Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Phenomics ; 4(2): 158-170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38884060

RESUMEN

ADP-ribosylation is a reversible and dynamic post-translational modification mediated by ADP-ribosyltransferases (ARTs). Poly(ADP-ribose) polymerases (PARPs) are an important family of human ARTs. ADP-ribosylation and PARPs have crucial functions in host-pathogen interaction, especially in viral infections. However, the functions and potential molecular mechanisms of ADP-ribosylation and PARPs in Mycobacterium infection remain unknown. In this study, bioinformatics analysis revealed significantly changed expression levels of several PARPs in tuberculosis patients compared to healthy individuals. Moreover, the expression levels of these PARPs returned to normal following tuberculosis treatment. Then, the changes in the expression levels of PARPs during Mycobacterium infection were validated in Tohoku Hospital Pediatrics-1 (THP1)-induced differentiated macrophages infected with Mycobacterium model strains bacillus Calmette-Guérin (BCG) and in human lung adenocarcinoma A549 cells infected with Mycobacterium smegmatis (Ms), respectively. The mRNA levels of PARP9, PARP10, PARP12, and PARP14 were most significantly increased during infection, with corresponding increases in protein levels, indicating the possible biological functions of these PARPs during Mycobacterium infection. In addition, the biological function of host PARP9 in Mycobacterium infection was further studied. PARP9 deficiency significantly increased the infection efficiency and intracellular proliferation ability of Ms, which was reversed by the reconstruction of PARP9. Collectively, this study updates the understanding of changes in PARP expression during Mycobacterium infection and provides evidence supporting PARP9 as a potent suppressor for Mycobacterium infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00112-2.

3.
J Biomed Res ; 38(4): 369-381, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807377

RESUMEN

Tumor vaccines are a promising avenue in cancer immunotherapy. Despite the progress in targeting specific immune epitopes, tumor cells lacking these epitopes can evade the treatment. Here, we aimed to construct an efficient in situ tumor vaccine called Vac-SM, utilizing shikonin (SKN) to induce immunogenic cell death (ICD) and Mycobacterium smegmatis as an immune adjuvant to enhance in situ tumor vaccine efficacy. SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators, respectively. Compared with the control group, the in situ Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis, while also improving survival rates. Mycobacterium smegmatis effectively induced maturation and activation of bone marrow-derived dendritic cells (DCs), and in vivo tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment, based on flow cytometry analysis results. Collectively, the Vac-SM vaccine effectively induces ICD, improves antigen presentation by DCs, activates a specific systemic antitumor T-cell immune response, exhibits a favorable safety profile, and holds the promise for clinical translation for local tumor immunotherapy.

4.
J Biol Chem ; 300(1): 105483, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992805

RESUMEN

Oxidative phosphorylation, the combined activities of the electron transport chain (ETC) and ATP synthase, has emerged as a valuable target for antibiotics to treat infection with Mycobacterium tuberculosis and related pathogens. In oxidative phosphorylation, the ETC establishes a transmembrane electrochemical proton gradient that powers ATP synthesis. Monitoring oxidative phosphorylation with luciferase-based detection of ATP synthesis or measurement of oxygen consumption can be technically challenging and expensive. These limitations reduce the utility of these methods for characterization of mycobacterial oxidative phosphorylation inhibitors. Here, we show that fluorescence-based measurement of acidification of inverted membrane vesicles (IMVs) can detect and distinguish between inhibition of the ETC, inhibition of ATP synthase, and nonspecific membrane uncoupling. In this assay, IMVs from Mycobacterium smegmatis are acidified either through the activity of the ETC or ATP synthase, the latter modified genetically to allow it to serve as an ATP-driven proton pump. Acidification is monitored by fluorescence from 9-amino-6-chloro-2-methoxyacridine, which accumulates and quenches in acidified IMVs. Nonspecific membrane uncouplers prevent both succinate- and ATP-driven IMV acidification. In contrast, the ETC Complex III2IV2 inhibitor telacebec (Q203) prevents succinate-driven acidification but not ATP-driven acidification, and the ATP synthase inhibitor bedaquiline prevents ATP-driven acidification but not succinate-driven acidification. We use the assay to show that, as proposed previously, lansoprazole sulfide is an inhibitor of Complex III2IV2, whereas thioridazine uncouples the mycobacterial membrane nonspecifically. Overall, the assay is simple, low cost, and scalable, which will make it useful for identifying and characterizing new mycobacterial oxidative phosphorylation inhibitors.


Asunto(s)
Antibacterianos , Descubrimiento de Drogas , Mycobacterium tuberculosis , Fosforilación Oxidativa , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Complejo III de Transporte de Electrones/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Descubrimiento de Drogas/métodos
5.
Nano Lett ; 24(1): 305-311, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38149630

RESUMEN

Thyroid hormones (THs) are a variety of iodine-containing hormones that demonstrate critical physiological impacts on cellular activities. The assessment of thyroid function and the diagnosis of thyroid disorders require accurate measurement of TH levels. However, largely due to their structural similarities, the simultaneous discrimination of different THs is challenging. Nanopores, single-molecule sensors with a high resolution, are suitable for this task. In this paper, a hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a single nickel ion immobilized to the pore constriction has enabled simultaneous identification of five representative THs including l-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2) and 3,3'-diiodo-l-thyronine (3,3'-T2). To automate event classification and avoid human bias, a machine learning algorithm was also developed, reporting an accuracy of 99.0%. This sensing strategy is also applied in the analysis of TH in a real human serum environment, suggesting its potential use in a clinical diagnosis.


Asunto(s)
Nanoporos , Humanos , Níquel , Hormonas Tiroideas/análisis , Hormonas Tiroideas/química , Tiroxina , Tironinas
6.
Nano Lett ; 23(20): 9437-9444, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37818841

RESUMEN

Nucleoside drugs, which are analogues of natural nucleosides, have been widely applied in the clinical treatment of viral infections and cancers. The development of nucleoside drugs, repurposing of existing drugs, and combined use of multiple drug types have made the rapid sensing of nucleoside drugs urgently needed. Nanopores are emerging single-molecule sensors that have high resolution to resolve even minor structural differences between chemical compounds. Here, an engineered Mycobacterium smegmatis porin A hetero-octamer was used to perform general nucleoside drug analysis. Ten nucleoside drugs were simultaneously detected and fully discriminated. An accuracy of >99.9% was consequently reported. This sensing capacity was further demonstrated in direct nanopore analysis of ribavirin buccal tablets, confirming its sensing reliability against complex samples and environments. No sample separation is needed, however, significantly minimizing the complexity of the measurement. This technique may inspire nanopore applications in pharmaceutical production and pharmacokinetics measurements.


Asunto(s)
Nanoporos , Nucleósidos , Reproducibilidad de los Resultados , Porinas/química , Mycobacterium smegmatis/química
7.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513221

RESUMEN

The treatment of many bacterial diseases remains a significant problem due to the increasing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was developed. Their structural and functional relationships were also considered. The antimicrobial activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum inhibitory concentration (MIC) of 0.98 µg/mL against MRSA. The synthesized compounds were assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b, 3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared to slower growing fibroblasts of non-tumor etiology.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Mycobacterium tuberculosis , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Antibacterianos/química , Línea Celular , Pruebas de Sensibilidad Microbiana
8.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37242440

RESUMEN

With the increasing need for effective compounds against cancer or pathogen-borne diseases, the development of new tools to investigate the enzymatic activity of biomarkers is necessary. Among these biomarkers are DNA topoisomerases, which are key enzymes that modify DNA and regulate DNA topology during cellular processes. Over the years, libraries of natural and synthetic small-molecule compounds have been extensively investigated as potential anti-cancer, anti-bacterial, or anti-parasitic drugs targeting topoisomerases. However, the current tools for measuring the potential inhibition of topoisomerase activity are time consuming and not easily adaptable outside specialized laboratories. Here, we present rolling circle amplification-based methods that provide fast and easy readouts for screening of compounds against type 1 topoisomerases. Specific assays for the investigation of the potential inhibition of eukaryotic, viral, or bacterial type 1 topoisomerase activity were developed, using human topoisomerase 1, Leishmania donovani topoisomerase 1, monkeypox virus topoisomerase 1, and Mycobacterium smegmatis topoisomerase 1 as model enzymes. The presented tools proved to be sensitive and directly quantitative, paving the way for new diagnostic and drug screening protocols in research and clinical settings.

9.
Arch Microbiol ; 205(5): 174, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022460

RESUMEN

The proline-glutamic acid and proline-proline-glutamic acid (PE/PPE) family of proteins is widespread in pathogenic mycobacteria and plays different roles in mycobacterial physiology. While several PE/PPE family proteins have been studied, the exact function of most PE/PPE proteins in the physiology of Mycobacterium tuberculosis (Mtb) remains unknown. PE_PGRS47 belongs to the PE/PPE family of proteins reported to help Mtb evade protective host immune responses. In this study, we demonstrate a novel role of PE_PGRS47. Heterologous expression of the pe_pgrs47 gene in a non-pathogenic Mycobacterium smegmatis, intrinsically deficient of PE_PGRS protein, exhibits modulated colony morphology and cell wall lipid profile leading to a marked susceptibility to multiple antibiotics and environmental stressors. Using ethidium bromide/Nile red uptake assays, Mycobacterium smegmatis expressing PE_PGRS47 showed higher cell wall permeability than the control strain. Overall, these data suggested that PE_PGRS47 is cell surface exposed and influences cell wall integrity and the formation of mycobacterial colonies, ultimately potentiating the efficacy of lethal stresses against mycobacteria.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácido Glutámico/metabolismo , Macrófagos , Antígenos Bacterianos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium smegmatis/metabolismo , Pared Celular/metabolismo , Resistencia a Medicamentos , Prolina/metabolismo
10.
Biochimie ; 211: 1-15, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36809827

RESUMEN

Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme that reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Its pivotal role in the cellular processes has been well established by overexpressing, silencing, and knocking down MsrA or deleting the gene encoding MsrA in several species. We are specifically interested in understanding the role of secreted MsrA in bacterial pathogens. To elucidate this, we infected mouse bone marrow-derived macrophages (BMDMs) with recombinant Mycobacterium smegmatis strain (MSM), secreting a bacterial MsrA or M. smegmatis strain (MSC) carrying only the control vector. BMDMs infected with MSM induced higher levels of ROS and TNF-α than BMDMs infected with MSC. The increased ROS and TNF-α levels in MSM-infected BMDMs correlated with elevated necrotic cell death in this group. Further, RNA-seq transcriptome analysis of BMDMs infected with MSC and MSM revealed differential expression of protein and RNA coding genes, suggesting that bacterial-delivered MsrA could modulate the host cellular processes. Finally, KEGG pathway enrichment analysis identified the down-regulation of cancer-related signaling genes in MSM-infected cells, indicating that MsrA can potentially regulate the development and progression of cancer.


Asunto(s)
Macrófagos , Metionina Sulfóxido Reductasas , Mycobacterium smegmatis , Animales , Ratones , Macrófagos/microbiología , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
ACS Nano ; 17(3): 2881-2892, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36655995

RESUMEN

Isomers of some chemical compounds may be dynamically interconvertible. Due to a lack of sensing methods with a sufficient resolution, however, direct monitoring of such processes can be difficult. Engineered Mycobacterium smegmatis porin A (MspA) nanopores can be applied as nanoreactors so that chemical reactions can be directly monitored. Here, an MspA modified with a phenylboronic acid (PBA) adapter was prepared and was used to observe dynamic interconversion between chiral configurations of boronate esters, which appears as telegraphic switching on top of nanopore events. The mechanism of this behavior was further confirmed by trials with different halogenated catechols, dopamine, adenosine, 1,2-propanediol, and (2R,3R)-2,3-butanediol, and its generality has been demonstrated. These results suggest that an engineered MspA possesses an exceptional resolution in its monitoring of chemical reaction processes and may inspire the future design of nanopore small-molecule sensors.


Asunto(s)
Nanoporos , Nanotecnología , Porinas/química
12.
Chem Biodivers ; 20(3): e202200691, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36692091

RESUMEN

Plectranthus amboinicus (Lour.) Spreng, known as the Indian borage or Mexican mint, is one of the most documented species in the family Lamiaceae for its therapeutic and pharmaceutical values. It is found in the tropical and subtropical regions of the world. The leaf essential oil has immense medicinal benefits like treating illnesses of the skin and disorders like colds, asthma, constipation, headaches, coughs, and fevers. After analyzing earlier reports with regard to the quantity and quality of leaf oil yield, we discovered that the germplasm taken from Odisha is preferable to other germplasms. The objective of the present work is to evaluate the free radical scavenging activity and bactericidal effect of leaf essential oil (EO) of Plectranthus amboinicus (Lour.) Spreng collected from the state of Odisha, India. The hydro distillation technique has been used for essential oil extraction. Upon GC/MS analysis, approximately 57 compounds were identified with Carvacrol as the major compound (peak area=20.25 %), followed by p-thymol (peak area=20.17 %), o-cymene (peak area=19.41 %) and carene (peak area=15.89 %). On evaluation of free radical scavenging activity, it was recorded that the best value of inhibitory concentration, was for DPPH with IC50 =18.64 ppm and for H2 O2 with IC50 =9.35 ppm. The EO showed efficient bactericidal effect against both gram positive (Mycobacterium smegmatis, Staphylococcus aureus, Enterococcus faecium) and gram negative (Escherichia coli, Vibrio cholerae, Klebsiella pneumoniae) bacteria studied through well diffusion method. Fumigatory action of the essential oil was found against M. smegmatis, the model organism for tuberculosis study. Alamar Blue assay, gave a result with MIC value for M. smegmatis i. e., 0.12 µg/ml and the MBC value of 0.12 µg/ml. Hence, P. amboinicus found in Odisha can be suggested as an elite variety and should be further investigated for efficient administration in drug formulation.


Asunto(s)
Aceites Volátiles , Plectranthus , Antibacterianos/farmacología , Antibacterianos/análisis , Radicales Libres , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites Volátiles/farmacología , Hojas de la Planta/química , Plectranthus/química , Mycobacterium smegmatis/efectos de los fármacos
13.
ACS Nano ; 16(12): 21356-21365, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36475606

RESUMEN

Ribonucleotides, which widely exist in all living organisms and are essential to both physiological and pathological processes, can naturally appear as ribonucleoside mono-, di-, and triphosphates. Natural ribonucleotides can also dynamically switch between different phosphorylated forms, posing a great challenge for sensing. A specially engineered nanopore sensor is promising for full discrimination of all canonical ribonucleoside mono-, di-, and triphosphates. However, such a demonstration has never been reported, due to the lack of a suitable nanopore sensor that has a sufficient resolution. In this work, we utilized a phenylboronic acid (PBA) modified Mycobacterium smegmatis porin A (MspA) hetero-octamer for ribonucleotide sensing. Twelve types of ribonucleotides, including mono-, di-, and triphosphates of cytidine (CMP, CDP, CTP), uridine (UMP, UDP, UTP), adenosine (AMP, ADP, ATP), and guanosine (GMP, GDP, GTP) were simultaneously discriminated. A machine-learning algorithm was also developed, which achieved a general accuracy of 99.9% for ribonucleotide sensing. This strategy was also further applied to identify ribonucleotide components in ATP tablets and injections. This sensing strategy provides a direct, accurate, easy, and rapid solution to characterize ribonucleotide components in different phosphorylated forms.


Asunto(s)
Nanoporos , Ribonucleósidos , Ribonucleótidos , Adenosina Trifosfato
14.
BMC Immunol ; 23(1): 43, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104771

RESUMEN

BACKGROUND: Autophagy is an important mechanism for promoting Mycobacterium clearance from macrophages. Pathogenic and non-pathogenic mycobacterium can activate the mTOR pathway while simultaneously inducing autophagy. M. tuberculosis and M. bovis BCG inhibit autophagy and favor intracellular bacteria survival. RESULTS: We observed that pre-infection of live or heat-killed BCG could prevent autophagy induced by pharmacological activators or M. smegmatis, a strong autophagy-inducing mycobacterium. BCG-derived lipids are responsible for autophagy inhibition. However, post-infection with BCG could not stop the autophagy initiated by M. smegmatis, which increases further autophagy induction and mycobacteria clearance. Coinfection with BCG and heat killed M. smegmatis enhanced antigen specific CD4+ T cell responses and reduced mycobacterial survival. CONCLUSION: These results suggest that autophagy-inducing M. smegmatis could be used to promote better innate and consequential adaptive immune responses, improving BCG vaccine efficacy.


Asunto(s)
Mycobacterium tuberculosis , Eficacia de las Vacunas , Autofagia/fisiología , Vacuna BCG , Macrófagos
15.
Mater Today Bio ; 16: 100419, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36105674

RESUMEN

Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.

16.
Curr Res Microb Sci ; 3: 100142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909599

RESUMEN

The physiological role of mono-ADP-ribosyl transferase (Arr) of Mycobacterium smegmatis, which inactivates rifampicin, remains unclear. An earlier study reported increased expression of arr during oxidative stress and DNA damage. This suggested a role for Arr in the oxidative status of the cell and its associated effect on DNA damage. Since reactive oxygen species (ROS) influence oxidative status, we investigated whether Arr affected ROS levels in M. smegmatis. Significantly elevated levels of superoxide and hydroxyl radical were found in the mid-log phase (MLP) cultures of the arr knockout strain (arr-KO) as compared those in the wild-type strain (WT). Complementation of arr-KO with expression from genomically integrated arr under its native promoter restored the levels of ROS equivalent to that in WT. Due to the inherently high ROS levels in the actively growing arr-KO, rifampicin resisters with rpoB mutations could be selected at 0 hr of exposure itself against rifampicin, unlike in the WT where the resisters emerged at 12th hr of rifampicin exposure. Microarray analysis of the actively growing cultures of arr-KO revealed significantly high levels of expression of genes from succinate dehydrogenase I and NADH dehydrogenase I operons, which would have contributed to the increased superoxide levels. In parallel, expression of specific DNA repair genes was significantly decreased, favouring retention of the mutations inflicted by the ROS. Expression of several metabolic pathway genes also was significantly altered. These observations revealed that Arr was required for maintaining a gene expression profile that would provide optimum levels of ROS and DNA repair system in the actively growing M. smegmatis.

17.
Front Microbiol ; 13: 865045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685938

RESUMEN

Cyclic dimeric adenosine monophosphate (c-di-AMP) is a ubiquitous second messenger of bacteria involved in diverse physiological processes as well as host immune responses. MSMEG_2630 is a c-di-AMP phosphodiesterase (cnpB) of Mycobacterium smegmatis, which is homologous to Mycobacterium tuberculosis Rv2837c. In this study, cnpB-deleted (ΔcnpB), -complemented (ΔcnpB::C), and -overexpressed (ΔcnpB::O) strains of M. smegmatis were constructed to investigate the role of c-di-AMP in regulating mycobacterial physiology and immunogenicity. This study provides more precise evidence that elevated c-di-AMP level resulted in smaller colonies, shorter bacteria length, impaired growth, and inhibition of potassium transporter in M. smegmatis. This is the first study to report that elevated c-di-AMP level could inhibit biofilm formation and induce porphyrin accumulation in M. smegmatis by regulating associated gene expressions, which may have effects on drug resistance and virulence of mycobacterium. Moreover, the cnpB-deleted strain with an elevated c-di-AMP level could induce enhanced Th1 immune responses after M. tuberculosis infection. Further, the pathological changes and the bacteria burden in ΔcnpB group were comparable with the wild-type M. smegmatis group against M. tuberculosis venous infection in the mouse model. Our findings enhanced the understanding of the physiological role of c-di-AMP in mycobacterium, and M. smegmatis cnpB-deleted strain with elevated c-di-AMP level showed the potential for a vaccine against tuberculosis.

18.
Front Immunol ; 13: 862628, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572598

RESUMEN

Mycobacterium tuberculosis (Mtb) is the causative pathogen of tuberculosis (TB), which manipulates the host immunity to ensure survival and colonization in the host. Mtb possess a unique family of proteins, named PE_PGRS, associated with Mtb pathogenesis. Thus, elucidation of the functions of PE_PGRS proteins is necessary to understand TB pathogenesis. Here, we investigated the role of PE_PGRS38 binding to herpesvirus-associated ubiquitin-specific protease (HAUSP, USP7) in regulating the activity of various substrate proteins by modulating their state of ubiquitination. We constructed the recombinant PE_PGRS38 expressed in M. smegmatis (Ms_PE_PGRS38) to investigate the role of PE_PGRS38. We found that Ms_PE_PGRS38 regulated the cytokine levels in murine bone marrow-derived macrophages by inhibiting the deubiquitination of tumor necrosis factor receptor-associated factor (TRAF) 6 by HAUSP. Furthermore, the PE domain in PE_PGRS38 was identified as essential for mediating TRAF6 deubiquitination. Ms_PE_PGRS38 increased the intracellular burden of bacteria by manipulating cytokine levels in vitro and in vivo. Overall, we revealed that the interplay between HAUSP and PE_PGRS38 regulated the inflammatory response to increase the survival of mycobacteria.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Proteínas Bacterianas , Citocinas/metabolismo , Ratones , Mycobacterium smegmatis/genética , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
19.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 494-508, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362472

RESUMEN

The bacterial genus Mycobacterium includes important pathogens, most notably M. tuberculosis, which infects one-quarter of the entire human population, resulting in around 1.4 million deaths from tuberculosis each year. Mycobacteria, and the closely related corynebacteria, synthesize a class of abundant glycolipids, the phosphatidyl-myo-inositol mannosides (PIMs). PIMs serve as membrane anchors for hyperglycosylated species, lipomannan (LM) and lipoarabinomannan (LAM), which are surface-exposed and modulate the host immune response. Previously, in studies using the model species Corynebacterium glutamicum, NCgl2760 was identified as a novel membrane protein that is required for the synthesis of full-length LM and LAM. Here, the first crystal structure of its ortholog in Mycobacterium smegmatis, MSMEG_0317, is reported at 1.8 Šresolution. The structure revealed an elongated ß-barrel fold enclosing two distinct cavities and one α-helix extending away from the ß-barrel core, resembling a `cone with a flake' arrangement. Through xenon derivatization and structural comparison with AlphaFold2-derived predictions of the M. tuberculosis homolog Rv0227c, structural elements were identified that may undergo conformational changes to switch from `closed' to `open' conformations, allowing cavity access. An AlphaFold2-derived NCgl2760 model predicted a smaller ß-barrel core with an enclosed central cavity, suggesting that all three proteins, which were collectively termed LmcA, may have a common mechanism of ligand binding through these cavities. These findings provide new structural insights into the biosynthetic pathway for a family of surface lipoglycans with important roles in mycobacterial pathogenesis.


Asunto(s)
Corynebacterium glutamicum , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/metabolismo , Humanos , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo
20.
ACS Sens ; 7(5): 1564-1571, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35427117

RESUMEN

Nucleoside analogues are reagents that resemble the structure of natural nucleosides and are widely applied in antiviral and anticancer therapy. Molnupiravir, a recently reported nucleoside analogue drug, has shown its inhibitory effect against SARS-CoV-2. Rapid tracing of molnupiravir and its metabolites is important in the evaluation of its pharmacology effect, but direct sensing of molnupiravir as a single molecule has not been reported to date. Here, we demonstrate a nanopore-based sensor with which direct sensing of molnupiravir and its two major metabolites ß-d-N4-hydroxycytidine and its triphosphate can be achieved simultaneously. In conjunction with a custom machine learning algorithm, an accuracy of 92% was achieved. This sensing strategy may be useful in the current pandemic and is in principle suitable for other nucleoside analogue drugs.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanoporos , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Nucleósidos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA