Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Skin Res Technol ; 30(9): e70040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221858

RESUMEN

BACKGROUND: Skin cancer is one of the highly occurring diseases in human life. Early detection and treatment are the prime and necessary points to reduce the malignancy of infections. Deep learning techniques are supplementary tools to assist clinical experts in detecting and localizing skin lesions. Vision transformers (ViT) based on image segmentation classification using multiple classes provide fairly accurate detection and are gaining more popularity due to legitimate multiclass prediction capabilities. MATERIALS AND METHODS: In this research, we propose a new ViT Gradient-Weighted Class Activation Mapping (GradCAM) based architecture named ViT-GradCAM for detecting and classifying skin lesions by spreading ratio on the lesion's surface area. The proposed system is trained and validated using a HAM 10000 dataset by studying seven skin lesions. The database comprises 10 015 dermatoscopic images of varied sizes. The data preprocessing and data augmentation techniques are applied to overcome the class imbalance issues and improve the model's performance. RESULT: The proposed algorithm is based on ViT models that classify the dermatoscopic images into seven classes with an accuracy of 97.28%, precision of 98.51, recall of 95.2%, and an F1 score of 94.6, respectively. The proposed ViT-GradCAM obtains better and more accurate detection and classification than other state-of-the-art deep learning-based skin lesion detection models. The architecture of ViT-GradCAM is extensively visualized to highlight the actual pixels in essential regions associated with skin-specific pathologies. CONCLUSION: This research proposes an alternate solution to overcome the challenges of detecting and classifying skin lesions using ViTs and GradCAM, which play a significant role in detecting and classifying skin lesions accurately rather than relying solely on deep learning models.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Dermoscopía , Neoplasias Cutáneas , Humanos , Dermoscopía/métodos , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/clasificación , Neoplasias Cutáneas/patología , Interpretación de Imagen Asistida por Computador/métodos , Bases de Datos Factuales , Piel/diagnóstico por imagen , Piel/patología
2.
Curr Top Med Chem ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39171594

RESUMEN

BACKGROUND: Cancers are complex multi-genetic diseases that should be tackled in multi-target drug discovery scenarios. Computational methods are of great importance to accelerate the discovery of multi-target anticancer agents. Here, we employed a ligand-based approach by combining a perturbation-theory machine learning model derived from an ensemble of multilayer perceptron networks (PTML-EL-MLP) with the Fragment-Based Topological Design (FBTD) approach to rationally design and predict triple-target inhibitors against the cancerrelated proteins named Tropomyosin Receptor Kinase A (TRKA), poly[ADP-ribose] polymerase 1 (PARP-1), and Insulin-like Growth Factor 1 Receptor (IGF1R). METHODS: We extracted the chemical and biological data from ChEMBL. We applied the Box- Jenkins approach to generate multi-label topological indices and subsequently created the PTML-EL-MLP model. RESULTS: Our PTML-EL-MLP model exhibited an accuracy of around 80%. The application FBTD permitted the physicochemical and structural interpretation of the PTML-EL-MLP model, thus enabling a) the chemistry-driven analysis of different molecular fragments with a positive influence on the multi-target activity and b) the use of those favorable fragments as building blocks to virtually design four new drug-like molecules. The designed molecules were predicted as triple-target inhibitors against the aforementioned cancer-related proteins. CONCLUSION: Our study envisages the capabilities of combining PTML modeling with FBTD for the generation of new chemical diversity for multi-target drug discovery in oncology research and beyond.

3.
Transl Oncol ; 47: 102050, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981245

RESUMEN

PURPOSE: Development and validation of a radiomics model for predicting occult locally advanced esophageal squamous cell carcinoma (LA-ESCC) on computed tomography (CT) radiomic features before implementation of treatment. METHODS: The study retrospectively collected 574 patients with esophageal squamous cell carcinoma (ESCC) from two medical centers, which were divided into three cohorts for training, internal and external validation. After delineating volume of interest (VOI), radiomics features were extracted and subjected to feature selection using three robust methods. Subsequently, 10 machine learning models were constructed, among which the optimal model was utilized to establish a radiomics signature. Furthermore, a predictive nomogram incorporating both clinical and radiomics signatures was developed. The performance of these models was evaluated through receiver operating characteristic curves, calibration curves, decision curve analysis as well as measures including accuracy, sensitivity, and specificity. RESULTS: A total of 19 radiomics features were selected. The multilayer perceptron (MLP), which was found to be optimal, achieved an AUC of 0.919, 0.864 and 0.882 in the training, internal and external validation cohorts, respectively. Similarly, MLP showed good accuracy in distinguish occult LA-ESCC in subgroup of cT1-2N0M0 diagnosed by clinicians with 0.803 and 0.789 in two validation cohorts respectively. By incorporating the radiomics signature with clinical signature, a predictive nomogram demonstrated superior prediction performance with an AUC of 0.877 and accuracy of 0.85 in external validation cohort. CONCLUSION: The radiomics and machine learning model can offers improved accuracy in prediction of occult LA-ESCC, providing valuable assistance to clinicians when choosing treatment plans.

4.
Front Med (Lausanne) ; 11: 1397648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841581

RESUMEN

For cancer therapy, the focus is now on targeting the chemotherapy drugs to cancer cells without damaging other normal cells. The new materials based on bio-compatible magnetic carriers would be useful for targeted cancer therapy, however understanding their effectiveness should be done. This paper presents a comprehensive analysis of a dataset containing variables x(m), y(m), and U(m/s), where U represents velocity of blood through vessel containing ferrofluid. The effect of external magnetic field on the fluid flow is investigated using a hybrid modeling. The primary aim of this research endeavor was to construct precise and dependable predictive models for velocity, utilizing the provided input variables. Several base models, including K-nearest neighbors (KNN), decision tree (DT), and multilayer perceptron (MLP), were trained and evaluated. Additionally, an ensemble model called AdaBoost was implemented to further enhance the predictive performance. The hyper-parameter optimization technique, specifically the BAT optimization algorithm, was employed to fine-tune the models. The results obtained from the experiments demonstrated the effectiveness of the proposed approach. The combination of the AdaBoost algorithm and the decision tree model yielded a highly impressive score of 0.99783 in terms of R2, indicating a strong predictive performance. Additionally, the model exhibited a low error rate, as evidenced by the root mean square error (RMSE) of 5.2893 × 10-3. Similarly, the AdaBoost-KNN model exhibited a high score of 0.98524 using R2 metric, with an RMSE of 1.3291 × 10-2. Furthermore, the AdaBoost-MLP model obtained a satisfactory R2 score of 0.99603, accompanied by an RMSE of 7.1369 × 10-3.

5.
Comput Biol Med ; 175: 108519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688128

RESUMEN

Lung cancer has seriously threatened human health due to its high lethality and morbidity. Lung adenocarcinoma, in particular, is one of the most common subtypes of lung cancer. Pathological diagnosis is regarded as the gold standard for cancer diagnosis. However, the traditional manual screening of lung cancer pathology images is time consuming and error prone. Computer-aided diagnostic systems have emerged to solve this problem. Current research methods are unable to fully exploit the beneficial features inherent within patches, and they are characterized by high model complexity and significant computational effort. In this study, a deep learning framework called Multi-Scale Network (MSNet) is proposed for the automatic detection of lung adenocarcinoma pathology images. MSNet is designed to efficiently harness the valuable features within data patches, while simultaneously reducing model complexity, computational demands, and storage space requirements. The MSNet framework employs a dual data stream input method. In this input method, MSNet combines Swin Transformer and MLP-Mixer models to address global information between patches and the local information within each patch. Subsequently, MSNet uses the Multilayer Perceptron (MLP) module to fuse local and global features and perform classification to output the final detection results. In addition, a dataset of lung adenocarcinoma pathology images containing three categories is created for training and testing the MSNet framework. Experimental results show that the diagnostic accuracy of MSNet for lung adenocarcinoma pathology images is 96.55 %. In summary, MSNet has high classification performance and shows effectiveness and potential in the classification of lung adenocarcinoma pathology images.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Redes Neurales de la Computación , Humanos , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/clasificación , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/clasificación , Aprendizaje Profundo , Interpretación de Imagen Asistida por Computador/métodos , Diagnóstico por Computador/métodos
6.
BMC Neurosci ; 25(Suppl 1): 22, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627616

RESUMEN

BACKGROUND: The habenula is a major regulator of serotonergic neurons in the dorsal raphe, and thus of brain state. The functional connectivity between these regions is incompletely characterized. Here, we use the ability of changes in irradiance to trigger reproducible changes in activity in the habenula and dorsal raphe of zebrafish larvae, combined with two-photon laser ablation of specific neurons, to establish causal relationships. RESULTS: Neurons in the habenula can show an excitatory response to the onset or offset of light, while neurons in the anterior dorsal raphe display an inhibitory response to light, as assessed by calcium imaging. The raphe response changed in a complex way following ablations in the dorsal habenula (dHb) and ventral habenula (vHb). After ablation of the ON cells in the vHb (V-ON), the raphe displayed no response to light. After ablation of the OFF cells in the vHb (V-OFF), the raphe displayed an excitatory response to darkness. After ablation of the ON cells in the dHb (D-ON), the raphe displayed an excitatory response to light. We sought to develop in silico models that could recapitulate the response of raphe neurons as a function of the ON and OFF cells of the habenula. Early attempts at mechanistic modeling using ordinary differential equation (ODE) failed to capture observed raphe responses accurately. However, a simple two-layer fully connected neural network (NN) model was successful at recapitulating the diversity of observed phenotypes with root-mean-squared error values ranging from 0.012 to 0.043. The NN model also estimated the raphe response to ablation of D-off cells, which can be verified via future experiments. CONCLUSION: Lesioning specific cells in different regions of habenula led to qualitatively different responses to light in the dorsal raphe. A simple neural network is capable of mimicking experimental observations. This work illustrates the ability of computational modeling to integrate complex observations into a simple compact formalism for generating testable hypotheses, and for guiding the design of biological experiments.


Asunto(s)
Habénula , Terapia por Láser , Animales , Núcleo Dorsal del Rafe , Pez Cebra , Habénula/cirugía , Habénula/fisiología , Simulación por Computador
7.
Materials (Basel) ; 17(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611968

RESUMEN

This study optimized friction stir welding (FSW) parameters for 1.6 mm thick 2024T3 aluminum alloy sheets. A 3 × 3 factorial design was employed to explore tool rotation speeds (1100 to 1300 rpm) and welding speeds (140 to 180 mm/min). Static tensile tests revealed the joints' maximum strength at 87% relative to the base material. Hyperparameter optimization was conducted for machine learning (ML) models, including random forest and XGBoost, and multilayer perceptron artificial neural network (MLP-ANN) models, using grid search. Welding parameter optimization and extrapolation were then carried out, with final strength predictions analyzed using response surface methodology (RSM). The ML models achieved over 98% accuracy in parameter regression, demonstrating significant effectiveness in FSW process enhancement. Experimentally validated, optimized parameters resulted in an FSW joint efficiency of 93% relative to the base material. This outcome highlights the critical role of advanced analytical techniques in improving welding quality and efficiency.

8.
J Xray Sci Technol ; 32(3): 651-675, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393884

RESUMEN

BACKGROUND: Thyroid tumor is considered to be a very rare form of cancer. But recent researches and surveys highlight the fact that it is becoming prevalent these days because of various factors. OBJECTIVES: This paper proposes a novel hybrid classification system that is able to identify and classify the above said four different types of thyroid tumors using high end artificial intelligence techniques. The input data set is obtained from Digital Database of Thyroid Ultrasound Images through Kaggle repository and augmented for achieving a better classification performance using data warping mechanisms like flipping, rotation, cropping, scaling, and shifting. METHODS: The input data after augmentation goes through preprocessing with the help of bilateral filter and is contrast enhanced using dynamic histogram equalization. The ultrasound images are then segmented using SegNet algorithm of convolutional neural network. The features needed for thyroid tumor classification are obtained from two different algorithms called CapsuleNet and EfficientNetB2 and both the features are fused together. This process of feature fusion is carried out to heighten the accuracy of classification. RESULTS: A Multilayer Perceptron Classifier is used for classification and Bonobo optimizer is employed for optimizing the results produced. The classification performance of the proposed model is weighted using metrics like accuracy, sensitivity, specificity, F1-score, and Matthew's correlation coefficient. CONCLUSION: It can be observed from the results that the proposed multilayer perceptron based thyroid tumor type classification system works in an efficient manner than the existing classifiers like CANFES, Spatial Fuzzy C means, Deep Belief Networks, Thynet and Generative adversarial network and Long Short-Term memory.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Neoplasias de la Tiroides , Ultrasonografía , Humanos , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/clasificación , Neoplasias de la Tiroides/patología , Ultrasonografía/métodos , Glándula Tiroides/diagnóstico por imagen , Sensibilidad y Especificidad , Inteligencia Artificial , Interpretación de Imagen Asistida por Computador/métodos
9.
Mol Divers ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305819

RESUMEN

Phosphoinositide 3-kinase alpha (PI3Kα) is one of the most frequently dysregulated kinases known for their pivotal role in many oncogenic diseases. While the side effects linked to existing drugs against PI3Kα-induced cancers provide an avenue for further research, the significant structural conservation among PI3Ks makes it extremely difficult to develop new isoform-selective PI3Kα inhibitors. Embracing this challenge, we herein designed a hybrid protocol by integrating machine learning (ML) with in silico drug-designing strategies. A deep learning classification model was developed and trained on the physicochemical descriptors data of known PI3Kα inhibitors and used as a screening filter for a database of small molecules. This approach led us to the prediction of 662 compounds showcasing appropriate features to be considered as PI3Kα inhibitors. Subsequently, a multiphase molecular docking was applied to further characterize the predicted hits in terms of their binding affinities and binding modes in the targeted cavity of the PI3Kα. As a result, a total of 12 compounds were identified whereas the best poses highlighted the efficiency of these ligands in maintaining interactions with the crucial residues of the protein to be targeted for the inhibition of associated activity. Notably, potential activity of compound 12 in counteracting PI3Kα function was found in a previous in vitro study. Following the drug-likeness and pharmacokinetic characterizations, six compounds (compounds 1, 2, 3, 6, 7, and 11) with suitable ADME-T profiles and promising bioavailability were selected. The mechanistic studies in dynamic mode further endorsed the potential of identified hits in blocking the ATP-binding site of the receptor with higher binding affinities than the native inhibitor, alpelisib (BYL-719), particularly the compounds 1, 2, and 11. These outcomes support the reliability of the developed classification model and the devised computational strategy for identifying new isoform-selective drug candidates for PI3Kα inhibition.

10.
Comput Biol Med ; 170: 107955, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215618

RESUMEN

Multi-organ segmentation is vital for clinical diagnosis and treatment. Although CNN and its extensions are popular in organ segmentation, they suffer from the local receptive field. In contrast, MultiLayer-Perceptron-based models (e.g., MLP-Mixer) have a global receptive field. However, these MLP-based models employ fully connected layers with many parameters and tend to overfit on sample-deficient medical image datasets. Therefore, we propose a Cascaded Spatial Shift Network, CSSNet, for multi-organ segmentation. Specifically, we design a novel cascaded spatial shift block to reduce the number of model parameters and aggregate feature segments in a cascaded way for efficient and effective feature extraction. Then, we propose a feature refinement network to aggregate multi-scale features with location information, and enhance the multi-scale features along the channel and spatial axis to obtain a high-quality feature map. Finally, we employ a self-attention-based fusion strategy to focus on the discriminative feature information for better multi-organ segmentation performance. Experimental results on the Synapse (multiply organs) and LiTS (liver & tumor) datasets demonstrate that our CSSNet achieves promising segmentation performance compared with CNN, MLP, and Transformer models. The source code will be available at https://github.com/zkyseu/CSSNet.


Asunto(s)
Neoplasias Hepáticas , Humanos , Redes Neurales de la Computación , Programas Informáticos , Procesamiento de Imagen Asistido por Computador
11.
Cancers (Basel) ; 15(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958454

RESUMEN

Gynecological malignancies, particularly lymph node metastasis, have presented a diagnostic challenge, even with traditional imaging techniques such as CT, MRI, and PET/CT. This study was conceived to explore and, subsequently, to bridge this diagnostic gap through a more holistic and innovative approach. By developing a comprehensive framework that integrates both non-image data and detailed MRI image analyses, this study harnessed the capabilities of a multimodal federated-learning model. Employing a composite neural network within a federated-learning environment, this study adeptly merged diverse data sources to enhance prediction accuracy. This was further complemented by a sophisticated deep convolutional neural network with an enhanced U-NET architecture for meticulous MRI image processing. Traditional imaging yielded sensitivities ranging from 32.63% to 57.69%. In contrast, the federated-learning model, without incorporating image data, achieved an impressive sensitivity of approximately 0.9231, which soared to 0.9412 with the integration of MRI data. Such advancements underscore the significant potential of this approach, suggesting that federated learning, especially when combined with MRI assessment data, can revolutionize lymph-node-metastasis detection in gynecological malignancies. This paves the way for more precise patient care, potentially transforming the current diagnostic paradigm and resulting in improved patient outcomes.

12.
Transl Lung Cancer Res ; 12(10): 2083-2097, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38025814

RESUMEN

Background: Lung cancer remains a significant public health concern, accounting for a considerable number of cancer-related deaths worldwide. Neural networks have emerged as a promising tool that can aid in the diagnosis and treatment of various cancers. Consequently, there has been a growing interest in exploring the potential of artificial intelligence (AI) methods in medicine. The present study aimed to evaluate the effectiveness of a neural network in predicting lung cancer recurrence. Methods: The study employed retrospective data from 2,296 medical records of patients diagnosed with lung cancer and admitted to the Warminsko-Mazurskie Center for Lung Diseases in Olsztyn, Poland. The statistical software STATISTICA 7.1, equipped with the Neural Networks module (StatSoft Inc., Tulsa, USA), was utilized to analyze the data. The neural network model was trained using patient information regarding gender, treatment, smoking status, family history, and symptoms of cancer. Results: The study employed a multilayer perceptron neural network with a two-phase learning process. The network demonstrated high predictive ability, as indicated by the percentage of correct classifications, which amounted to 87.5%, 89.1%, and 89.9% for the training, validation, and test sets, respectively. Conclusions: The findings of this study support the potential usefulness of a neural network-based predictive model in assessing the risk of lung cancer recurrence. Further research is warranted to validate these findings and to explore AI's broader implications in cancer diagnosis and treatment.

13.
Heliyon ; 9(11): e22458, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034691

RESUMEN

Background: Identifying patients with hepatocellular carcinoma (HCC) at high risk of recurrence after hepatectomy can help to implement timely interventional treatment. This study aimed to develop a machine learning (ML) model to predict the recurrence risk of HCC patients after hepatectomy. Methods: We retrospectively collected 315 HCC patients who underwent radical hepatectomy at the Third Affiliated Hospital of Sun Yat-sen University from April 2013 to October 2017, and randomly divided them into the training and validation sets at a ratio of 7:3. According to the postoperative recurrence of HCC patients, the patients were divided into recurrence group and non-recurrence group, and univariate and multivariate logistic regression were performed for the two groups. We applied six machine learning algorithms to construct the prediction models and performed internal validation by 10-fold cross-validation. Shapley additive explanations (SHAP) method was applied to interpret the machine learning model. We also built a web calculator based on the best machine learning model to personalize the assessment of the recurrence risk of HCC patients after hepatectomy. Results: A total of 13 variables were included in the machine learning models. The multilayer perceptron (MLP) machine learning model was proved to achieve optimal predictive value in test set (AUC = 0.680). The SHAP method displayed that γ-glutamyl transpeptidase (GGT), fibrinogen, neutrophil, aspartate aminotransferase (AST) and total bilirubin (TB) were the top 5 important factors for recurrence risk of HCC patients after hepatectomy. In addition, we further demonstrated the reliability of the model by analyzing two patients. Finally, we successfully constructed an online web prediction calculator based on the MLP machine learning model. Conclusion: MLP was an optimal machine learning model for predicting the recurrence risk of HCC patients after hepatectomy. This predictive model can help identify HCC patients at high recurrence risk after hepatectomy to provide early and personalized treatment.

14.
JMIR Cancer ; 9: e46474, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37983068

RESUMEN

BACKGROUND: Most patients diagnosed with breast cancer present with a node-negative disease. Sentinel lymph node biopsy (SLNB) is routinely used for axillary staging, leaving patients with healthy axillary lymph nodes without therapeutic effects but at risk of morbidities from the intervention. Numerous studies have developed nodal status prediction models for noninvasive axillary staging using postoperative data or imaging features that are not part of the diagnostic workup. Lymphovascular invasion (LVI) is a top-ranked predictor of nodal metastasis; however, its preoperative assessment is challenging. OBJECTIVE: This paper aimed to externally validate a multilayer perceptron (MLP) model for noninvasive lymph node staging (NILS) in a large population-based cohort (n=18,633) and develop a new MLP in the same cohort. Data were extracted from the Swedish National Quality Register for Breast Cancer (NKBC, 2014-2017), comprising only routinely and preoperatively available documented clinicopathological variables. A secondary aim was to develop and validate an LVI MLP for imputation of missing LVI status to increase the preoperative feasibility of the original NILS model. METHODS: Three nonoverlapping cohorts were used for model development and validation. A total of 4 MLPs for nodal status and 1 LVI MLP were developed using 11 to 12 routinely available predictors. Three nodal status models were used to account for the different availabilities of LVI status in the cohorts and external validation in NKBC. The fourth nodal status model was developed for 80% (14,906/18,663) of NKBC cases and validated in the remaining 20% (3727/18,663). Three alternatives for imputation of LVI status were compared. The discriminatory capacity was evaluated using the validation area under the receiver operating characteristics curve (AUC) in 3 of the nodal status models. The clinical feasibility of the models was evaluated using calibration and decision curve analyses. RESULTS: External validation of the original NILS model was performed in NKBC (AUC 0.699, 95% CI 0.690-0.708) with good calibration and the potential of sparing 16% of patients with node-negative disease from SLNB. The LVI model was externally validated (AUC 0.747, 95% CI 0.694-0.799) with good calibration but did not improve the discriminatory performance of the nodal status models. A new nodal status model was developed in NKBC without information on LVI (AUC 0.709, 95% CI: 0.688-0.729), with excellent calibration in the holdout internal validation cohort, resulting in the potential omission of 24% of patients from unnecessary SLNBs. CONCLUSIONS: The NILS model was externally validated in NKBC, where the imputation of LVI status did not improve the model's discriminatory performance. A new nodal status model demonstrated the feasibility of using register data comprising only the variables available in the preoperative setting for NILS using machine learning. Future steps include ongoing preoperative validation of the NILS model and extending the model with, for example, mammography images.

15.
Head Neck ; 45(12): 3053-3066, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37789719

RESUMEN

BACKGROUND: Postoperative recurrence of oral cancer is an important factor affecting the prognosis of patients. Artificial intelligence is used to establish a machine learning model to predict the risk of postoperative recurrence of oral cancer. METHODS: The information of 387 patients with postoperative oral cancer were collected to establish the multilayer perceptron (MLP) model. The comprehensive variable model was compared with the characteristic variable model, and the MLP model was compared with other models to evaluate the sensitivity of different models in the prediction of postoperative recurrence of oral cancer. RESULTS: The overall performance of the MLP model under comprehensive variable input was the best. CONCLUSION: The MLP model has good sensitivity to predict postoperative recurrence of oral cancer, and the predictive model with variable input training is better than that with characteristic variable input.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Boca , Humanos , Redes Neurales de la Computación , Aprendizaje Automático , Neoplasias de la Boca/cirugía
16.
Diagnostics (Basel) ; 13(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37892110

RESUMEN

Lung cancer is a prevalent malignancy that impacts individuals of all genders and is often diagnosed late due to delayed symptoms. To catch it early, researchers are developing algorithms to study lung cancer images. The primary objective of this work is to propose a novel approach for the detection of lung cancer using histopathological images. In this work, the histopathological images underwent preprocessing, followed by segmentation using a modified approach of KFCM-based segmentation and the segmented image intensity values were dimensionally reduced using Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO). Algorithms such as KL Divergence and Invasive Weed Optimization (IWO) are used for feature selection. Seven different classifiers such as SVM, KNN, Random Forest, Decision Tree, Softmax Discriminant, Multilayer Perceptron, and BLDC were used to analyze and classify the images as benign or malignant. Results were compared using standard metrics, and kappa analysis assessed classifier agreement. The Decision Tree Classifier with GWO feature extraction achieved good accuracy of 85.01% without feature selection and hyperparameter tuning approaches. Furthermore, we present a methodology to enhance the accuracy of the classifiers by employing hyperparameter tuning algorithms based on Adam and RAdam. By combining features from GWO and IWO, and using the RAdam algorithm, the Decision Tree classifier achieves the commendable accuracy of 91.57%.

17.
Clin Oncol (R Coll Radiol) ; 35(11): 726-735, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598093

RESUMEN

AIMS: To build machine learning-based radiomics models to discriminate between high- (HGGs) and low-grade gliomas (LGGs) and to compare the effectiveness of three-dimensional arterial spin labelling (3D-ASL) to evaluate which is a better method. MATERIALS AND METHODS: We retrospectively analysed the magnetic resonance imaging T1WI-enhanced images of 105 patients with gliomas that were pathologically confirmed in our hospital. We divided the patients into a training group and a verification group at a ratio of 8:2; 200 patients from the Brain Tumour Segmentation Challenge 2020 were selected as the test group for image segmentation, feature extraction and screening. We constructed models using multilayer perceptron (MLP), support vector machine, random forest and logistic regression and evaluated their predictive performance. We obtained the mean maximum relative cerebral blood flow (rCBFmax) value from 3D-ASL of 105 patients from the hospital to evaluate its efficacy in discriminating between HGGs and LGGs. RESULTS: In machine learning, the MLP classifier model exhibited the best performance in discriminating between HGGs and LGGs; the areas under the curve obtained by MLP and rCBFmax were 0.968 versus 0.815 (verification group) and 0.981 versus 0.815 (test group), respectively. The machine learning-based MLP classifier model performed better in discriminating between HGGs and LGGs than 3D-ASL. CONCLUSION: In our study, we found that machine learning-based radiomics models and 3D-ASL were valuable in discriminating between HGGs and LGGs and between them, the machine learning-based MLP model had better diagnostic performance.

18.
J Cancer Res Clin Oncol ; 149(16): 14519-14534, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37567985

RESUMEN

INTRODUCTION: Advances in technology have led to the emergence of computerized diagnostic systems as intelligent medical assistants. Machine learning approaches cannot replace professional humans, but they can change the treatment of diseases such as cancer and be used as medical assistants. BACKGROUND: Breast cancer treatment can be very effective, especially when the disease is detected in the early stages. Feature selection and classification are common data mining techniques in machine learning that can provide breast cancer diagnosis with high speed, low cost and high precision. METHODOLOGY: This paper proposes a new intelligent approach using an integrated filter-evolutionary search-based feature selection and an optimized ensemble classifier for breast cancer diagnosis. The selected features mainly relate to the viable solution as the selected features are successfully used in the breast cancer disease classification process. The proposed feature selection method selects the most informative features from the original feature set by integrating adaptive thresholder information gain-based feature selection and evolutionary gravity-search-based feature selection. Meanwhile, classification model is done by proposing a new intelligent multi-layer perceptron neural network-based ensemble classifier. RESULTS: The simulation results show that the proposed method provides better performance compared to the state-of-the-art algorithms in terms of various criteria such as accuracy, sensitivity and specificity. Specifically, the proposed method achieves an average accuracy of 99.42% on WBCD, WDBC and WPBC datasets from Wisconsin database with only 56.7% of features. CONCLUSION: Systems based on intelligent medical assistants configured with machine learning approaches are an important step toward helping doctors to detect breast cancer early.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Diagnóstico por Computador/métodos , Algoritmos , Redes Neurales de la Computación , Simulación por Computador
19.
Front Oncol ; 13: 1172234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274249

RESUMEN

Objective: Lung cancer is one of the most common malignant tumors in humans. Adenocarcinoma of the lung is another of the most common types of lung cancer. In clinical medicine, physicians rely on the information provided by pathology tests as an important reference for the fifinal diagnosis of many diseases. Thus, pathological diagnosis is known as the gold standard for disease diagnosis. However, the complexity of the information contained in pathology images and the increase in the number of patients far exceeds the number of pathologists, especially in the treatment of lung cancer in less-developed countries. Methods: This paper proposes a multilayer perceptron model for lung cancer histopathology image detection, which enables the automatic detection of the degree of lung adenocarcinoma infifiltration. For the large amount of local information present in lung cancer histopathology images, MLP IN MLP (MIM) uses a dual data stream input method to achieve a modeling approach that combines global and local information to improve the classifification performance of the model. In our experiments, we collected 780 lung cancer histopathological images and prepared a lung histopathology image dataset to verify the effectiveness of MIM. Results: The MIM achieves a diagnostic accuracy of 95.31% and has a precision, sensitivity, specificity and F1-score of 95.31%, 93.09%, 93.10%, 96.43% and 93.10% respectively, outperforming the diagnostic results of the common network model. In addition, a number of series of extension experiments demonstrated the scalability and stability of the MIM. Conclusions: In summary, MIM has high classifification performance and substantial potential in lung cancer detection tasks.

20.
Ren Fail ; 45(1): 2202755, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37073623

RESUMEN

BACKGROUND: Given its progressive deterioration in the clinical course, noninvasive assessment and risk stratification for the severity of renal fibrosis in chronic kidney disease (CKD) are required. We aimed to develop and validate an end-to-end multilayer perceptron (MLP) model for assessing renal fibrosis in CKD patients based on real-time two-dimensional shear wave elastography (2D-SWE) and clinical variables. METHODS: From April 2019 to December 2021, a total of 162 patients with CKD who underwent a kidney biopsy and 2D-SWE examination were included in this single-center, cross-sectional, and prospective clinical study. 2D-SWE was performed to measure the right renal cortex stiffness, and the corresponding elastic values were recorded. Patients were categorized into two groups according to their histopathological results: mild and moderate-severe renal fibrosis. The patients were randomly divided into a training cohort (n = 114) or a test cohort (n = 48). The MLP classifier using a machine learning algorithm was used to construct a diagnostic model incorporating elastic values with clinical features. Discrimination, calibration, and clinical utility were used to appraise the performance of the established MLP model in the training and test sets, respectively. RESULTS: The developed MLP model demonstrated good calibration and discrimination in both the training [area under the receiver operating characteristic curve (AUC) = 0.93; 95% confidence interval (CI) = 0.88 to 0.98] and test cohorts [AUC = 0.86; 95% CI = 0.75 to 0.97]. A decision curve analysis and a clinical impact curve also showed that the MLP model had a positive clinical impact and relatively few negative effects. CONCLUSIONS: The proposed MLP model exhibited the satisfactory performance in identifying the individualized risk of moderate-severe renal fibrosis in patients with CKD, which is potentially helpful for clinical management and treatment decision-making.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fibrosis , Riñón , Insuficiencia Renal Crónica , Humanos , Estudios Transversales , Diagnóstico por Imagen de Elasticidad/métodos , Redes Neurales de la Computación , Estudios Prospectivos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/diagnóstico por imagen , Insuficiencia Renal Crónica/patología , Riñón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA