Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cell Biochem ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878223

RESUMEN

LncRNAs have been demonstrated to regulate biological processes in malignant tumors. In our previous study, we identified the immune-related LncRNA RNF144A-AS1 as a potential regulator in SKCM. However, its precise function and regulatory mechanism remain unclear. In this study, we observed upregulation of RNF144A-AS1 in SKCM and found that knockdown of RNF144A-AS1 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition abilities of melanoma cells. Mechanistically, as a high-risk prognostic factor, RNF144A-AS1 regulated biological processes of SKCM by interacting with TAF15 through an RNA-binding protein-dependent (RBP-dependent) manner. Furthermore, we confirmed that TAF15 activated downstream transcriptional regulation of YAP1 to modulate malignant behaviors in melanoma cells. In vivo experiments revealed that knockdown of RNF144A-AS1 inhibited tumorigenic capacity of melanoma cells and exhibited promising therapeutic effects. Collectively, these findings highlight the significance of the RNF144A-AS1/TAF15/YAP1 axis in promoting malignant behaviors in SKCM and provide novel insights into potential prognostic biomarkers and therapeutic targets for this disease.

2.
Biochem Pharmacol ; 225: 116295, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762145

RESUMEN

Breast cancer (BC) is one of the most common malignant tumors in women. Angelica sinensis polysaccharide (ASP) is one of the main components extracted from the traditional Chinese medicine Angelica sinensis. Research has shown that ASP affects the progression of various cancers by regulating miRNA expression. This study aimed to explore the specific molecular mechanism by which ASP regulates BC progression through miR-3187-3p. After the overexpression or knockdown of miR-3187-3p and PDCH10 in BC cells, the proliferation, migration, invasion, and phenotype of BC cells were evaluated after ASP treatment. Bioinformatics software was used to predict the target genes of miR-3187-3p, and luciferase gene reporter experiments reconfirmed the targeted binding relationship. Subcutaneous tumor formation experiments were conducted in nude mice after the injection of BC cells. Western blot and Ki-67 immunostaining were performed on the tumor tissues. The results indicate that ASP can significantly inhibit the proliferation, migration, and invasion of BC cells. ASP can inhibit the expression of miR-3187-3p in BC cells and upregulate the expression of PDCH10 by inhibiting miR-3187-3p. A regulatory relationship exists between miR-3187-3p and PDCH10. ASP can inhibit the expression of ß-catenin and phosphorylated glycogen synthase kinase-3ß (p-GSK-3ß) proteins through miR-3187-3p/PDCH10 and prevent the occurrence of malignant biological behavior in BC. Overall, this study revealed the potential mechanism by which ASP inhibits the BC process. ASP mediates the Wnt/ß-catenin signaling pathway by affecting the miR-3187-3p/PDCH10 molecular axis, thereby inhibiting the proliferation, migration, invasion, and other malignant biological behaviors of BC cells.


Asunto(s)
Angelica sinensis , Neoplasias de la Mama , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs , Polisacáridos , Vía de Señalización Wnt , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Femenino , Angelica sinensis/química , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Polisacáridos/farmacología , Línea Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células MCF-7
3.
J Pharm Pharmacol ; 76(3): 269-282, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38241189

RESUMEN

OBJECTIVE: The goal of the study is to examine the impact on the malignant biological behaviors of non-small cell lung cancer (NSCLC) of a novel coumarin derivative, ethyl 2,2-difluoro-2-(2-oxo-2H-chromen-3-yl) acetate (C2F). It also aims to define its underlying mechanism. METHODS: NSCLC cell lines and xenograft nude mice model were conducted to explore the anti-NSCLC effects of C2F in vitro and in vivo. Then, network pharmacology analysis and molecular docking were applied to estimate the possible targets of C2F in NSCLC. Finally, the underlying mechanism of C2F against NSCLC cellular proliferation and tumor development was confirmed using inhibitors or activators of the PI3K/AKT signaling pathway. RESULTS: Our results showed that C2F was able to inhibit proliferation, migration, and invasion of NSCLC cell lines, induce cell cycle arrest and apoptosis in vitro, and prevent tumor growth in vivo. In addition, the estimated glomerular filtration rate and its downstream pathway (PI3K/AKT/mTOR) were found to be critical for the anti-NSCLC activity of C2F. CONCLUSIONS: C2F inhibits malignant biological behaviors of NSCLC by suppressing EGFR/PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Pulmonares/metabolismo , Ratones Desnudos , Simulación del Acoplamiento Molecular , Proliferación Celular , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Acetatos/farmacología , Línea Celular Tumoral
4.
BMC Cancer ; 22(1): 909, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35986311

RESUMEN

BACKGROUND: HuR/ELAVL1 (embryonic lethal abnormal vision 1) was a downstream target of miR-29b in some cancer cells. HuR protein exerts important prognostic effects of involving in the pathogenesis and development of acute myeloid leukemia (AML). This study aims to investigate the role of miR-29b-3p in biological behaviors of AML cells by targeting HuR and the involvement of the NF-κB and JAK/STAT signaling pathways. METHODS: The expressions of HuR and miR-29b-3p in AML cells were determined using RT-qPCR and Western blot, and the association between them was analyzed using the Spearman method. Next, the target relationship between HuR and miR-29b-3p was predicted by biological information databases and verified by the dual-luciferase reporter gene assay. MTS, methyl cellulose, flow cytometry and transwell assay were employed to detect the cell proliferation, clone formation, cell cycle and apoptosis, invasion and migration respectively, the effect of miR-29b-3p targeted HuR on the biological behaviors of AML cells was explored after over- /down-expression of miR-29b-3p and rescue experiment. Then, immunofluorescence assay and western blot were employed to detect location expression and phosphorylation levels of NF-κB and JAK/STAT signaling pathways related molecules respectively. RESULTS: HuR was negatively correlated with miR-29b-3p, and was the downstream target of miR-29b-3p in AML cells. When miR-29b-3p was overexpressed in AML cells, HuR was down-regulated, accompanied by cell viability decreased, cell cycle arrest, apoptosis increased, invasion and migration weakened. Moreover, the opposite result appeared after miR-29b-3p was down-regulated. The rescue experiment showed that miR-29b-3p inhibitor could reverse the biological effect of HuR down-regulation in AML cells. Molecular pathway results showed that miR-29b-3p could inhibit p65 expression in nucleus and phosphorylation levels of p65, IκBα, STAT1, STAT3 and STAT5. CONCLUSION: miR-29b-3p can inhibit malignant biological behaviors of AML cells via the inactivation of the NF-κB and JAK/STAT signaling pathways by targeting HuR. miR-29b-3p and its target HuR can be used as a new potential molecular for AML treatment.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Leucemia Mieloide Aguda/patología , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/genética
5.
Int J Biol Sci ; 18(2): 473-490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35002504

RESUMEN

Microtubules, a major target in oral squamous cell carcinoma (OSCC) chemotherapy, contribute to multiple malignant biological behaviors, including proliferation, migration, and epithelial-mesenchymal transition (EMT). Surpassing traditional tubulin inhibitors, ID09 emerges with brilliant solubility, photostability, and drug-sensitivity in multidrug-resistant cells. Its anti-tumor effects have been briefly verified in lung adenocarcinoma and hepatocellular carcinoma. However, whether OSCC is sensitive to ID09 and the potential mechanisms remain ambiguous, which are research purposes this study aimed to achieve. Various approaches were applied, including clone formation assay, flow cytometry, wound healing assay, Transwell assay, cell counting kit-8 assay, Western blot, qRT-PCR, and in vivo experiment. The experimental results revealed that ID09 not only contributed to cell cycle arrest, reduced migration, and reversed EMT, but accelerated mitochondria-initiated apoptosis. Remarkably, Western blot detected diminishment in expression of Mcl-1 due to the deactivation of Ras-Erk pathway, resulting in ID09-induced apoptosis, proliferation and migration suppression, which could be offset by Erk1/2 phosphorylation agonist Ro 67-7476. This study initially explored the essential role Mcl-1 played and the regulatory effect of Ras-Erk pathway in anti-cancer process triggered by tubulin inhibitor, broadening clinical horizon of tubulin inhibitors in oral squamous cell carcinoma chemotherapy application.


Asunto(s)
Carcinoma de Células Escamosas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Boca/patología , Moduladores de Tubulina/farmacología , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Boca/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Sci Prog ; 104(2): 368504211009379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33913391

RESUMEN

MiR-326 functions as an antioncogene in the several types of cancer. However, the underling mechanisms through which miRNA-326 regulates the anti-carcinogenesis of lung adenocarcinoma have remained elusive. The aim of this study was to explore the role and regulatory mechanism of miR-326 in cell proliferation, invasion, migration and apoptosis in lung adenocarcinoma. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of miR-326 in human bronchial epithelial cells (HBES-2B), 4 kinds of lung adenocarcinoma cell lines (H23, H1975, H2228, H2085) and 20 lung adenocarcinoma tissues. Then, H23 cells were infected with miR-326 mimics, miR-326 inhibitors and si-ZEB1 to build up-regulated miR-326 cell lines, down-regulated ZEB1(zinc-finger-enhancer binding protein 1)cell lines, simultaneous down-regulated ZEB1 and miR-326 cell lines. Moreover, CCK-8 assay, transwell invasion assay, wound healing assay and flow cytometry assay were employed to examine the effects of miR-326 and ZEB1 on the proliferation, invasion, migration and apoptosis abilities of H23 cells. Western blot was performed to explore the effects of miR-326 and ZEB1 on the expression of invasion and migration related proteins N-cadherin, E-cadherin, MMP7, MMP13, SLUG and apoptotic proteins PARP, BAX. On the mechanism, a dual-luciferase reporter gene was used to measure the target relationship between miR-326 and ZEB1. MiR-326 expression was significantly downregulated in lung adenocarcinoma tissues and cells. Overexpression of miR-326 significantly inhibited the malignant behaviors of H23 cells. Mechanically, luciferase reporter assay showed that ZEB1 was a direct target of miR-326. MiR-326 mimic downregulated the expression of ZEB1. Furthermore, knocking down ZEB1 strongly inhibited the proliferation, invasion and migration of H23 cells but promoted apoptosis. MiR-326 could target ZEB1 to inhibit the proliferation, invasion and migration of lung adenocarcinoma cells and promote apoptosis, which is a potential therapeutic target for lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , MicroARNs , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Adenocarcinoma/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
7.
J Cell Biochem ; 121(2): 946-953, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31478261

RESUMEN

Decreased bridging integrator 1 (BIN1) expression has great significance in promoting the progression of malignant tumors. Reduced messenger RNA expression is partly due to aberrant alternative splicing (AS). However, the AS status of BIN1 and its correlation with BIN1 inactivation in non-small cell lung cancer (NSCLC) remains poorly defined. Here we reported that BIN1 inactivation was not related to DNA methylation in NSCLC. Importantly, BIN1 with exon 12A inclusion (BIN1+12A isoform), the most frequent aberrant splicing variant in tumors was also observed in NSCLC, and might be accounted for BIN1 inactivation. Furthermore, we showed that the aberrant splicing of BIN1 was under the control of serine and arginine-rich factor 1 (SRSF1) in NSCLC. In addition, colony formation assay showed that BIN1+12A isoform could abolish the tumor-inhibiting ability of BIN1 in NSCLC cells. Meanwhile, transwell, wound healing and apoptosis experiments demonstrated that the occurrence of BIN1+12A could abrogate the invasion suppressing activity and proapoptotic property of BIN1 in NSCLC. Significantly, we also found that BIN1+12A isoform neutralized the tumor-suppressing functions of BIN1 via affecting its subcellular localization. Altogether, these data revealed an aberrant splicing phenomenon which abated the expression and tumor-inhibiting activity of BIN1 in NSCLC, and the related mechanisms were associated with SRSF1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Proteínas Nucleares/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/genética , Factores de Empalme Serina-Arginina/genética , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA