Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125034

RESUMEN

Ellagic acid (EA) is a phenolic phytochemical found in many plants and their fruits. Vaginal epithelial cells are the first line of defense against pathogen invasion in the female reproductive tract and express antimicrobial peptides, including hBD2 and SLPI. This study investigated the in vitro effects of EA (1) on vaginal innate immunity using human vaginal epithelial cells, and (2) on HPV16 pseudovirus infection. Vaginal cells were cultured in the presence or absence of EA, and the expression of hBD2 and SLPI was determined at both transcriptional and translational levels. In addition, secretion of various cytokines and chemokines was measured. Cytotoxicity of EA was determined by CellTiter-blue and MTT assays. To investigate the ability of EA to inhibit HPV16 infection, EA was used to treat HEK-293FT cells in pre-attachment and adsorption steps. We found significant increases in both hBD2 mRNA (mean 2.9-fold at 12.5 µM EA, p < 0.001) and protein (mean 7.1-fold at 12.5 µM EA, p = 0.002) in response to EA. SLPI mRNA also increased significantly (mean 1.4-fold at 25 µM EA, p = 0.01), but SLPI protein did not. Secretion of IL-2 but not of other cytokines/chemokines was induced by EA in a dose-dependent manner. EA was not cytotoxic. At the pre-attachment step, EA at CC20 and CC50 showed a slight trend towards inhibiting HPV16 pseudovirus, but this was not significant. In summary, vaginal epithelial cells can respond to EA by producing innate immune factors, and at tested concentrations, EA is not cytotoxic. Thus, plant-derived EA could be useful as an immunomodulatory agent to improve vaginal health.


Asunto(s)
Ácido Elágico , Papillomavirus Humano 16 , Inmunidad Innata , Infecciones por Papillomavirus , Vagina , Humanos , Femenino , Ácido Elágico/farmacología , Inmunidad Innata/efectos de los fármacos , Vagina/virología , Vagina/inmunología , Vagina/efectos de los fármacos , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/tratamiento farmacológico , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , beta-Defensinas/metabolismo , Células HEK293
2.
Equine Vet J ; 56(4): 670-677, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38430069

RESUMEN

BACKGROUND: Endometritis is a major cause of subfertility in mares. Multiparous old mares are more susceptible to developing endometritis given that ageing is associated with an altered immune response and with inadequate physiological uterine clearance after breeding, which can lead to degenerative changes in the endometrium. Molecules such as antimicrobial peptides (AMPs) have been proposed as endometritis markers in the equine species. STUDY DESIGN: Cross-sectional. OBJECTIVES: To investigate the endometrial expression of defensin-beta 4B (DEFB4B), lysozyme (LYZ) and secretory leukocyte peptidase inhibitor (SLPI) genes in mares either affected or not by subclinical endometritis, due to the role of these AMPs in the immune response to bacteria and inflammatory reactions. METHODS: Endometrial biopsy for histopathological and gene expression examinations was performed on 26 mares. The inclusion criteria for the normal mare group (NM, N = 7) were 2-4 years of age, maiden status, no clinical signs of endometritis and a uterine biopsy score of I, while for mares affected by subclinical endometritis (EM, N = 19) the inclusion criteria were 10-22 years of age, barren status for 1-3 years, no clinical signs of endometritis and a uterine biopsy score between IIA and III. RESULTS: A significantly higher expression of LYZ (NM: 0.76 [1.84-0.37] vs. EM: 2.78 [5.53-1.44], p = 0.0255) and DEFB4B (NM: 0.06 [0.11-0.01] vs. EM: 0.15 [0.99-0.08], p = 0.0457) genes was found in endometritis mares versus normal mares. Statistically significant moderate positive correlations were found between the level of expression of LYZ gene and both the age (r = 0.4071, p = 0.039) and the biopsy grade (r = 0.4831, p = 0.0124) of the mares. MAIN LIMITATIONS: The study investigated a limited number of genes and mares, and the presence/location of the proteins coded by these genes was not confirmed within the endometrium by IHC. CONCLUSIONS: If the results of this study are confirmed, LYZ and DEFB4B genes can be used as markers to identify mares that are affected by subclinical endometritis.


Asunto(s)
Péptidos Antimicrobianos , Biomarcadores , Endometritis , Endometrio , Regulación de la Expresión Génica , Enfermedades de los Caballos , Animales , Femenino , Caballos , Enfermedades de los Caballos/metabolismo , Endometritis/veterinaria , Endometritis/metabolismo , Endometritis/patología , Endometrio/metabolismo , Endometrio/patología , Biomarcadores/metabolismo , Péptidos Antimicrobianos/genética , Estudios Transversales , beta-Defensinas/genética , beta-Defensinas/metabolismo
3.
Immunopharmacol Immunotoxicol ; 46(3): 319-329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38466121

RESUMEN

OBJECTIVE: Isorhamnetin (IH) has been reported to have significant anti-inflammatory effects in various diseases, but its role and mechanism in AKI remain unclear. This study aimed to explore the potential role and mechanism of isorhamnetin in inhibiting macrophage related inflammation and improving AKI injury. METHODS: We established an AKI mouse model by intraperitoneal injection of cisplatin in vivo, and constructed an inflammatory cell model by stimulating RAW264.7 cells with LPS. Creatinine and urea nitrogen were measured to evaluate the changes of renal function in AKI mice. The changes of renal pathological structure were observed by H&E staining. The inflammatory factor-related proteins and RNA expression levels were detected by Western blot and real time PCR. RESULTS: Isorhamnetin protected the kidney from cisplatin induced AKI and significantly inhibited the mRNA and protein levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) both in AKI kidney and LPS-stimulated RAW264.7 cells. Interestingly, the data also demonstrated that isorhamnetin significantly upregulated the expression of secretory leukocyte peptidase inhibitor (SLPI), an anti-inflammatory factor, in AKI kidney and LPS-stimulated macrophages, as well as inhibited the M1 macrophage and activated M2 macrophage in vitro. Blocking of SLPI by siRNA activated Mincle-associated inflammatory signaling in macrophages, and the inhibitory effect of isorhamnetin on inflammation was significantly attenuated. CONCLUSION: Isorhamnetin inhibits macrophage inflammation and protects kidney in AKI may be related to downregulating Mincle/Syk/NF-κB-maintained macrophage phenotype by activating SLPI.


Asunto(s)
Lesión Renal Aguda , Antiinflamatorios , Cisplatino , Macrófagos , Quercetina , Animales , Masculino , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Antiinflamatorios/farmacología , Cisplatino/farmacología , Cisplatino/efectos adversos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Quercetina/análogos & derivados , Quercetina/farmacología , Células RAW 264.7 , Inhibidor Secretorio de Peptidasas Leucocitarias/efectos de los fármacos , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo
4.
Environ Toxicol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38476085

RESUMEN

Clinical outcomes remain unsatisfactory in patients with pancreatic cancer (PAC). In this study, through single-cell sequencing, we identified eight cell subpopulations in the tumor microenvironment (TME). Redimensional clustering of epithelial cells, myeloid cells, and cancer-associated fibroblasts (CAFs) revealed heterogeneity in the TME of PAC. Intercellular communication analysis showed strong direct interactions between matrix CAFs, inflammatory CAFs, and epithelial cells. Additionally, we found that the SPP1-associated pathway was activated in monocytes, whereas the vascular endothelial growth factor-associated pathway was activated in epithelial cells. These results improve the understanding of the TME of pancreatic cancer and provide a foundation for further studies on intratumoral heterogeneity. In addition, differentially expressed gene secretory leukocyte protease inhibitor (SLPI) was identified in pancreatic cancer, and functional experiments showed that SLPI had a strong impact on cell viability and apoptosis, which offers a potential therapy target for pancreatic cancer.

5.
mBio ; 15(2): e0255423, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38270443

RESUMEN

Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes, and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial, and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a preclinical model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC-infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with a history of recent or recurrent UTI, suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI promotes clearance of UPEC in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.IMPORTANCEAnnually, millions of people suffer from urinary tract infections (UTIs) and more than $3 billion are spent on work absences and treatment of these patients. While the early response to UTI is known to be important in combating urinary pathogens, knowledge of host factors that help curb infection is still limited. Here, we use a preclinical model of UTI to study secretory leukocyte protease inhibitor (SLPI), an antimicrobial protein, to determine how it protects the bladder against infection. We find that SLPI is increased during UTI, accelerates the clearance of bacteriuria, and upregulates genes and pathways needed to fight an infection while preventing prolonged bladder inflammation. In a small clinical study, we show SLPI is readily detectable in human urine and is associated with the presence of a uropathogen in patients without a previous history of UTI, suggesting SLPI may play an important role in protecting from bacterial cystitis.


Asunto(s)
Antiinfecciosos , Cistitis , Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Adolescente , Adulto , Animales , Femenino , Humanos , Ratones , Persona de Mediana Edad , Adulto Joven , Infecciones por Escherichia coli/microbiología , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética
6.
Pathol Res Pract ; 248: 154633, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356220

RESUMEN

Cancer is a multifaceted disorder frequently linked to the dysregulation of several biological processes. The SLPI is a multifunctional protein involved in the modulation of immunological response and the inhibition of protease activities. SLPI acts as an inhibitor of proteases, exerts antibacterial properties, and suppresses the transcription of proinflammatory genes through the nuclear factor-kappa B (NF-κB) pathway. The role of this protein as a regulatory agent has been implicated in various types of cancer. Recent research has revealed that SLPI upregulation in cancer cells enhances the metastatic capacity of epithelial malignancies, indicating the deleterious effects of this protein. Furthermore, SLPI interacts intricately with other cancer-promoting factors, including matrix metalloproteinase-2 (MMP-2), MMP-9, the NF-κB and Akt pathways, and the p53-upregulated modulator of apoptosis (PUMA). This review provides an overview of the role of SLPI in cancer pathophysiology, emphasizing its expression in cancer cells and tissues, its potential as a prognostic biomarker, and its therapeutic promise as a target in cancer treatment. The mechanisms of SLPI action in cancer, including its anti-inflammatory effects, regulation of cell proliferation and angiogenesis, and modulation of the tumor microenvironment, have been investigated. The clinical implications of SLPI in cancer have been discussed, including its potential as a diagnostic and prognostic biomarker, its role in chemoresistance, and its therapeutic potential in several types of cancer, such as hepatocellular carcinoma (HCC), colorectal cancer (CRC), pancreatic cancer, head and neck squamous cell carcinoma (HNSCC), ovarian cancer (OvCa), prostate cancer (PC), gastric cancer (GC), breast cancer, and other cancers. In addition, we emphasized the significance of SLPI in cancer, which offers fresh perspectives on potential targets for cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Biomarcadores , Metaloproteinasa 2 de la Matriz , FN-kappa B/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Microambiente Tumoral , Femenino
7.
Reprod Domest Anim ; 58(6): 802-812, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37010813

RESUMEN

As onset of sepsis adversely affects the prognosis of canine pyometra, finding biomarkers that would distinguish sepsis status would be useful in the clinical management. Accordingly, we hypothesized that differential expression of endometrial transcripts and circulating concentration of certain inflammatory mediators would discriminate pyometra-led sepsis (P-sepsis+) from those of pyometra without sepsis (P-sepsis-). Bitches with pyometra (n = 52) were classified into P-sepsis+ (n = 28) and P-sepsis- (n = 24) based on vital clinical score and total leukocyte count. A group of non-pyometra bitches (n = 12) served as control. The relative fold changes in the transcripts of IL6, IL8, TNFα, IL10, PTGS2, mPGES1 and PGFS, SLPI, S100A8, S100A12 and eNOS were determined by quantitative polymerase chain reaction. Furthermore, the serum concentrations of IL6, IL8, IL10, SLPI and prostaglandin F2α metabolite (PGFM) were assayed by ELISA. The relative fold changes in S100A12 and SLPI and mean concentrations of IL6 and SLPI were significantly (p < .05) higher in P-sepsis+ than that of P-sepsis- group. Receiver operating characteristic analysis revealed that serum IL6 had a diagnostic sensitivity of 78.6% and a positive likelihood ratio (LR+) of 2.09, at a cut-off value of 15.7 pg/mL to diagnose P-sepsis+ cases. Similarly, serum SLPI had a sensitivity of 84.6% and an LR+ of 2.23, at a cut-off value of 2.0 pg/mL. It was concluded that SLPI and IL6 would serve as putative biomarkers for pyometra-led sepsis in bitches. Monitoring SLPI and IL6 would be a useful adjunct to the established haemato-biochemical parameters in customizing the treatment strategies and arriving at the decision for management of pyometra bitches with critical illness.


Asunto(s)
Enfermedades de los Perros , Piómetra , Sepsis , Femenino , Animales , Perros , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Interleucina-10/metabolismo , Proteína S100A12 , Piómetra/veterinaria , Biomarcadores , Sepsis/diagnóstico , Sepsis/veterinaria
8.
Respirology ; 28(6): 533-542, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36642534

RESUMEN

BACKGROUND AND OBJECTIVE: Neutrophil elastase (NE), is an important host defence against lung pathogens. Maintaining a homeostatic balance between proteases such as NE and anti-proteases such as secretory leukocyte protease inhibitor (SLPI), is important to prevent tissue damage. In the cystic fibrosis (CF) lung, elevated protease levels and impaired anti-protease defences contribute to tissue destruction. METHODS: We assessed lung function and sputum SLPI and NE levels from Pseudomonas aeruginosa infected and non-infected CF patients (median age 20 years at recruitment) during different phases of clinical disease. Healthy, never smokers served as healthy controls (HC). Sputum total cell counts (TCC) and colony forming units of P. aeruginosa were also determined in each sputum sample. RESULTS: Compared to HC, sputum SLPI was significantly reduced and NE increased in all CF subjects whether infected with P. aeruginosa or not, but the presence of P. aeruginosa worsened these parameters. Females with chronic P. aeruginosa infection had significantly lower sputum SLPI levels than males (p < 0.001). Higher sputum SLPI levels were associated with a significantly reduced rate of longitudinal decline in FEV1 % predicted (p < 0.05). Antibiotic treatment in P. aeruginosa-infected patients significantly decreased sputum TCC and increased SLPI levels, which positively correlated with improved lung function. CONCLUSION: Airway SLPI is deficient in CF, which appears more marked in P. aeruginosa-infected female patients. Importantly, a reduced anti-protease to protease ratio is associated with accelerated lung function decline. Treatment of an exacerbation is accompanied by partial recovery of anti-protease defences and significant improvement in lung function, an important clinical outcome.


Asunto(s)
Fibrosis Quística , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Fibrosis Quística/complicaciones , Péptido Hidrolasas , Pulmón , Elastasa de Leucocito , Esputo , Pruebas de Función Respiratoria , Pseudomonas aeruginosa
9.
Eur J Immunol ; 53(2): e2249964, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36480463

RESUMEN

In the intestine, epithelial factors condition incoming immune cells including monocytes to adapt their threshold of activation and prevent undesired inflammation. Colonic epithelial cells express Secretory Leukocyte Protease Inhibitor (SLPI), an inhibitor of NF kappa light chain enhancer of activated B cells (NF-κB) that mediates epithelial hyporesponsiveness to microbial stimuli. Uptake of extracellular SLPI by monocytes has been proposed to inhibit monocyte activation. We questioned whether monocytes can produce SLPI and whether endogenous SLPI can inhibit monocyte activation. We demonstrate that human THP-1 monocytic cells produce SLPI and that CD68+ SLPI-producing cells can be detected in human intestinal lamina propria. Knockdown of SLPI in human THP-1 cells significantly increased NF-κB activation and subsequent C-X-C motif chemokine ligand 8 (CXCL8) and TNF-α production in response to microbial stimulation. Reconstitution of SLPI-deficient cells with either full-length SLPI or SLPI lacking its signal peptide rescued inhibition of NF-κB activation and cytokine production, demonstrating that endogenous SLPI inhibits monocytic cell activation. Unexpectedly, exogenous SLPI did not inhibit CXCL8 or TNF-α production, despite efficient uptake. Our data argue that endogenous SLPI can regulate the threshold of activation in monocytes, thereby preventing activation by commensal bacteria in mucosal tissues.


Asunto(s)
FN-kappa B , Inhibidor Secretorio de Peptidasas Leucocitarias , Humanos , FN-kappa B/metabolismo , Monocitos/metabolismo , Factor de Necrosis Tumoral alfa , Transducción de Señal
10.
Front Cardiovasc Med ; 9: 976083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061560

RESUMEN

Protease enzymes contribute to the initiation of cardiac remodeling and heart failure after myocardial ischemic/reperfusion (I/R) injury. Protease inhibitors attenuate protease activity and limit left ventricular dysfunction and remodeling. Previous studies showed the cardioprotective effect of secretory leukocyte protease inhibitor (SLPI) against I/R injury. However, overexpression of SLPI gene in cardiovascular diseases has only been investigated in an in vitro experiment. Here, cardiac-selective expression of the human secretory leukocyte protease inhibitor (hSLPI) gene and its effect on I/R injury were investigated. Adeno-associated virus (AAV) serotype 9 carrying hSLPI under the control of cardiac-selective expression promoter (cardiac troponin, cTn) was intravenously administered to Sprague-Dawley rats for 4 weeks prior to coronary artery ligation. The results showed that myocardial-selective expression of hSLPI significantly reduced infarct size, cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and myoglobin levels that all served to improve cardiac function. Moreover, overexpression of hSLPI showed a reduction in inflammatory cytokines, oxidatively modified protein carbonyl (PC) content, ischemia-modified albumin (IMA), and necrosis and cardiac tissue degeneration. In conclusion, this is the first study to demonstrate cardiac-selective gene delivery of hSLPI providing cardioprotection against myocardial I/R injury in an in vivo model.

11.
J Wound Care ; 31(Sup7): S15-S19, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35797252

RESUMEN

OBJECTIVE: Even with our best practices, we are frequently unable to prevent slow and stalled wound healing-particularly in people with impaired circulation and conditions such as diabetes. As a result, greater insight into the nature of wound healing and alternative treatment approaches is needed. An avenue that may be of particular promise is increasing understanding of the role of secretory leukocyte protease inhibitor (SLPI) as there is evidence that it enhances wound healing, its expression increases in response to inflammation and infection, and it exhibits anti-protease, anti-inflammatory, antiviral antibacterial and antifungal activities. METHOD: The response of SLPI levels to wounding and skin injury was assessed by taking punch skin biopsies from healthy volunteers and assessing the levels of SLPI at the site of injury at the time of wounding (baseline) as well as one, two, three, four, seven, nine and 12 weeks later. RESULTS: A total of 35 volunteers took part in the study. Significant elevations were found: levels of SLPI were greatly increased, 12 times that at baseline, and remained elevated at three weeks despite re-epithelialisation having occurred. CONCLUSION: These findings not only suggest that levels of SLPI rise rapidly following wounding, but that these elevations are sustained, and continue to increase even when re-epithelialisation has occurred. These results suggest that the role and potential benefits of this protease inhibitor deserve further exploration.


Asunto(s)
Inhibidor Secretorio de Peptidasas Leucocitarias , Cicatrización de Heridas , Heridas y Lesiones , Biopsia , Humanos , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Piel/metabolismo , Heridas y Lesiones/metabolismo
12.
Mol Carcinog ; 61(10): 910-923, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35801406

RESUMEN

Ovarian cancer is the most lethal gynecological malignancy worldwide with high metastasis and poor prognosis rates. Cancer-associated fibroblasts (CAFs), a heterogeneous population of cells that constitutes a major component of the tumor microenvironment, secrete extracellular vesicles (EVs) loading with proteins, lipids, and RNAs to promote tumorigenesis. However, the specific roles of CAF-derived proteins contained in EVs in ovarian cancer remain poorly understood at present. Using the gene expression microarray analysis, we identified a list of dysregulated genes between the α-SMA+ CAF and FAP+ CAF subpopulations, from which secretory leukocyte protease inhibitor (SLPI) was chosen for further validation. Quantitative PCR, western blot, immunohistochemistry, and enzyme-linked immunosorbent assays were used to assess SLPI expression in ovarian cancer cells, tissues, CAFs, and EVs. Additionally, we evaluated the effects of exogenous SLPI on proliferation, migration, invasion, and adhesion of ovarian cancer cells in vitro. Our results showed SLPI protein was upregulated in CAFs, particularly in the FAPhigh α-SMAlow CAF subpopulation, and associated with increased tumor grade and decreased overall survival (OS). Importantly, CAF-derived SLPI protein could be encapsulated in EVs for delivery to ovarian cancer cells, thus facilitating cell proliferation, migration, invasion, and adhesion via activating the PI3K/AKT and downstream signaling pathways. Moreover, high plasma expression of SLPI encapsulated in EVs was closely correlated with tumor stage in ovarian cancer patients. Our collective results highlight an oncogenic role of plasma EV-encapsulated SLPI secreted by CAFs in tumor progression for the first time, supporting its potential utility as a prognostic biomarker of ovarian cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Vesículas Extracelulares , Neoplasias Ováricas , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Transducción de Señal , Microambiente Tumoral
13.
Med Oncol ; 39(5): 71, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35568777

RESUMEN

Human epididymis protein-4 (HE4/WFDC2) has been well-studied as an ovarian cancer clinical biomarker. To improve our understanding of its functional role in high grade serous ovarian cancer, we determined transcriptomic differences between ovarian tumors with high- versus low-WFDC2 mRNA levels in The Cancer Genome Atlas dataset. High-WFDC2 transcript levels were significantly associated with reduced survival in stage III/IV serous ovarian cancer patients. Differential expression and correlation analyses revealed secretory leukocyte peptidase inhibitor (SLPI/WFDC4) as the gene most positively correlated with WFDC2, while A kinase anchor protein-12 was most negatively correlated. WFDC2 and SLPI were strongly correlated across many cancers. Gene ontology analysis revealed enrichment of oxidative phosphorylation in differentially expressed genes associated with high-WFDC2 levels, while extracellular matrix organization was enriched among genes associated with low-WFDC2 levels. Immune cell subsets found to be positively correlated with WFDC2 levels were B cells and plasmacytoid dendritic cells, while neutrophils and endothelial cells were negatively correlated with WFDC2. Results were compared with DepMap cell culture gene expression data. Gene ontology analysis of k-means clustering revealed that genes associated with low-WFDC2 were also enriched in extracellular matrix and adhesion categories, while high-WFDC2 genes were enriched in epithelial cell proliferation and peptidase activity. These results support previous findings regarding the effect of HE4/WFDC2 on ovarian cancer pathogenesis in cell lines and mouse models, while adding another layer of complexity to its potential functions in ovarian tumor tissue. Further experimental explorations of these findings in the context of the tumor microenvironment are merited.


Asunto(s)
Biología Computacional , Neoplasias Ováricas , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP , Animales , Biomarcadores de Tumor/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Femenino , Expresión Génica , Humanos , Ratones , Neoplasias Ováricas/patología , Proteínas/metabolismo , Microambiente Tumoral , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/genética
14.
Viruses ; 14(1)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35062299

RESUMEN

The impact of steroid hormones estrogen and progesterone on human immunodeficiency virus type 1 (HIV-1) replication is well documented. However, the exact mechanism involved in the regulation of HIV-1 replication by estrogen and progesterone is still unclear. In the present study, we wanted to elucidate the molecular mechanisms underlying the modulation of HIV-1 replication by estrogen and progesterone. To achieve this goal, we used real-time quantitative PCR arrays (PCR arrays) to identify differentially expressed host genes in response to hormone treatments that are involved in antiviral responses. Our in vitro results suggest that treatment with high doses of estrogen and progesterone promotes the expression of host antiviral factors Secretory leukocyte protease inhibitor (SLPI) and Serpin family C member 1 (SERPIN C1) among others produced in response to HIV-1 infection. SLPI is an enzyme that inhibits human leukocyte elastase, human cathepsin G, human trypsin, neutrophil elastase, and mast cell chymase. SERPIN C1 is a plasma protease inhibitor that regulates the blood coagulation cascade by the inhibition of thrombin and other activated serine proteases of the coagulation system. A dose dependent downmodulation of HIV-1 replication was observed in monocyte-derived macrophages (MDMs) pre-treated with the two proteins SLPI and SERPIN C1. Further investigations suggests that the host antiviral factors, SLPI and SERPIN C1 act at the pre-integration stage, inhibiting HIV-1 viral entry and leading to the observed downmodulation of HIV-1 replication. Our studies would help identify molecular mechanisms and pathways involved in HIV-1 pathogenesis.


Asunto(s)
Antitrombina III/metabolismo , Estradiol/farmacología , VIH-1/fisiología , Macrófagos/virología , Progesterona/farmacología , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Antitrombina III/genética , Antitrombina III/farmacología , VIH-1/efectos de los fármacos , Humanos , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/farmacología , Regulación hacia Arriba , Integración Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
15.
Int J Biol Sci ; 18(1): 140-153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34975323

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Secretory leukocyte protease inhibitor (SLPI) has been reported to function as a regulatory factor in several cancers. However, its biological functions and underlying mechanisms in HCC remain to be uncovered. Here, we aimed to explore the effect of SLPI in HCC. In our study, we found that the mRNA and protein expression levels of SLPI were significantly down-regulated in HCC tissues and hepatoma cell lines and low level of SLPI predicted worse survival in our HCC cohorts. In term of function, silencing of SLPI markedly promoted whereas overexpression SLPI suppressed proliferation, migration and invasion capabilities of HCC cells in vitro, and ectopic expression of SLPI inhibited the tumorigenicity of HCC cells in vivo. Mechanistic studies demonstrated that SLPI played a protective role in HCC progression via activating endoplasmic reticulum stress (ER stress)-mediated apoptosis of hepatoma cells, which could be regulated by MAPK signaling pathways. In summary, our findings highlight that SLPI could serve as a potential prognostic biomarker and putative tumor suppressor by enhancing ER stress-induced apoptosis in HCC cells mediated by MAPK signaling pathways, which provides new insights into promising therapeutic targets for HCC treatment.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular/metabolismo , Estrés del Retículo Endoplásmico , Neoplasias Hepáticas/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Genes Cells ; 26(10): 807-822, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34379860

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestine, and the dysfunction of intestinal epithelial barrier (IEB) may trigger the onset of IBD. Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that has been implicated in the tissue-protective effect in the skin and lung. We found that SLPI was induced in lipopolysaccharides-treated colon carcinoma cell line and in the colon of dextran sulfate sodium (DSS)-treated mice. SLPI-deficient mice were administered DSS to induce colitis and sustained severe inflammation compared with wild-type mice. The colonic mucosa of SLPI-deficient mice showed more severe inflammation with neutrophil infiltration and higher levels of proinflammatory cytokines compared with control mice. Moreover, neutrophil elastase (NE) activity in SLPI-deficient mice was increased and IEB function was severely impaired in the colon, accompanied with the increased number of apoptotic cells. Importantly, we demonstrated that DSS-induced colitis was ameliorated by administration of protease inhibitor SSR69071 and recombinant SLPI. These results suggest that the protease inhibitory activity of SLPI protects from colitis by preventing IEB dysfunction caused by excessive NE activity, which provides insight into the novel function of SLPI in the regulation of gut homeostasis and therapeutic approaches for IBD.


Asunto(s)
Colitis , Inhibidor Secretorio de Peptidasas Leucocitarias , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Mucosa Intestinal , Ratones , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidores de Serina Proteinasa
17.
Cytokine Growth Factor Rev ; 59: 22-35, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33602652

RESUMEN

The immune system is continuously challenged with large quantities of exogenous antigens at the barriers between the external environment and internal human tissues. Antimicrobial activity is essential at these sites, though the immune responses must be tightly regulated to prevent tissue destruction by inflammation. Secretory Leukocyte Protease Inhibitor (SLPI) is an evolutionarily conserved, pleiotropic protein expressed at mucosal surfaces, mainly by epithelial cells. SLPI inhibits proteases, exerts antimicrobial activity and inhibits nuclear factor-kappa B (NF-κB)-mediated inflammatory gene transcription. SLPI maintains homeostasis at barrier tissues by preventing tissue destruction and regulating the threshold of inflammatory immune responses, while protecting the host from infection. However, excessive expression of SLPI in cancer cells may have detrimental consequences, as recent studies demonstrate that overexpression of SLPI increases the metastatic potential of epithelial tumors. Here, we review the varied functions of SLPI in the respiratory tract, skin, gastrointestinal tract and genitourinary tract, and then discuss the mechanisms by which SLPI may contribute to cancer.


Asunto(s)
Neoplasias , Células Epiteliales , Humanos , Inflamación , FN-kappa B , Inhibidor Secretorio de Peptidasas Leucocitarias
18.
Osteoarthritis Cartilage ; 29(4): 558-567, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33485930

RESUMEN

OBJECTIVE: Osteoarthritic cartilage destruction can be regulated by the balance between proteases and anti-proteases. Here, we sought to identify novel cellular protease inhibitors associated with osteoarthritis (OA) pathogenesis. METHODS: Candidate molecules were screened from microarray data of chondrocytes treated with OA-associated catabolic factors. The functions of candidate molecules in OA pathogenesis were examined in primary-culture mouse articular chondrocytes and mouse models of OA, such as those stimulated by destabilization of the medial meniscus (DMM) or intra-articular (IA) injection of adenovirus expressing the candidate gene. The value of the selected candidate molecule as a biomarker of OA was examined by measuring its circulating levels in human and mouse blood. RESULTS: Bioinformatic analysis identified secretory leukocyte peptidase inhibitor (SLPI) as a highly upregulated cellular protease inhibitor in chondrocytes treated with pathogenic catabolic factors, including interleukin (IL)-1ß, hypoxia-inducible factor (HIF)-2α, and zinc importer ZIP8. The adenovirus-mediated overexpression of SLPI in joint tissues did not cause any OA-like change or modulate DMM- or HIF-2α-induced experimental OA in mice. SLPI also did not markedly modulate the expression of OA-associated catabolic or anabolic factors in chondrocytes. However, SLPI was specifically upregulated in OA cartilage, and the serum SLPI levels were significantly elevated in human OA patients and experimental OA mice, suggesting that SLPI may be a biomarker of OA. CONCLUSION: Although SLPI is upregulated in OA chondrocytes, it does not appear to per se modulate OA development in mice. However, it may be a potential biomarker of OA in humans and animal models.


Asunto(s)
Artritis Experimental/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Condrocitos/metabolismo , Osteoartritis de la Rodilla/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Animales , Artritis Experimental/metabolismo , Cartílago Articular , Humanos , Meniscos Tibiales/cirugía , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis de la Rodilla/metabolismo , Cultivo Primario de Células , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinoviocitos
19.
Cancer Treat Res Commun ; 26: 100299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33387869

RESUMEN

Six own studies confirm a correlation between smoking, expression of the secretory leukocyte protease inhibitor (SLPI, an antileukoproteinase) and expression of Annexin A2 (AnxA2), and their influence on human papilloma virus (HPV)-infections. SLPI and HPV are ligands of AnxA2. This correlation was tested on 928 tissue samples from 892 patients in six independent studies [squamous cell carcinoma of the head and neck (HNSCC), n = 522; non-neoplastic tonsils n = 214; clinically normal mucosa, n = 93 (of these n = 57 were obtained from patients treated for non-malignant diseases and n = 36 were obtained from HNSCC-patients) and vulvar squamous cell carcinoma (VSCC) n = 99]. HPV-DNA-status was determined by GP5+/GP6+-PCR, followed in case of HPV-positivity by Sanger sequencing and RT-PCR using HPV-type specific primers. SLPI- and AnxA2-gene-expression was determined by RT-q-PCR; SLPI-protein-expression was additionally determined by immunohistochemistry (IHC); the data were correlated with each other and with patient characteristics. Smoking results in increased SLPI-gene- and protein- and AnxA2-gene-expression with significantly higher SLPI- than AnxA2-gene-expression. SLPI is decreased in non-smokers with a continuous AnxA2-surplus. HPV-status correlates with smoking habit, with smokers being mostly HPV-negative and non-smokers HPV-positive. We hypothesize that smoking leads to SLPI-overexpression with SLPI-binding to AnxA2. Thus, HPV cannot bind to AnxA2 but this seems pivotal for HPV-cell-entry. Smoking favors SLPI-expression resulting in HPV-negative carcinomas, while HPV-positive carcinomas are more common in non-smokers possibly due to a surplus of unbound AnxA2. In addition, the hypothesis may contribute to understand why smokers show increased oral HPV-prevalence in natural history studies but do not necessarily develop HPV-associated lesions.


Asunto(s)
Anexina A2/genética , Carcinoma/epidemiología , Neoplasias de Cabeza y Cuello/epidemiología , Infecciones por Papillomavirus/epidemiología , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Fumar/epidemiología , Alphapapillomavirus/aislamiento & purificación , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma/genética , Carcinoma/patología , Carcinoma/virología , Femenino , Regulación Neoplásica de la Expresión Génica , Interacción Gen-Ambiente , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/virología , Humanos , Masculino , Membrana Mucosa/patología , Membrana Mucosa/virología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Prevalencia , Factores de Riesgo
20.
J Clin Periodontol ; 48(4): 528-540, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33370451

RESUMEN

AIM: We aimed to identify a key molecule that maintains periodontal tissue homeostasis during biophysical force-induced tooth movement (BTM) by orchestrating alveolar bone (AB) remodelling. MATERIALS AND METHODS: Differential display-PCR was performed to identify key molecules for BTM in rats. To investigate the localization and expression of the identified molecules, immunofluorescence, real-time RT-PCR and Western blotting were performed in rats and human periodontal ligament (PDL) cells. Functional test and micro-CT analysis were performed to examine the in vivo effects of the identified molecules on BTM. RESULTS: Secretory leucocyte peptidase inhibitor (SLPI) in the PDL was revealed as a key molecule for BTM-induced AB remodelling. SLPI was enhanced in the PDL under both compression and tension, and downregulated by an adenyl cyclases inhibitor. SLPI induced osteoblastogenic genes including runt-related transcription factor 2 (Runx2) and synergistically augmented tension-induced Runx2 expression. SLPI augmented mineralization in PDL cells. SLPI induced osteoclastogenic genes including receptor activator of nuclear factor kappa-Β ligand (RANKL) and synergistically augmented the compression-induced RANKL and macrophage colony-stimulating factor (MCSF) expression. Finally, the in vivo SLPI application into the AB significantly augmented BTM. CONCLUSIONS: SLPI or its inhibitors might serve as a biological target molecule for therapeutic interventions to modulate BTM.


Asunto(s)
Ligamento Periodontal , Ligando RANK , Animales , Células Cultivadas , Ratas , Inhibidor Secretorio de Peptidasas Leucocitarias , Técnicas de Movimiento Dental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA