or dihydroartemisinin alone, led to significant decrease in the cell survival and growth, and triggered apoptosis in U937 and KG-1 AML cell lines. Moreover, treatment with each of the compounds alone significantly decreased the mRNA levels of Mcl-1, Bcl-2 and Cyclin D1 mRNA, while, the expression level of Bax mRNA was enhanced. Combination of two compounds showed a synergistic anti-cancer effect. CONCLUSION: The anti-leukemic potential of formononetin and dihydroartemisinin is exerted through the effect on cell cycle progression and intrinsic pathway of apoptosis. Therefore, they can be considered as a potential anti-leukemic agent alone or along with existing chemotherapeutic drugs.

18.
Toxicology ; 503: 153740, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316350

RESUMEN

Bupivacaine, a common amide local anesthetic, can provide effective analgesia or pain relief but can also cause neurotoxicity, which remains a mounting concern in clinic and animal care. However, the precise underlying mechanisms have not been fully elucidated. A natural compound, notoginsenoside R1 (NG-R1) has been reported to exhibit a neuroprotective role in stress conditions. In this study, we explored the function and mechanism of NG-R1 in alleviating bupivacaine-induced neurotoxicity in mouse hippocampal neuronal (HT-22) and mouse neuroblastoma (Neuro-2a) cell lines. Our results exhibited that NG-R1 treatment can significantly rescue the decline of cell survival induced by bupivacaine. Tunel staining and western blotting showed that NG-R1 could attenuate BPV­induced cell apoptosis. Besides, we focused on Mcl1 as a potential target as it showed opposite expression tendency in response to NG-R1 and bupivacaine exposure. Mcl1 knockdown blocked the inhibitory effect of NG-R1 on cell apoptosis against bupivacaine treatment. Intriguingly, we found that NG-R1 can upregulate Mcl1 transcription by activating Stat3 and promote its nuclear translocation. In addition, NG-R1 can also promote Jak1 phosphorylation and docking analysis provide a predicted model for interaction between NG-R1 and phosphorylated Jak1. Taken together, our results demonstrated that NG-R1 can attenuate bupivacaine induced neurotoxicity by activating Jak1/Stat3/Mcl1 pathway.


Asunto(s)
Ginsenósidos , Síndromes de Neurotoxicidad , Ratones , Animales , Bupivacaína/toxicidad , Ginsenósidos/farmacología , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/metabolismo , Línea Celular , Apoptosis
19.
Front Oncol ; 14: 1343004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371625

RESUMEN

MCL1 is a member of the BCL2 family of apoptosis regulators, which play a critical role in promoting cancer survival and drug resistance. We previously described PRT1419, a potent, MCL1 inhibitor with anti-tumor efficacy in various solid and hematologic malignancies. To identify novel biomarkers that predict sensitivity to MCL1 inhibition, we conducted a gene essentiality analysis using gene dependency data generated from CRISPR/Cas9 cell viability screens. We observed that clear cell renal cancer (ccRCC) cell lines with damaging PBRM1 mutations displayed a strong dependency on MCL1. PBRM1 (BAF180), is a chromatin-targeting subunit of mammalian pBAF complexes. PBRM1 is frequently altered in various cancers particularly ccRCC with ~40% of tumors harboring damaging PBRM1 alterations. We observed potent inhibition of tumor growth and induction of apoptosis by PRT1419 in various preclinical models of PBRM1-mutant ccRCC but not PBRM1-WT. Depletion of PBRM1 in PBRM1-WT ccRCC cell lines induced sensitivity to PRT1419. Mechanistically, PBRM1 depletion coincided with increased expression of pro-apoptotic factors, priming cells for caspase-mediated apoptosis following MCL1 inhibition. Increased MCL1 activity has been described as a resistance mechanism to Sunitinib and Everolimus, two approved agents for ccRCC. PRT1419 synergized with both agents to potently inhibit tumor growth in PBRM1-loss ccRCC. PRT2527, a potent CDK9 inhibitor which depletes MCL1, was similarly efficacious in monotherapy and in combination with Sunitinib in PBRM1-loss cells. Taken together, these findings suggest PBRM1 loss is associated with MCL1i sensitivity in ccRCC and provide rationale for the evaluation of PRT1419 and PRT2527 for the treatment for PBRM1-deficient ccRCC.

20.
Cell Oncol (Dordr) ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393513

RESUMEN

PURPOSE: Sunitinib is a recommended drug for metastatic renal cell carcinoma (RCC). However, the therapeutic potential of sunitinib is impaired by toxicity and resistance. Therefore, we seek to explore a combinatorial strategy to improve sunitinib efficacy of low-toxicity dose for better clinical application. METHODS: We screen synergistic reagents of sunitinib from a compound library containing 1374 FDA-approved drugs by in vitro cell viability evaluation. The synergistically antiproliferative and proapoptotic effects were demonstrated on in vitro and in vivo models. The molecular mechanism was investigated by phosphoproteomics, co-immunoprecipitation, immunofluorescence and western-blot assays, etc. RESULTS: From the four-step screening, nilotinib stood out as a potential synergistic killer combined with sunitinib. Subsequent functional evaluation demonstrated that nilotinib and sunitinib synergistically inhibit RCC cell proliferation and promote apoptosis in vitro and in vivo. Mechanistically, nilotinib activates E3-ligase HUWE1 and in combination with sunitinib renders MCL-1 for degradation via proteasome pathway, resulting in the release of Beclin-1 from MCL-1/Beclin-1 complex. Subsequently, Beclin-1 induces complete autophagy flux to promote antitumor effect. CONCLUSION: Our findings revealed that a novel mechanism that nilotinib in combination with sunitinib overcomes sunitinib resistance in RCC. Therefore, this novel rational combination regimen provides a promising therapeutic avenue for metastatic RCC and rationale for evaluating this combination clinically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA