Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Cancer Cell Int ; 24(1): 308, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245709

RESUMEN

Bladder cancer (BC) ranks as the sixth cancer in males and the ninth most common cancer worldwide. Conventional treatment modalities, including surgery, radiation, chemotherapy, and immunotherapy, have limited efficacy in certain advanced instances. The involvement of GALNT6-mediated aberrant O-glycosylation modification in several malignancies and immune evasion is a subject of speculation. However, its significance in BC has not been investigated. Through the integration of bioinformatics analysis and laboratory experimentation, we have successfully clarified the role of GALNT6 in BC. Our investigation revealed that GALNT6 has significant expression in BC, and its high expression level correlates with advanced stage and high grade, leading to poor overall survival. Moreover, both in vitro and in vivo experiments demonstrate a strong correlation between elevated levels of GALNT6 and tumor growth, migration, and invasion. Furthermore, there is a negative correlation between elevated GALNT6 levels, the extent of CD8+ T cell infiltration in the tumor microenvironment, and the prognosis of patients. Functional experiments have shown that the increased expression of GALNT6 could enhance the malignant characteristics of cancer cells by activating the epithelial-mesenchymal transition (EMT) pathway. In brief, this study examined the impact of GALNT6-mediated abnormal O-glycosylation on the occurrence and progression of bladder cancer and its influence on immune evasion. It also explored the possible molecular mechanism underlying the interaction between tumor cells and immune cells, as well as the bidirectional signaling involved. These findings offer a novel theoretical foundation rooted in glycobiology for the clinical application of immunotherapy in BC.

2.
Cancer Sci ; 115(10): 3320-3332, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39105355

RESUMEN

High expression of truncated O-glycans Tn antigen predicts adverse clinical outcome in patients with clear cell renal cell carcinoma (ccRCC). To understand the biosynthetic underpinnings of Tn antigen changes in ccRCC, we focused on N-acetylgalactosaminyltransferases (GALNTs, also known as GalNAcTs) known to be involved in Tn antigen synthesis. Data from GSE15641 profile and local cohort showed that GALNT6 was significantly upregulated in ccRCC tissues. The current study aimed to determine the role of GALNT6 in ccRCC, and whether GALNT6-mediated O-glycosylation aggravates malignant behaviors. Gain- and loss-of-function experiments showed that overexpression of GALNT6 accelerated ccRCC cell proliferation, migration, and invasion, as well as promoted ccRCC-derived xenograft tumor growth and lung metastasis. In line with this, silencing of GALNT6 yielded the opposite results. Mechanically, high expression of GALNT6 led to the accumulation of Tn antigen in ccRCC cells. By undertaking immunoprecipitation coupled with liquid chromatography/mass spectrometry, vicia villosa agglutinin blot, and site-directed mutagenesis assays, we found that O-glycosylation of prohibitin 2 (PHB2) at Ser161 was required for the GALNT6-induced ccRCC cell proliferation, migration, and invasion. Additionally, we identified lens epithelium-derived growth factor (LEDGF) as a key regulator of GALNT6 transcriptional induction in ccRCC growth and an upstream contributor to ccRCC aggressive behavior. Collectively, our findings indicate that GALNT6-mediated abnormal O-glycosylation promotes ccRCC progression, which provides a potential therapeutic target in ccRCC development.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Renales , N-Acetilgalactosaminiltransferasas , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Humanos , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/genética , Animales , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Línea Celular Tumoral , Ratones , Glicosilación , Femenino , Masculino , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica
3.
J Biol Chem ; 300(9): 107628, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098533

RESUMEN

The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3-/- mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , N-Acetilgalactosaminiltransferasas , Polipéptido N-Acetilgalactosaminiltransferasa , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Animales , Ratones , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Ratones Noqueados , Glicosilación , Proteoma/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Humanos
4.
FEBS J ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206632

RESUMEN

N-terminal nonsynonymous single-nucleotide polymorphisms (SNPs) of G protein-coupled receptors (GPCRs) are common and often affect receptor post-translational modifications. Their functional implications are, however, largely unknown. We have previously shown that the human ß1-adrenergic receptor (ß1AR) is O-glycosylated in the N-terminal extracellular domain by polypeptide GalNAc transferase-2 that co-regulates receptor proteolytic cleavage. Here, we demonstrate that the common S49G and the rare A29T and R31Q SNPs alter these modifications, leading to distinct effects on receptor processing. This was achieved by in vitro O-glycosylation assays, analysis of native receptor N-terminal O-glycopeptides, and expression of receptor variants in cell lines and neonatal rat ventricular cardiomyocytes deficient in O-glycosylation. The SNPs eliminated (S49G) or introduced (A29T) regulatory O-glycosites that enhanced or inhibited cleavage at the adjacent sites (P52↓L53 and R31↓L32), respectively, or abolished the major site at R31↓L32 (R31Q). The inhibition of proteolysis of the T29 and Q31 variants correlated with increased full-length receptor levels at the cell surface. Furthermore, the S49 variant showed increased isoproterenol-mediated signaling in an enhanced bystander bioluminescence energy transfer ß-arrestin2 recruitment assay in a coordinated manner with the common C-terminal R389G polymorphism. As Gly at position 49 is ancestral in placental mammals, the results suggest that its exchange to Ser has created a ß1AR gain-of-function phenotype in humans. This study provides evidence for regulatory mechanisms by which GPCR SNPs outside canonical domains that govern ligand binding and activation can alter receptor processing and function. Further studies on other GPCR SNPs with clinical importance as drug targets are thus warranted.

5.
BMC Cancer ; 24(1): 1071, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210323

RESUMEN

BACKGROUND: Immune escape is one of the causes of poor prognosis in breast cancer (BC). Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first speed-limiting enzyme of the hexosamine biosynthesis pathway (HBP) and is essential for the progression of BC. Nevertheless, the mechanism of the influence of GFPT1 in BC immune escape is not clear. METHODS: First, the level of GFPT1 in BC was analyzed by starbase, and GFPT1 expression in BC tissues was measured by qRT-PCR, western blot and IHC. Then, the O-GlcNAc levels were detected by western blot. Thereafter, Co-IP was applied to examine the relationship between GFPT1 and PD-L1. At last, a mouse model was constructed for validation in vivo. RESULTS: Firstly, we discovered that GFPT1 was obviously strengthened in BC. Knockdown or introduction of GFPT1 correspondingly degraded and elevated O-GlcNAc levels in cells. Further researches revealed that there was a reciprocal relationship between GFPT1 and PD-L1. Mechanistically, we disclosed that GFPT1 enhanced PD-L1 protein stability through O-glycosylation. More interestingly, GFPT1 accelerated BC cell immune escape via upregulation of O-glycosylation-modified PD-L1. In vivo, silencing of GFPT1 attenuated immune escape of BC cells by reducing PD-L1 levels. CONCLUSION: GFPT1 promoted BC progression and immune escape via O-glycosylation-modified PD-L1. GFPT1 may be a potential target for BC therapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora) , Escape del Tumor , Antígeno B7-H1/metabolismo , Humanos , Glicosilación , Femenino , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Ratones , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
6.
J Mass Spectrom ; 59(9): e5083, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39162140

RESUMEN

Protein glycosylation is the co- and/or post-translational modification of proteins with oligosaccharides (glycans). This process is not template based and can introduce a heterogeneous set of glycan modifications onto substrate proteins. Glycan structures preserve biomolecular information from the cell, with glycoproteins from different cell types and tissues displaying distinct patterns of glycosylation. Several decades of research have revealed that glycan structures also differ between normal physiology and disease. This suggests that the information stored in glycoproteins and glycans can be utilized for disease diagnosis and monitoring. Methods that enable sensitive and site-specific measurement of protein glycosylation in clinical settings, such as nano-flow liquid chromatography tandem mass spectrometry, are therefore essential. The purpose of this perspective is to discuss recent advances in mass spectrometry and the potential of these advances to facilitate the detection and monitoring of disease-specific glycoprotein glycoforms. Glycoproteomics, the system-wide characterization of glycoprotein identity inclusive of site-specific characterization of carbohydrate modifications on proteins, and glycomics, the characterization of glycan structures, will be discussed in this context. Quantitative measurement of glycopeptide markers via parallel reaction monitoring is highlighted. The development of promising glycopeptide markers for autoimmune disease, liver disease, and liver cancer is discussed. Synthetic glycopeptide standards, ambient ionization mass spectrometry, and consideration of glyco-biomarkers in two- and three-dimensional space within tissue will be critical to the advancement of this field. The authors envision a future in which glycoprotein mass spectrometry workflows will be integrated into clinical settings, to aid in the rapid diagnosis and monitoring of disease.


Asunto(s)
Glicoproteínas , Polisacáridos , Proteómica , Humanos , Glicoproteínas/análisis , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilación , Proteómica/métodos , Polisacáridos/análisis , Polisacáridos/química , Biomarcadores/análisis , Espectrometría de Masas/métodos , Glicómica/métodos , Glicopéptidos/análisis , Glicopéptidos/química , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem/métodos , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/química , Hepatopatías/diagnóstico , Hepatopatías/metabolismo , Cromatografía Liquida/métodos
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(8): 1118-1129, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066577

RESUMEN

Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus. However, the functions and relationship between host ppGalNAc-Ts and O-glycosylation on the S protein remain unclear. Herein, we identify 15 O-glycosites and 10 distinct O-glycan structures on the S protein using an HCD-product-dependent triggered ETD mass spectrometric analysis. We observe that the isoenzyme T6 of ppGalNAc-Ts (ppGalNAc-T6) exhibits high O-glycosylation activity for the S protein, as demonstrated by an on-chip catalytic assay. Overexpression of ppGalNAc-T6 in HEK293 cells significantly enhances the O-glycosylation level of the S protein, not only by adding new O-glycosites but also by increasing O-glycan heterogeneity. Molecular dynamics simulations reveal that O-glycosylation on the protomer-interface regions, modified by ppGalNAc-T6, potentially stabilizes the trimeric S protein structure by establishing hydrogen bonds and non-polar interactions between adjacent protomers. Furthermore, mutation frequency analysis indicates that most O-glycosites of the S protein are conserved during the evolution of SARS-CoV-2 variants. Taken together, our finding demonstrate that host O-glycosyltransferases dynamically regulate the O-glycosylation of the S protein, which may influence the trimeric structural stability of the protein. This work provides structural insights into the functional role of specific host O-glycosyltransferases in regulating the O-glycosylation of viral envelope proteins.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicosilación , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células HEK293 , SARS-CoV-2/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/genética , Polisacáridos/metabolismo , Polisacáridos/química , Polipéptido N-Acetilgalactosaminiltransferasa , Simulación de Dinámica Molecular , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Multimerización de Proteína , COVID-19/virología , COVID-19/metabolismo
8.
Plant Cell Rep ; 43(8): 202, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073636

RESUMEN

KEY MESSAGE: E1 holoenzyme was extensively Hyp-O-glycosylated at the proline rich linker region in plants, which substantially increased the molecular size and improved the enzymatic digestibility of the biomass of transgenic plants. Thermophilic E1 endo-1,4-ß-glucanase derived from Acidothermus cellulolyticus has been frequently expressed in planta to reconstruct the plant cell wall to overcome biomass recalcitrance. However, the expressed holoenzyme exhibited a larger molecular size (~ 100 kDa) than the theoretical one (57 kDa), possibly due to posttranslational modifications in the recombinant enzyme within plant cells. This study investigates the glycosylation of the E1 holoenzyme expressed in tobacco plants and determines its impact on enzyme activity and biomass digestibility. The E1 holoenzyme, E1 catalytic domain (E1cd) and E1 linker (E1Lk) were each expressed in tobacco plants and suspension cells. The accumulation of holoenzyme was 2.0- to 2.3- times higher than that of E1cd. The proline-rich E1Lk region was extensively hydroxyproline-O-glycosylated with arabinogalactan polysaccharides. Compared with E1cd, the holoenzyme displayed a broader optimal temperature range (70 to 85 ºC). When grown in greenhouse, the expression of E1 holoenzyme induced notable phenotypic changes in plants, including delayed flowering and leaf variegation post-flowering. However, the final yield of plant biomass was not significantly affected. Finally, plant biomass engineering with E1 holoenzyme showed 1.7- to 1.8-fold higher saccharification efficiency than the E1cd lines and 2.4- to 2.7-fold higher than the wild-type lines, which was ascribed to the synergetic action of the E1Lk and cellulose binding module in reducing cell wall recalcitrance.


Asunto(s)
Biomasa , Celulasa , Hidroxiprolina , Nicotiana , Plantas Modificadas Genéticamente , Glicosilación , Celulasa/metabolismo , Celulasa/genética , Nicotiana/genética , Nicotiana/metabolismo , Hidroxiprolina/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Caldicellulosiruptor/genética , Caldicellulosiruptor/metabolismo
9.
mLife ; 3(1): 57-73, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38827513

RESUMEN

O-glycosylation is an ancient yet underappreciated protein posttranslational modification, on which many bacteria and viruses heavily rely to perform critical biological functions involved in numerous infectious diseases or even cancer. But due to the innate complexity of O-glycosylation, research techniques have been limited to study its exact role in viral attachment and entry, assembly and exit, spreading in the host cells, and the innate and adaptive immunity of the host. Recently, the advent of many newly developed methodologies (e.g., mass spectrometry, chemical biology tools, and molecular dynamics simulations) has renewed and rekindled the interest in viral-related O-glycosylation in both viral proteins and host cells, which is further fueled by the COVID-19 pandemic. In this review, we summarize recent advances in viral-related O-glycosylation, with a particular emphasis on the mucin-type O-linked α-N-acetylgalactosamine (O-GalNAc) on viral proteins and the intracellular O-linked ß-N-acetylglucosamine (O-GlcNAc) modifications on host proteins. We hope to provide valuable insights into the development of antiviral reagents or vaccines for better prevention or treatment of infectious diseases.

10.
Front Oncol ; 14: 1389713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699634

RESUMEN

C1GALT1 plays a pivotal role in colorectal cancer (CRC) development and progression through its involvement in various molecular mechanisms. This enzyme is central to the O-glycosylation process, producing tumor-associated carbohydrate antigens (TACA) like Tn and sTn, which are linked to cancer metastasis and poor prognosis. The interaction between C1GALT1 and core 3 synthase is crucial for the synthesis of core 3 O-glycans, essential for gastrointestinal health and mucosal barrier integrity. Aberrations in this pathway can lead to CRC development. Furthermore, C1GALT1's function is significantly influenced by its molecular chaperone, Cosmc, which is necessary for the proper folding of T-synthase. Dysregulation in this complex interaction contributes to abnormal O-glycan regulation, facilitating cancer progression. Moreover, C1GALT1 affects downstream signaling pathways and cellular behaviors, such as the epithelial-mesenchymal transition (EMT), by modifying O-glycans on key receptors like FGFR2, enhancing cancer cell invasiveness and metastatic potential. Additionally, the enzyme's relationship with MUC1, a mucin protein with abnormal glycosylation in CRC, highlights its role in cancer cell immune evasion and metastasis. Given these insights, targeting C1GALT1 presents a promising therapeutic strategy for CRC, necessitating further research to develop targeted inhibitors or activators. Future efforts should also explore C1GALT1's potential as a biomarker for early diagnosis, prognosis, and treatment response monitoring in CRC, alongside investigating combination therapies to improve patient outcomes.

11.
J Virol ; 98(6): e0052424, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38757972

RESUMEN

Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.


Asunto(s)
Ebolavirus , Polisacáridos , Replicación Viral , Ebolavirus/fisiología , Ebolavirus/metabolismo , Humanos , Células HEK293 , Glicosilación , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Glicoproteínas/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
12.
J Biomed Res ; 38(4): 348-357, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807485

RESUMEN

Core 1 synthase glycoprotein-N-acetylgalactosamine 3-ß-galactosyltransferase 1 (C1GALT1) is known to play a critical role in the development of gastric cancer, but few studies have elucidated associations between genetic variants in C1GALT1 and gastric cancer risk. By using the genome-wide association study data from the database of Genotype and Phenotype (dbGAP), we evaluated such associations with a multivariable logistic regression model and identified that the rs35999583 G>C in C1GALT1 was associated with gastric cancer risk (odds ratio, 0.83; 95% confidence interval [CI], 0.75-0.92; P = 3.95 × 10 -4). C1GALT1 mRNA expression levels were significantly higher in gastric tumor tissues than in normal tissues, and gastric cancer patients with higher C1GALT1 mRNA levels had worse overall survival rates (hazards ratio, 1.33; 95% CI, 1.05-1.68; P log-rank = 1.90 × 10 -2). Furthermore, we found that C1GALT1 copy number differed in various immune cells and that C1GALT1 mRNA expression levels were positively correlated with the infiltrating levels of CD4 + T cells and macrophages. These results suggest that genetic variants of C1GALT1 may play an important role in gastric cancer risk and provide a new insight for C1GALT1 into a promising predictor of gastric cancer susceptibility and immune status.

13.
Mass Spectrom Rev ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576136

RESUMEN

Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.

14.
Cell Rep Methods ; 4(4): 100744, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38582075

RESUMEN

A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.


Asunto(s)
Glicoproteínas , Proteoma , Proteómica , Flujo de Trabajo , Humanos , Glicosilación , Glicoproteínas/metabolismo , Glicoproteínas/química , Proteómica/métodos , Proteoma/metabolismo , Proteoma/análisis , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo , Quininógenos/metabolismo , Quininógenos/química , Polisacáridos/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/química , Fibrinógeno/metabolismo , Fibrinógeno/química , alfa-2-Glicoproteína-HS/metabolismo , alfa-2-Glicoproteína-HS/análisis
15.
J Biol Chem ; 300(4): 107164, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484798

RESUMEN

O-glycosylation is a conserved posttranslational modification that impacts many aspects of organismal viability and function. Recent studies examining the glycosyltransferase Galnt11 demonstrated that it glycosylates the endocytic receptor megalin in the kidneys, enabling proper binding and reabsorption of ligands, including vitamin D-binding protein (DBP). Galnt11-deficient mice were unable to properly reabsorb DBP from the urine. Vitamin D plays an essential role in mineral homeostasis and its deficiency is associated with bone diseases such as rickets, osteomalacia, and osteoporosis. We therefore set out to examine the effects of the loss of Galnt11 on vitamin D homeostasis and bone composition. We found significantly decreased levels of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, consistent with decreased reabsorption of DBP. This was accompanied by a significant reduction in blood calcium levels and a physiologic increase in parathyroid hormone (PTH) in Galnt11-deficient mice. Bones in Galnt11-deficient mice were smaller and displayed a decrease in cortical bone accompanied by an increase in trabecular bone and an increase in a marker of bone formation, consistent with PTH-mediated effects on bone. These results support a unified model for the role of Galnt11 in bone and mineral homeostasis, wherein loss of Galnt11 leads to decreased reabsorption of DBP by megalin, resulting in a cascade of disrupted mineral and bone homeostasis including decreased circulating vitamin D and calcium levels, a physiological increase in PTH, an overall loss of cortical bone, and an increase in trabecular bone. Our study elucidates how defects in O-glycosylation can influence vitamin D and mineral homeostasis and the integrity of the skeletal system.


Asunto(s)
Huesos , Homeostasis , Polipéptido N-Acetilgalactosaminiltransferasa , Vitamina D , Animales , Masculino , Ratones , Huesos/anatomía & histología , Huesos/química , Huesos/metabolismo , Calcio/metabolismo , Glicosilación , Homeostasis/genética , Hormona Paratiroidea/metabolismo , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Proteína de Unión a Vitamina D/metabolismo
16.
J Plant Physiol ; 295: 154190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460400

RESUMEN

PTMs (Post-Translational Modifications) of proteins facilitate rapid modulation of protein function in response to various environmental stimuli. The EIN2 (Ethylene Insensitive 2) protein is a core regulatory of the ethylene signaling pathway. Recent findings have demonstrated that PTMs, including protein phosphorylation, ubiquitination, and glycosylation, govern EIN2 trafficking, subcellular localization, stability, and physiological roles. The cognition of multiple PTMs in EIN2 underscores the stringent regulation of protein. Consequently, a thorough review of the regulatory role of PTMs in EIN2 functions will improve our profound comprehension of the regulation mechanism and various physiological processes of EIN2-mediated signaling pathways. This review discusses the evolution, functions, structure and characteristics of EIN2 protein in plants. Additionally, this review sheds light on the progress of protein ubiquitination, phosphorylation, O-Glycosylation in the regulation of EIN2 functions, and the unresolved questions and future perspectives.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Procesamiento Proteico-Postraduccional , Fosforilación , Receptores de Superficie Celular/genética
17.
Glycobiology ; 34(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38366999

RESUMEN

The glycoprotein-N-acetylgalactosamine ß1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 ß1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.


Asunto(s)
Ecosistema , Galactosiltransferasas , Animales , Humanos , Bovinos , Secuencia de Aminoácidos , Galactosiltransferasas/metabolismo , Clonación Molecular , Moluscos/metabolismo , Antígenos Virales de Tumores
18.
Int J Biol Macromol ; 263(Pt 2): 130347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401583

RESUMEN

Polypeptide N-acetylgalactosamine transferase 9 (GALNT9) catalyzes the initial step of mucin-type O-glycosylation via linking N-acetylgalactosamine (GalNAc) to serine/threonine in a protein. To unravel the association of GALNT9 with Parkinson's disease (PD), a progressive neurodegenerative disorder, GALNT9 levels were evaluated in the patients with PD and mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and statistically analyzed based on the GEO datasets of GSE114918 and GSE216281. Glycoproteins with exposing GalNAc were purified using lectin affinity chromatography and identified by LC-MS/MS. The influence of GALNT9 on cells was evaluated via introducing a GALNT9-specific siRNA into SH-SY5Y cells. Consequently, GALNT9 deficiency was found to occur under PD conditions. GALNT9 silencing contributed to a causative factor in PD pathogenesis via reducing the levels of intracellular dopamine, tyrosine hydroxylase and soluble α-synuclein, and promoting α-synuclein aggregates. MS identification revealed 14 glycoproteins. 5 glycoproteins, including ACO2, ATP5B, CKB, CKMT1A, ALDOC, were associated with energy metabolism. GALNT9 silencing resulted in mitochondrial dysfunctions via increasing ROS accumulation, mitochondrial membrane depolarization, mPTPs opening, Ca2+ releasing and activation of the CytC-related apoptotic pathway. The dysfunctional mitochondria then triggered mitophagy, possibly intermediated by adenine nucleotide translocase 1. Our study suggests that GALNT9 is potentially developed into an auxiliary diagnostic index and therapeutic target of PD.


Asunto(s)
Enfermedades Mitocondriales , N-Acetilgalactosaminiltransferasas , Neuroblastoma , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/química , Acetilgalactosamina/química , Transferasas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos , Glicoproteínas , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Creatina Quinasa
19.
Methods Mol Biol ; 2763: 237-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347415

RESUMEN

Mucin-type O-glycosylation is one of the most common posttranslational modifications of proteins. The abnormal expression of various polypeptide GalNAc-transferases (GALNTs) which initiate and define sites of O-glycosylation is linked to many cancers and other diseases. Many current O-glycosylation prediction programs utilize O-glycoproteomics data obtained without using the transferase isoform(s) responsible for the glycosylation. With 20 different GALNTs in humans, having the ability to predict and interpret O-glycosylation sites in terms of specific GALNT isoforms is invaluable.To fill this gap, ISOGlyP (isoform-specific O-glycosylation prediction) has been developed. Using position-specific enhancement values generated based on GalNAc-T isoform-specific amino acid preferences, ISOGlyP predicts the propensity that a site would be glycosylated by a specific transferase. ISOGlyP gave an overall prediction accuracy of 70% against in vivo data, which is comparable to that of the NetOGlyc4.0 predictor. Additionally, ISOGlyP can identify the known effects of long- and short-range prior glycosylation and can generate potential peptide sequences selectively glycosylated by specific isoforms. ISOGlyP is freely available for use at https://ISOGlyP.utep.edu . The code is also available on GitHub ( https://github.com/jonmohl/ISOGlyP ).


Asunto(s)
N-Acetilgalactosaminiltransferasas , Polipéptido N-Acetilgalactosaminiltransferasa , Humanos , Glicosilación , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Péptidos/química , Isoformas de Proteínas/metabolismo
20.
Int J Biol Sci ; 20(4): 1297-1313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385080

RESUMEN

Bone metastasis caused the majority death of prostate cancer (PCa) but the mechanism remains poorly understood. In this present study, we show that polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) suppresses bone-specific metastasis of PCa. GALNT12 suppresses proliferation, migration, invasion and cell division ability of PCa cells by activating the BMP pathway. Mechanistic investigations showed that GALNT12 augments the O-glycosylation of BMPR1A then actives the BMP pathway. Activated BMP signaling inhibits the expression of integrin αVß3 to reduce the bone-specific seeding of PCa cells. Furthermore, activated BMP signaling remolds the immune microenvironment by suppressing the STAT3 pathway. Our results of this study illustrate the role and mechanism of GALNT12 in the process of bone metastasis of PCa and identify GALNT12 as a potential therapeutic target for metastatic PCa.


Asunto(s)
Neoplasias Óseas , N-Acetilgalactosaminiltransferasas , Neoplasias de la Próstata , Masculino , Humanos , Glicosilación , Línea Celular Tumoral , Transducción de Señal/genética , Neoplasias de la Próstata/metabolismo , Neoplasias Óseas/metabolismo , Microambiente Tumoral , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA