Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167479, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181516

RESUMEN

Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.

2.
Clin Biochem ; 131-132: 110812, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39197573

RESUMEN

OBJECTIVES AND AIM: This study aimed to identify precise biomarkers and develop targeted therapeutic strategies for preventing premature atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia (FH) by investigating the quantitative and qualitative abnormalities in the metabolic network of lipids in these patients using an advanced lipidomics platform. DESIGN & METHODS: The study population comprised 18 homozygous (HoFH), 18 heterozygous (HeFH) FH patients, and 20 healthy controls. Cholesterol oxidation products (oxysterol, COPs) and main lipid classes were determined using gas chromatography-mass spectrometry. Results were expressed as percentages of total fat matter for lipid classes and percentages of total COPs for oxysterols. The principal component analysis (PCA) was also carried out, to highlight the correlation between studied parameters and groups investigated. RESULTS: Patients (both HoFH and HeFH) showed lower content of free fatty acids (FFAs) and greater values of triacylglycerols (TAGs) in comparison to controls. HoFH showed lower monoacylglycerols (P<0.01) and higher free cholesterol (FC) (P<0.05) when compared to HeFH and controls. The total content of COPs ranged from 1.96 to 4.25 mg/dL, from 2.27 to 4.05 mg/dL, and from 0.79 to 4.12 mg/dL in healthy controls, HoFH and HeFH groups, respectively, with no significant differences between patients and controls. In general, the 7α-hydroxycholesterol (7α-HC) was greater than other COPs. However, no significant differences were found between the three studied groups. Moreover, an opposite trend was observed between 7α-HC and 7-ketocholesterol (7-KC). Additionally, when PCA was carried out, the first two PCs explained 92.13 % of the total variance, of which the PC1 describes 53.94 % of variance mainly correlated to TAGs, diacylglycerols (DAGs), and 7-KC. On the other hand, the PC2 was correlated primarily for FFAs, FC and esterified sterols (E-STE). CONCLUSIONS: In conclusion, abnormal levels of TAGs, DAGs and 7-KC were associated with HeFH while HoFH was associated with the abnormal amount of E-STE.


Asunto(s)
Hiperlipoproteinemia Tipo II , Lipidómica , Oxiesteroles , Humanos , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/genética , Oxiesteroles/metabolismo , Oxiesteroles/sangre , Masculino , Lipidómica/métodos , Femenino , Adulto , Persona de Mediana Edad , Estudios de Casos y Controles , Triglicéridos/sangre , Cromatografía de Gases y Espectrometría de Masas/métodos , Biomarcadores/sangre
3.
Circ Res ; 135(7): 708-721, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39176657

RESUMEN

BACKGROUND: Despite endothelial dysfunction being an initial step in the development of hypertension and associated cardiovascular/renal injuries, effective therapeutic strategies to prevent endothelial dysfunction are still lacking. GPR183 (G protein-coupled receptor 183), a recently identified G protein-coupled receptor for oxysterols and hydroxylated metabolites of cholesterol, has pleiotropic roles in lipid metabolism and immune responses. However, the role of GPR183 in the regulation of endothelial function remains unknown. METHODS: Endothelial-specific GPR183 knockout mice were generated and used to examine the role of GPR183 in endothelial senescence by establishing 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Echocardiography, transmission electron microscopy, blood pressure measurement, vasorelaxation response experiments, flow cytometry analysis, and chromatin immunoprecipitation analysis were performed in this study. RESULTS: Endothelial GPR183 was significantly induced in hypertensive mice, which was further confirmed in renal biopsies from subjects with hypertensive nephropathy. Endothelial-specific deficiency of GPR183 markedly alleviated cardiovascular and renal injuries in hypertensive mice. Moreover, we found that GPR183 regulated endothelial senescence in both hypertensive mice and aged mice. Mechanistically, GPR183 disrupted circadian signaling by inhibiting PER1 (period circadian regulator 1) expression, thereby facilitating endothelial senescence and dysfunction through the cAMP (cyclic adenosine monophosphate)/PKA (protein kinase A)/CREB (cAMP-response element binding protein) signaling pathway. Importantly, pharmacological inhibition of the oxysterol-GPR183 axis by NIBR189 or clotrimazole ameliorated endothelial senescence and cardiovascular/renal injuries in hypertensive mice. CONCLUSIONS: This study discovers a previously unrecognized role of GPR183 in promoting endothelial senescence. Pharmacological targeting of GPR183 may be an innovative therapeutic strategy for hypertension and its associated complications.


Asunto(s)
Senescencia Celular , Hipertensión , Ratones Noqueados , Oxiesteroles , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones , Hipertensión/metabolismo , Hipertensión/fisiopatología , Oxiesteroles/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Células Endoteliales/metabolismo , Transducción de Señal , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Acetato de Desoxicorticosterona , Células Cultivadas
4.
J Steroid Biochem Mol Biol ; 243: 106577, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38971336

RESUMEN

An UPLC-APCI-MS/MS method was developed for the simultaneous determination of cholesterol, 7-dehydrocholesterol (7DHC) and eight oxysterols including 27-hydroxycholesterol (27OHC), 7α-hydroxycholesterol (7αOHC), 7ß-hydroxycholesterol (7ßOHC), 24S-hydroxycholesterol (24SOHC), 25-hydroxycholesterol (25OHC), 7α,24S-dihydroxycholesterol (7α,24SdiOHC), 7α,25-dihydroxycholesterol (7α,25diOHC), and 7α,27-dihydroxycholesterol (7α,27diOHC). It has been used for quantitative analysis of cholesterol, 7DHC and eight oxysterols in hepatocellular carcinoma (HCC) cells, plasma and tumor tissue samples. And the above compounds were extracted from the biological matrix (plasma and tissue) using liquid-liquid extraction with hexane/isopropanol after saponification to cleave the steroids from their esterified forms without further derivatization. Then cholesterol, 7DHC and oxysterols were separated on a reversed phase column (Agilent Zorbax Eclipse plus, C18) within 8 min using a gradient elution with 0.1 % formic acid in H2O and methanol and detected by an APCI triple quadrupole mass spectrometer. The lower limit of quantification (LLOQ) of the cholesterol, 7DHC and oxysterols ranged from 3.9 ng/mL to 31.25 ng/mL, and the recoveries ranged from 83.0 % to 113.9 %. Cholesterol, 7DHC and several oxysterols including 27OHC, 7αOHC and 7ßOHC were successfully quantified in HCC cells, plasma, tissues and urine of HCC mice. Results showed that 27OHC was at high levels in three kind of HCC cells and tumor tissues as well as plasma samples from both HepG2 and Huh7 bearing mice model,and the high levels of 27OHC in tumors were associated with HCC development. Moreover, the levels of cholesterol in HCC cells and tumor issues varied in different HCC cells and mice model. Oxysterols profiling in biological samples might provide complementary information in cancer diagnosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Oxiesteroles , Espectrometría de Masas en Tándem , Oxiesteroles/sangre , Oxiesteroles/análisis , Oxiesteroles/metabolismo , Humanos , Espectrometría de Masas en Tándem/métodos , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/metabolismo , Animales , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/metabolismo , Ratones , Cromatografía Líquida de Alta Presión/métodos , Colesterol/análogos & derivados , Colesterol/análisis , Colesterol/sangre , Colesterol/metabolismo , Hidroxicolesteroles/sangre , Hidroxicolesteroles/metabolismo , Hidroxicolesteroles/análisis , Masculino , Células Hep G2 , Línea Celular Tumoral , Cromatografía Líquida con Espectrometría de Masas
5.
Immunometabolism (Cobham) ; 6(2): e00042, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38693938

RESUMEN

Mycobacterium tuberculosis causes tuberculosis (TB), one of the world's most deadly infections. Lipids play an important role in M. tuberculosis pathogenesis. M. tuberculosis grows intracellularly within lipid-laden macrophages and extracellularly within the cholesterol-rich caseum of necrotic granulomas and pulmonary cavities. Evolved from soil saprophytes that are able to metabolize cholesterol from organic matter in the environment, M. tuberculosis inherited an extensive and highly conserved machinery to metabolize cholesterol. M. tuberculosis uses this machinery to degrade host cholesterol; the products of cholesterol degradation are incorporated into central carbon metabolism and used to generate cell envelope lipids, which play important roles in virulence. The host also modifies cholesterol by enzymatically oxidizing it to a variety of derivatives, collectively called oxysterols, which modulate cholesterol homeostasis and the immune response. Recently, we found that M. tuberculosis converts host cholesterol to an oxidized metabolite, cholestenone, that accumulates in the lungs of individuals with TB. M. tuberculosis encodes cholesterol-modifying enzymes, including a hydroxysteroid dehydrogenase, a putative cholesterol oxidase, and numerous cytochrome P450 monooxygenases. Here, we review what is known about cholesterol and its oxidation products in the pathogenesis of TB. We consider the possibility that the biological function of cholesterol metabolism by M. tuberculosis extends beyond a nutritional role.

6.
Cell Biochem Biophys ; 82(2): 1019-1026, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38514528

RESUMEN

The study carried out systematic research on the influence of selected oxysterols on cells viability, phospholipidosis and the level of secreted extracellular vesicles. Three oxidized cholesterol derivatives, namely 7α-hydroxycholesterol (7α-OH), 7- ketocholesterol (7-K) and 24(S)-hydroxycholesterol (24(S)-OH) were tested in three different concentrations: 50 µM, 100 µM and 200 µM for 24 h incubation with A549 lung cancer cell line. All the studied oxysterols were found to alter cells viability. The lowest survival rate of the cells was observed after 24 h of 7-K treatment, slightly better for 7α-OH while cells incubated with 24(S)-OH had the best survival rate among the oxysterols used. 7-K increased phospholipids accumulation in cells, however, most noticeable effect was noticed for 24(S)-OH. Changes in the level of extracellular vesicles secreted in cells culture after the treatment with oxysterols were also observed. It was found that all oxysterols used increased the level of secreted vesicles, both exosomes and ectosomes. The strongest effect was noticed for 24(S)-OH. Taken together, these results suggest that 7-K is the most potent inducer of cancer cell death, while 7α-OH is slightly less potent in this respect. The lower cytotoxic effect of 24(S)-OH correlates with greater phospholipids accumulation, extracellular vesicles production and better cells survival.


Asunto(s)
Supervivencia Celular , Vesículas Extracelulares , Hidroxicolesteroles , Neoplasias Pulmonares , Oxiesteroles , Fosfolípidos , Humanos , Supervivencia Celular/efectos de los fármacos , Fosfolípidos/farmacología , Fosfolípidos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Vesículas Extracelulares/metabolismo , Oxiesteroles/metabolismo , Células A549 , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/metabolismo , Cetocolesteroles/farmacología , Cetocolesteroles/metabolismo
7.
Dig Liver Dis ; 56(9): 1599-1604, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38342741

RESUMEN

BACKGROUND & AIMS: Oxysterols have been implicated in biliary tract cancer (BTC), and Niemann-Pick C1-like 1 (NPC1L1) has been associated with oxysterol uptake in biliary and intestinal cells. Thus, our study aims to investigate the potential causal link between genetically proxied NPC1L1 inhibitors and the risk of BTC. METHODS: In this study, we employed two genetic instruments as proxies for NPC1L1 inhibitors, which included LDL cholesterol-associated genetic variants located within or in close proximity to the NPC1L1 gene, as well as expression quantitative trait loci (eQTLs) of the NPC1L1 gene. Effect estimates were calculated using the Inverse-variance-weighted MR (IVW-MR) and summary-data-based MR (SMR) methods. RESULTS: In MR analysis using the IVW method, both proxy instruments from the UK Biobank and the GLGC demonstrated a positive association between NPC1L1-mediated LDL cholesterol and BTC risk, with odds ratios (OR) of 10.30 (95% CI = 1.51-70.09; P = 0.017) and 5.61 (95% CI = 1.43-21.91; P = 0.013), respectively. Moreover, SMR analysis revealed a significant association between elevated NPC1L1 expression and increased BTC risk (OR = 1.19, 95% CI = 1.04-1.37; P = 0.014). CONCLUSIONS: This MR study suggests a causal link between NPC1L1 inhibition and reduced BTC risk. NPC1L1 inhibitors, like ezetimibe, show potential for chemoprevention in precancerous BTC patients, requiring further clinical investigation.


Asunto(s)
Neoplasias del Sistema Biliar , LDL-Colesterol , Proteínas de la Membrana , Proteínas de Transporte de Membrana , Análisis de la Aleatorización Mendeliana , Humanos , Proteínas de Transporte de Membrana/genética , Neoplasias del Sistema Biliar/genética , Proteínas de la Membrana/genética , LDL-Colesterol/sangre , Sitios de Carácter Cuantitativo , Polimorfismo de Nucleótido Simple , Ezetimiba/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Anticolesterolemiantes/farmacología
8.
Adv Exp Med Biol ; 1440: 163-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38036880

RESUMEN

Oxysterols or cholesterol oxidation products are a class of molecules with the sterol moiety, derived from oxidative reaction of cholesterol through enzymatic and non-enzymatic processes. They are widely reported in animal-origin foods and prove significant involvement in the regulation of cholesterol homeostasis, lipid transport, cellular signaling, and other physiological processes. Reports of oxysterol-mediated cytotoxicity are in abundance and thus consequently implicated in several age-related and lifestyle disorders such as cardiovascular diseases, bone disorders, pancreatic disorders, age-related macular degeneration, cataract, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and some types of cancers. In this chapter, we attempt to review a selection of physiologically relevant oxysterols, with a focus on their formation, properties, and roles in health and disease, while also delving into the potential of natural and synthetic molecules along with bacterial enzymes for mitigating oxysterol-mediated cell damage.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedades Neurodegenerativas , Oxiesteroles , Animales , Colesterol , Oxidación-Reducción , Esteroles
9.
J Lipid Res ; 65(1): 100486, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104944

RESUMEN

Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.


Asunto(s)
Hidroxicolesteroles , Oxiesteroles , Animales , Hidroxicolesteroles/metabolismo , Colesterol/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo , Mamíferos/metabolismo
10.
Nutrients ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068731

RESUMEN

Ultra-processed foods (UPFs) have gained substantial attention in the scientific community due to their surging consumption and potential health repercussions. In addition to their well-established poor nutritional profile, UPFs have been implicated in containing various dietary oxidized sterols (DOxSs). These DOxSs are associated with a spectrum of chronic diseases, including cardiometabolic conditions, cancer, diabetes, Parkinson's, and Alzheimer's disease. In this study, we present a comprehensive database documenting the presence of DOxSs and other dietary metabolites in >60 UPFs commonly consumed as part of the Western diet. Significant differences were found in DOxS and phytosterol content between ready-to-eat (RTE) and fast foods (FFs). Biomarker analysis revealed that DOxS accumulation, particularly 25-OH and triol, can potentially discriminate between RTEs and FFs. This work underscores the potential utility of dietary biomarkers in early disease detection and prevention. However, an essential next step is conducting exposure assessments to better comprehend the levels of DOxS exposure and their association with chronic diseases.


Asunto(s)
Ingestión de Energía , Alimentos Procesados , Humanos , Dieta Occidental/efectos adversos , Manipulación de Alimentos , Dieta , Comida Rápida , Esteroles , Enfermedad Crónica , Estrés Oxidativo
11.
BMC Med ; 21(1): 438, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964298

RESUMEN

BACKGROUND: Breast cancer is the most commonly diagnosed cancer in women worldwide, and underlying mechanistic pathways associated with breast cancer-specific and non-breast cancer-related deaths are of importance. Emerging evidence suggests a role of oxysterols, derivates of cholesterol, in multiple chronic diseases including breast cancer and coronary artery diseases. However, associations between oxysterols and survival have been minimally studied in women diagnosed with breast cancer. In this large breast cancer patient cohort, we evaluated associations between a panel of circulating oxysterols and mortality and recurrence outcomes. METHODS: Concentrations of 13 circulating oxysterols representing different pathways of cholesterol metabolism were quantified using liquid-chromatography mass-spectrometry. Associations between baseline levels of oxysterols and cause-specific mortality outcomes and recurrence following a breast cancer diagnosis were assessed in 2282 women from the MARIE study over a median follow-up time of 11 years. We calculated hazard ratios (HR) and 95% confidence intervals (CI) using multivariable Cox proportional hazard models and competing risks models. RESULTS: We observed no associations for circulating oxysterols and breast cancer-specific outcomes. Higher levels of six oxysterols were associated with an increased risk of cardiovascular disease death, including 24S-hydroxycholesterol (alternative bile acid pathway, HRlog2 = 1.73 (1.02, 2.93)), lanosterol (cholesterol biosynthesis pathway, HRlog2 = 1.95 (1.34, 2.83)), 7-ketocholesterol (HRlog2 = 1.26 (1.03, 1.55)), 5α,6α-epoxycholesterol (HRlog2 = 1.34 (1.02-1.77)), and 5a,6ß-dihydroxycholestanol (HRlog2 = 1.34 (1.03, 1.76)). After adjusting for multiple comparisons, none of the associations were statistically significant. CONCLUSION: We provide first evidence on a range of circulating oxysterols and mortality following a breast cancer diagnosis, contributing to a better understanding of associations between different pathways of cholesterol metabolism and prognosis in women with a breast cancer diagnosis. The findings of this study suggest circulating oxysterols may be associated with cardiovascular mortality among women diagnosed with breast cancer. Further studies are needed to evaluate these oxysterols as potential markers of risk for cardiovascular mortality among women with a breast cancer diagnosis as well as their clinical potential.


Asunto(s)
Neoplasias de la Mama , Enfermedades Cardiovasculares , Oxiesteroles , Humanos , Femenino , Oxiesteroles/metabolismo , Neoplasias de la Mama/diagnóstico , Pronóstico , Espectrometría de Masas
12.
J Lipid Res ; 64(12): 100479, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37981011

RESUMEN

Oncosterone (6-oxo-cholestane-3ß,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or ß- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3ß,5α,6ß-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3ß,26-diol), 27H-CT ((25R)-cholestane-3ß,5α,6ß,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3ß,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC.


Asunto(s)
Neoplasias de la Mama , Oxiesteroles , Humanos , Femenino , Hidroxilación , Colesterol/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Carcinógenos/metabolismo , Colestanotriol 26-Monooxigenasa
13.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629027

RESUMEN

Impaired cholesterol synthesizing ability is considered a risk factor for the development of Alzheimer's disease (AD), as evidenced by reduced levels of key proteases in the brain that mediate cholesterol synthesis; however, cholesterol deposition has been found in neurons in tangles in the brains of AD patients. Although it has been shown that statins, which inhibit cholesterol synthesis, reduce the incidence of AD, this seems paradoxical for AD patients whose cholesterol synthesizing capacity is already impaired. In this study, we aimed to investigate the effects of aerobic exercise on cholesterol metabolism in the brains of APP/PS1 mice and to reveal the mechanisms by which aerobic exercise improves cognitive function in APP/PS1 mice. Our study demonstrates that the reduction of SEC24D protein, a component of coat protein complex II (COPII), is a key factor in the reduction of cholesterol synthesis in the brain of APP/PS1 mice. 12 weeks of aerobic exercise was able to promote the recovery of SEC24D protein levels in the brain through activation of protein kinase B (AKT), which in turn promoted the expression of mem-brane-bound sterol regulatory element-binding protein 2 (SREBP2) nuclear translocation and the expression of key proteases mediating cholesterol synthesis. Simultaneous aerobic exercise restored cholesterol transport capacity in the brain of APP/PS1 mice with the ability to efflux excess cholesterol from neurons and reduced neuronal lipid rafts, thereby reducing cleavage of the APP amyloid pathway. Our study emphasizes the potential of restoring intracerebral cholesterol homeostasis as a therapeutic strategy to alleviate cognitive impairment in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Metabolismo de los Lípidos , Cognición , Encéfalo , Enfermedad de Alzheimer/terapia , Endopeptidasas , Homeostasis , Proteínas de Transporte Vesicular
14.
Mol Oncol ; 17(10): 2074-2089, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37491786

RESUMEN

Oxysterols, oxidized derivatives of cholesterol, act in breast cancer (BC) as selective estrogen receptor modulators and affect cholesterol homeostasis, drug transport, nuclear and cell receptors, and other signaling proteins. Using data from three highly overlapping sets of patients (N = 162 in total) with early-stage estrogen-receptor-positive luminal BC-high-coverage targeted DNA sequencing (113 genes), mRNA sequencing, and full micro-RNA (miRNA) transcriptome microarrays-we describe complex oxysterol-related interaction (correlation) networks, with validation in public datasets (n = 538) and 11 databases. The ESR1-CH25H-INSIG1-ABCA9 axis was the most prominent, interconnected through miR-125b-5p, miR-99a-5p, miR-100-5p, miR-143-3p, miR-199b-5p, miR-376a-3p, and miR-376c-3p. Mutations in SC5D, CYP46A1, and its functionally linked gene set were associated with multiple differentially expressed oxysterol-related genes. STARD5 was upregulated in patients with positive lymph node status. High expression of hsa-miR-19b-3p was weakly associated with poor survival. This is the first study of oxysterol-related genes in BC that combines DNA, mRNA, and miRNA multiomics with detailed clinical data. Future studies should provide links between intratumoral oxysterol signaling depicted here, circulating oxysterol levels, and therapy outcomes, enabling eventual clinical exploitation of present findings.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Oxiesteroles , Humanos , Femenino , Neoplasias de la Mama/patología , ARN Mensajero/genética , MicroARNs/genética , MicroARNs/metabolismo , Transcriptoma/genética
15.
Adv Sci (Weinh) ; 10(27): e2207108, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37469011

RESUMEN

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with abnormal activation of the immune system. Recent attention is increasing about how aberrant lipid and cholesterol metabolism is linked together with type I interferon (IFN-I) signaling in the regulation of the pathogenesis of SLE. Here, a metabonomic analysis is performed and increased plasma concentrations of oxysterols, especially 7α, 25-dihydroxycholesterol (7α, 25-OHC), are identified in SLE patients. The authors find that 7α, 25-OHC binding to its receptor Epstein-Barr virus-induced gene 2 (EBI2) in macrophages can suppress STAT activation and the production of IFN-ß, chemokines, and cytokines. Importantly, monocytes/macrophages from SLE patients and mice show significantly reduced EBI2 expression, which can be triggered by IFN-γ produced in activated T cells. Previous findings suggest that EBI2 enhances immune cell migration. Opposite to this effect, the authors demonstrate that EBI2-deficient macrophages produce higher levels of chemokines and cytokines, which recruits and activates myeloid cells,T and B lymphocytes to exacerbate tetramethylpentadecane-induced SLE. Together, via sensing the oxysterol 7α, 25-OHC, EBI2 in macrophages can modulate innate and adaptive immune responses, which may be used as a potential diagnostic marker and therapeutic target for SLE.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Lupus Eritematoso Sistémico , Oxiesteroles , Animales , Humanos , Ratones , Inmunidad Adaptativa , Citocinas/metabolismo , Herpesvirus Humano 4 , Hidroxicolesteroles/metabolismo , Hidroxicolesteroles/farmacología , Receptores Acoplados a Proteínas G/genética
16.
Cancer Cell ; 41(7): 1276-1293.e11, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37244259

RESUMEN

The concept of targeting cholesterol metabolism to treat cancer has been widely tested in clinics, but the benefits are modest, calling for a complete understanding of cholesterol metabolism in intratumoral cells. We analyze the cholesterol atlas in the tumor microenvironment and find that intratumoral T cells have cholesterol deficiency, while immunosuppressive myeloid cells and tumor cells display cholesterol abundance. Low cholesterol levels inhibit T cell proliferation and cause autophagy-mediated apoptosis, particularly for cytotoxic T cells. In the tumor microenvironment, oxysterols mediate reciprocal alterations in the LXR and SREBP2 pathways to cause cholesterol deficiency of T cells, subsequently leading to aberrant metabolic and signaling pathways that drive T cell exhaustion/dysfunction. LXRß depletion in chimeric antigen receptor T (CAR-T) cells leads to improved antitumor function against solid tumors. Since T cell cholesterol metabolism and oxysterols are generally linked to other diseases, the new mechanism and cholesterol-normalization strategy might have potential applications elsewhere.


Asunto(s)
Antineoplásicos , Neoplasias , Oxiesteroles , Humanos , Colesterol/metabolismo , Activación de Linfocitos , Inmunoterapia Adoptiva , Microambiente Tumoral
17.
Cell Rep ; 42(3): 112207, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36867531

RESUMEN

The immune microenvironment in breast cancer (BCa) is controlled by a complex network of communication between various cell types. Here, we find that recruitment of B lymphocytes to BCa tissues is controlled via mechanisms associated with cancer cell-derived extracellular vesicles (CCD-EVs). Gene expression profiling identifies the Liver X receptor (LXR)-dependent transcriptional network as a key pathway that controls both CCD-EVs-induced migration of B cells and accumulation of B cells in BCa tissues. The increased accumulation oxysterol ligands for LXR (i.e., 25-hydroxycholesterol and 27-hydroxycholesterol) in CCD-EVs is regulated by the tetraspanin 6 (Tspan6). Tspan6 stimulates the chemoattractive potential of BCa cells for B cells in an EV- and LXR-dependent manner. These results demonstrate that tetraspanins control intercellular trafficking of oxysterols via CCD-EVs. Furthermore, tetraspanin-dependent changes in the oxysterol composition of CCD-EVs and the LXR signaling axis play a key role in specific changes in the tumor immune microenvironment.


Asunto(s)
Neoplasias de la Mama , Oxiesteroles , Humanos , Femenino , Receptores X del Hígado/metabolismo , Neoplasias de la Mama/genética , Oxiesteroles/farmacología , Tetraspaninas , Linfocitos B/metabolismo , Microambiente Tumoral
18.
Food Chem Toxicol ; 172: 113552, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36502995

RESUMEN

Baby Foods (BFs) and Infant formulas (IFs) are the main sources of nutrition for an infant throughout the 1st year of life. Various enriched products are commercially available for parents seeking to fulfill their baby's nutritional needs. Consequently, different bioactive lipids are present in BFs and IFs, including dietary oxysterols (DOxS), whose known toxicity has been associated with mutagenicity, cancer, and other chronic diseases. In this work, we performed an exposure assessment of 25 bioactive lipids on IFs (n = 30) and BFs (n = 13) commercially available in the US. To determine dietary exposure, we used EPA's SHEDS-HT probabilistic model. Even though ß-Sitosterol was the most exposed bioactive lipid with 75,410 µg/day, cholesterol was the most absorbed compound during the entire first year (19.3 mg/day). Additionally, we found 7α-hydroxycholesterol (7α-OH) as a potential DOxS biomarker of the BFs manufacturing process. This is the first time an infant's exposure assessment (including DOxS) after BFs and IFs consumption is performed, enabling much-needed information regarding these hazardous compounds and their potential effects on infants' health.


Asunto(s)
Exposición Dietética , Fórmulas Infantiles , Humanos , Lactante , Dieta , Alimentos Infantiles/análisis , Lípidos , Estado Nutricional , Peroxidación de Lípido
19.
Br J Pharmacol ; 180(4): 401-421, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36214386

RESUMEN

BACKGROUND AND PURPOSE: G-protein coupled receptor 17 (GPR17) is an orphan receptor involved in the process of myelination, due to its ability to inhibit the maturation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Despite multiple claims that the biological ligand has been identified, it remains an orphan receptor. EXPERIMENTAL APPROACH: Seventy-seven oxysterols were screened in a cell-free [35 S]GTPγS binding assay using membranes from cells expressing GPR17. The positive hits were characterized using adenosine 3',5' cyclic monophosphate (cAMP), inositol monophosphate (IP1) and calcium mobilization assays, with results confirmed in rat primary oligodendrocytes. Rat and pig brain extracts were separated by high-performance liquid chromatography (HPLC) and endogenous activator(s) were identified in receptor activation assays. Gene expression studies of GPR17, and CYP46A1 (cytochrome P450 family 46 subfamily A member 1) enzymes responsible for the conversion of cholesterol into specific oxysterols, were performed using quantitative real-time PCR. KEY RESULTS: Five oxysterols were able to stimulate GPR17 activity, including the brain cholesterol, 24(S)-hydroxycholesterol (24S-HC). A specific brain fraction from rat and pig extracts containing 24S-HC activates GPR17 in vitro. Expression of Gpr17 during mouse brain development correlates with the expression of Cyp46a1 and the levels of 24S-HC itself. Other active oxysterols have low brain concentrations below effective ranges. CONCLUSIONS AND IMPLICATIONS: Oxysterols, including but not limited to 24S-HC, could be physiological activators for GPR17 and thus potentially regulate OPC differentiation and myelination through activation of the receptor.


Asunto(s)
Oxiesteroles , Ratas , Ratones , Animales , Porcinos , Oxiesteroles/farmacología , Colesterol 24-Hidroxilasa , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Colesterol , Proteínas del Tejido Nervioso/genética
20.
Clin Chem Lab Med ; 61(2): 285-293, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36342239

RESUMEN

OBJECTIVES: Oxysterols, a family of oxidized cholesterol derivates, are of increasing interest due to their role in cancer development and progression. Some oxysterols are estrogen receptor modulators and thus of particular interest in breast cancer research. In human studies, two forms of circulating oxysterols are commonly evaluated: "free" (unesterified) and "total" (esterified and unesterified). However, associations between free and total oxysterols are not well established. We addressed this knowledge gap in a pilot study by evaluating correlations between the free and the total form of each of the circulating oxysterols (free vs. total), and pairwise associations within the panel of total oxysterols (total vs. total) and the panel of free oxysterols (free vs. free). METHODS: Concentrations of oxysterols and other non-cholesterol sterols were quantified in blood samples of 27 breast cancer patients from the MARIE breast cancer patient cohort using liquid chromatography mass spectrometry. We used Spearman rank correlations to assess associations. Overall, 12 oxysterols (including 27-hydroxycholesterol (HC), 25-HC, 24S-HC, 7a-HC, 5a6a-epoxycholesterol) and five sterols (including lanosterol and desmosterol) were analyzed. RESULTS: Strong correlations (r≥0.82) were observed for seven circulating free and total oxysterols/sterols. The free and total form of 27-HC (r=0.63), 25-HC (r=0.54), and two more oxysterols were weaker correlated. Correlation patterns in the panel of total oxysterols/sterols and the panel of free oxysterols/sterols were similar. CONCLUSIONS: These findings demonstrate that concentrations of most free and total oxysterols/sterols are strongly correlated. We provide further insight into the interrelationships between oxysterols in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Oxiesteroles , Humanos , Femenino , Proyectos Piloto , Cromatografía Liquida/métodos , Colesterol/análisis , Esteroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA