Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Sci Rep ; 14(1): 20486, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227700

RESUMEN

Recent advances in imaging suggested that spatial organization of hematopoietic cells in their bone marrow microenvironment (niche) regulates cell expansion, governing progression, and leukemic transformation of hematological clonal disorders. However, our ability to interrogate the niche in pre-malignant conditions has been limited, as standard murine models of these diseases rely largely on transplantation of the mutant clones into conditioned mice where the marrow microenvironment is compromised. Here, we leveraged live-animal microscopy and ultralow dose whole body or focal irradiation to capture single cells and early expansion of benign/pre-malignant clones in the functionally preserved microenvironment. 0.5 Gy whole body irradiation (WBI) allowed steady engraftment of cells beyond 30 weeks compared to non-conditioned controls. In-vivo tracking and functional analyses of the microenvironment showed no change in vessel integrity, cell viability, and HSC-supportive functions of the stromal cells, suggesting minimal inflammation after the radiation insult. The approach enabled in vivo imaging of Tet2+/- and its healthy counterpart, showing preferential localization within a shared microenvironment while forming discrete micro-niches. Notably, stationary association with the niche only occurred in a subset of cells and would not be identified without live imaging. This strategy may be broadly applied to study clonal disorders in a spatial context.


Asunto(s)
Hematopoyesis Clonal , Nicho de Células Madre , Animales , Ratones , Nicho de Células Madre/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Células Madre Hematopoyéticas/metabolismo , Irradiación Corporal Total , Ratones Endogámicos C57BL , Rastreo Celular/métodos , Microscopía Intravital/métodos
2.
Clin Epigenetics ; 16(1): 125, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261937

RESUMEN

BACKGROUND: Breast tumorigenesis is a complex and multistep process accompanied by both genetic and epigenetic dysregulation. In contrast to the extensive studies on DNA epigenetic modifications 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in malignant breast tumors, their roles in the early phases of breast tumorigenesis remain ambiguous. RESULTS: DNA 5hmC and 5mC exhibited a consistent and significant decrease from usual ductal hyperplasia to atypical ductal hyperplasia and subsequently to ductal carcinoma in situ (DCIS). However, 5hmC showed a modest increase in invasive ductal breast cancer compared to DCIS. Genomic analyses showed that the changes in 5hmC and 5mC levels occurred around the transcription start sites (TSSs), and the modification levels were strongly correlated with gene expression levels. Meanwhile, it was found that differentially hydroxymethylated regions (DhMRs) and differentially methylated regions (DMRs) were overlapped in the early phases and accompanied by the enrichment of active histone marks. In addition, TET2-related DNA demethylation was found to be involved in breast tumorigenesis, and four transcription factor binding sites (TFs: ESR1, FOXA1, GATA3, FOS) were enriched in TET2-related DhMRs/DMRs. Intriguingly, we also identified a certain number of common DhMRs between tumor samples and cell-free DNA (cfDNA). CONCLUSIONS: Our study reveals that dynamic changes in DNA 5hmC and 5mC play a vital role in propelling breast tumorigenesis. Both TFs and active histone marks are involved in TET2-related DNA demethylation. Concurrent changes in 5hmC signals in primary breast tumors and cfDNA may play a promising role in breast cancer screening.


Asunto(s)
5-Metilcitosina , Neoplasias de la Mama , Proteínas de Unión al ADN , Dioxigenasas , Proteínas Proto-Oncogénicas , Humanos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Femenino , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Carcinogénesis/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica , Desmetilación del ADN
3.
BMC Cancer ; 24(1): 977, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118077

RESUMEN

BACKGROUND: Patients with choriocarcinoma (CC) accompanying chemoresistance conventionally present a poor prognosis. Whether ras protein activator like-1 (RASAL1) functions as a tumor promoter or suppressor depends on tumor types. However, the role of RASAL1 in process of chemoresistance of CC and underlying molecular mechanism remain elusive. METHODS: The expression pattern of RASAL1 in CC cells and tissues was measured using Western blotting, immunohistochemistry and qRT-PCR. Cell viability and proliferative ability were assessed by MTT assay, Tunnel assay and flow cytometric analysis. Additionally, the stemness was evaluated by the colony formation and tumor sphere formation. Methotrexate (MTX) was applied to exam the chemosensitivity of CC cells. RESULTS: The expression of RASAL1 was reduced both at the protein and mRNA levels in CC tissues and cells compared to hydatidiform mole (HM) and invasive mole (IM). Loss of RASAL1 was attributed to its promoter hypermethylation and could be restored by 5-Aza. Knock-down of RASAL1 promoted the viability, proliferative potential, stemness and EMT phenotype of JEG-3 cells. However, induced overexpression of RASAL1 by 5-Aza significantly prohibited cell proliferation and stemness potential of the JAR cell. Additionally, the xenograft model indicated that knockdown of RASAL1 led to a remarkable increase of tumor volume and weight in comparison with its counterpart. Moreover, the stimulatory activity brought by decrease of RASAL1 could be deprived by ß-catenin inhibitor XAV 939, yet the suppressive activity resulted from its promoter demethylation could be rescued by ß-catenin activator BML-284, indicating that function of RASAL1 depends on ß-catenin. Besides, the co-immunoprecipitation assay confirmed the physical binding between RASAL1 and ß-catenin. Further investigations showed hypermethylated RASAL1 was regulated by TET2 but not DNMTs. CONCLUSION: Taken together, the present data elucidated that reduced RASAL1 through its promoter hypermethylation regulated by TET2 promoted the tumorigenicity and chemoresistance of CC via modulating ß-catenin both in vitro and in vivo.


Asunto(s)
Coriocarcinoma , Metilación de ADN , Proteínas de Unión al ADN , Dioxigenasas , Resistencia a Antineoplásicos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas , Humanos , Resistencia a Antineoplásicos/genética , Coriocarcinoma/metabolismo , Coriocarcinoma/patología , Coriocarcinoma/genética , Animales , Femenino , Ratones , Dioxigenasas/metabolismo , Dioxigenasas/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Neoplasias Uterinas/metabolismo , Carcinogénesis/genética , Embarazo
4.
Bioimpacts ; 14(4): 27640, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104619

RESUMEN

Introduction: High metastasis, resistance to common treatments, and high mortality rate, has made triple-negative breast cancer (TNBC) to be the most invasive type of breast cancer. High telomerase activity and mitochondrial biogenesis are involved in breast cancer tumorigenesis. The catalytic subunit of telomerase, telomerase reverse transcriptase (hTERT), plays a role in telomere lengthening and extra-biological functions such as gene expression, mitochondria function, and apoptosis. In this study, it has been aimed to evaluate intrinsic-, extrinsic-apoptosis and DNMT3a and TET2 expression following the inhibition of telomerase and mitochondria respiration in TNBC cell lines. Methods: TNBC cells were treated with IC50 levels of BIBR1532, tigecycline, and also their combination. Then, telomere length, and DNMT3a, TET2, and hTERT expression were evaluated. Finally, apoptosis rate, apoptosis-related proteins, and genes were analyzed. Results: The present results showed that IC50 level of telomerase and inhibition of mitochondria respiration induced apoptosis but did not leave any significant effect on telomere length. The results also indicated that telomerase inhibition induced extrinsic-apoptosis in MDA-MB-231 and caused intrinsic- apoptosis in MDA-MB-468 cells. Furthermore, it was found that the expression of p53 decreased and was ineffective in cell apoptosis. The expressions of DNMT3a and TET2 increased in cells. In addition, combination treatment was better than BIBR1532 and tigecycline alone. Conclusion: The inhibition of telomerase and mitochondria respiration caused intrinsic- and extrinsic- apoptosis and increased DNMT3a and TET2 expression and it could be utilized in breast cancer treatment.

5.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091741

RESUMEN

Preferentially Expressed Antigen in Melanoma (PRAME) and Ten-Eleven Translocation (TET) dioxygenase-mediated 5-hydroxymethylcytosine (5hmC) are emerging melanoma biomarkers. We observed an inverse correlation between PRAME expression and 5hmC levels in benign nevi, melanoma in situ, primary invasive melanoma, and metastatic melanomas via immunohistochemistry and multiplex immunofluorescence: nevi exhibited high 5hmC and low PRAME, whereas melanomas showed the opposite pattern. Single-cell multiplex imaging of melanoma precursors revealed that diminished 5hmC coincides with PRAME upregulation in premalignant cells. Analysis of TCGA and GTEx databases confirmed a negative relationship between TET2 and PRAME mRNA expression in melanoma. Additionally, 5hmC levels were reduced at the PRAME 5' promoter in melanoma compared to nevi, suggesting a role for 5hmC in PRAME transcription. Restoring 5hmC levels via TET2 overexpression notably reduced PRAME expression in melanoma cell lines. These findings establish a function of TET2-mediated DNA hydroxymethylation in regulating PRAME expression and demonstrate epigenetic reprogramming as pivotal in melanoma tumorigenesis. Teaser: Melanoma biomarker PRAME expression is negatively regulated epigenetically by TET2-mediated DNA hydroxymethylation.

6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1032-1038, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39192394

RESUMEN

OBJECTIVE: To investigate the clinical characteristics and influence of co-mutated gene on acute myeloid leukemia patients (AML) with FMS-like tyrosine kinase-3 (FLT3) mutations. METHODS: A total of 273 FLT3+ AML patients were enrolled, and the co-mutation gene data of the patients were collected to further analyze the prognosis of the patients. FLT3 and other common mutations were quantified by PCR amplification products direct sequencing and second-generation sequencing (NGS). RESULTS: When patients were divided into FLT3- ITD +, FLT3- TKD +, FLT3- ITD ++TKD + and FLT3- ITD -+TKD - group according to the type of FLT3 mutations, it was found that the frequencies of TET2, GATA2, NRAS and ASXL1 mutation were significantly different among the 4 groups (all P < 0.05). When patients were divided into allelic ratio (AR) ≥0.5 and <0.5 group, it was found that the frequencies of FLT3- ITD +, FLT3 -ITD - +TKD -, NPM1, NRAS and C-kit were significantly different between the two groups (all P < 0.05). When patients were divided into normal and abnormal karyotype group, it was found that the frequencies of FLT3- ITD +, FLT3- TKD +, NPM1, GATA2 and C-kit were significantly different between the two groups (all P < 0.05). The median overall survival (OS) of AML patients with FLT3 -TKD + (including FLT3- ITD ++TKD +) was longer than that of patients with FLT3- ITD + alone (P < 0.05). The OS and relapse-free survival (RFS) of AML patients with FLT3++TET2+ were both shorter than those of patients with FLT3++TET2- (both P < 0.05). CONCLUSION: The mutation frequencies of co-mutated genes are correlated with subtypes of FLT3, karyotype and AR. AML patients with FLT3 -TKD + have longer OS than patients with FLT3- ITD + alone, and patients with co-mutation of TET2 have shorter median OS and RFS.


Asunto(s)
Dioxigenasas , GTP Fosfohidrolasas , Leucemia Mieloide Aguda , Mutación , Nucleofosmina , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/genética , Pronóstico , GTP Fosfohidrolasas/genética , Proteínas de Unión al ADN/genética , Factor de Transcripción GATA2/genética , Proteínas Represoras/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-kit/genética
7.
Mol Cell ; 84(16): 3026-3043.e11, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178838

RESUMEN

Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.


Asunto(s)
Proteína BRCA2 , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple , Recombinasa Rad51 , Xenopus laevis , Humanos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Animales , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Microscopía por Crioelectrón , ADN Polimerasa theta , Metilación de ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
8.
Cell Commun Signal ; 22(1): 413, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192276

RESUMEN

Nasopharyngeal carcinoma (NPC) is a malignant tumor of epithelial origin in head and neck with high incidence rate in South China, Southeast Asia and North Africa. The intervention of tumor-associated macrophages (Mφs) (TAMs)-mediated immunosuppression is a potential therapeutic strategy against tumor metastasis, but the exact mechanisms of TAM-mediated immunosuppression in nasopharyngeal carcinoma are unclear. Furthermore, how TAM affects the occurrence and development of nasopharyngeal carcinoma through metabolism is rarely involved. In this work, we revealed that NPC cells promoted M2-type Mφ polarization and elevated itaconic acid (ITA) release. Also, TAMs facilitated NPC cell proliferation, migration, and invasion through immune response gene 1 (IRG1)-catalyzed ITA production. Then, IRG1-mediated ITA production in TAMs repressed the killing of CD8+ T cells, induced M2-type polarization of TAMs, and reduced the phagocytosis of TAMs. Moreover, we demonstrated ITA played a tumor immunosuppressive role by binding and dampening ten-eleven translocation-2 (TET2) expression. Finally, we proved that ITA promotes NPC growth by facilitating immune escape in CD34+ hematopoietic stem cell humanized mice. In Conclusion, TAM-derived ITA facilitated NPC progression by enhancing immune escape through targeting TET2, highlighting that interfering with the metabolic pathway of ITA may be a potential strategy for NPC treatment.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Proto-Oncogénicas , Succinatos , Escape del Tumor , Macrófagos Asociados a Tumores , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Animales , Ratones , Succinatos/farmacología , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Progresión de la Enfermedad , Proliferación Celular , Movimiento Celular/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Carboxiliasas
9.
Exp Cell Res ; 442(1): 114224, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39187151

RESUMEN

Matrix stiffness is a crucial factor in the tumor microenvironment, impacting tumor progression and development. TET2 is vital for epigenetic regulation in melanoma and is significantly reduced in advanced melanomas compared with nevi and thin melanomas. However, it is unclear how TET2 mediates the effect of matrix stiffness on melanoma cells. This study utilized A2058 cell lines and prepared different stiffness collagen hydrogels to evaluate TET2 overexpression (TET2OE) and mutant (TET2M) melanoma cells' activity, proliferation, and invasion. A2058 melanoma cells' viability and invasion decreased with increased matrix stiffness, with TET2OE cells experiencing a more significant impact than TET2M cells. Methylation analysis revealed that TET2 determines gene methylation levels, influencing cell-ECM interactions. Transcriptome analysis confirmed that TET2 promotes matrix stiffness's effect on melanoma cell fate. This research provides promising directions and opportunities for melanoma treatment.


Asunto(s)
Proliferación Celular , Metilación de ADN , Proteínas de Unión al ADN , Dioxigenasas , Matriz Extracelular , Melanoma , Proteínas Proto-Oncogénicas , Humanos , Melanoma/genética , Melanoma/patología , Melanoma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Línea Celular Tumoral , Metilación de ADN/genética , Matriz Extracelular/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Cultivo de Célula/métodos , Microambiente Tumoral/genética , Invasividad Neoplásica/genética , Hidrogeles/química , Supervivencia Celular/genética
10.
Cancers (Basel) ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123361

RESUMEN

Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.

11.
Diseases ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39057134

RESUMEN

BACKGROUND: Ten-eleven-translocation (TET) 2 is a member of the TET family of proteins (TET1-3). DNMT1 gene deletion confers resistance to DNA methyltransferase (DNMT) inhibitors in colorectal, breast, and ovarian cancer cells. Currently, the effect of DNMT1 gene status on TET2 phenotype following DNMT inhibitor treatment is unclear in human malignancies. METHODS: Human colorectal carcinoma HCT116 cells (DNMT+/+) and their isogenic DNMT1 knockout (DNMT1-/-) counterpart were treated with DNMT inhibitors. Expression of TET2 and tumor suppressor (p16ink4A and p15ink4B) proteins were examined by Western blot. Apoptosis and CDKN2A promoter demethylation following drug treatment were detected by Annexin-V apoptosis assay and methylation-specific PCR. RESULTS: TET2 expression was robustly increased in DNMT1-/- cells by 0.5 µM and 5 µM decitabine and azacitidine treatment. Augmentation of TET2 expression was accompanied by re-expression of p16ink4A and p15ink4B proteins and CDKN2A promoter demethylation. TET2 upregulation and tumor suppressor re-expression were associated with resistance conferred by DNMT1 deletion. Treatment with 5-aza-4'-thio-2'-deoxycytidine at a low 0.5 µM dose only upregulated TET2 and reduced CDKN2A promoter methylation, and re-expression of p16ink4A in DNMT1-/- cells. DNMT inhibitors showed minimal effects on TET2 upregulation and re-expression of tumor suppressor proteins in cells with intact DNMT1. CONCLUSIONS: DNMT1 gene deletion made cancer cells prone to TET2 upregulation and activation of tumor suppressor expression upon DNMT inhibitor challenge. TET2 augmentation is concomitant with resistance to DNMT inhibitors in a DNMT1-deleted state.

12.
Diabetes Metab ; 50(5): 101561, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977261

RESUMEN

AIM: Bariatric surgery is highly effective for the treatment of obesity in individuals without (OB1) and in those with type 2 diabetes (T2D2). However, whether bariatric surgery triggers similar or distinct molecular changes in OB and T2D remains unknown. Given that individuals with type 2 diabetes often exhibit more severe metabolic deterioration, we hypothesized that bariatric surgery induces distinct molecular adaptations in skeletal muscle, the major site of glucose uptake, of OB and T2D after surgery-induced weight loss. METHODS: All participants (OB, n = 13; T2D, n = 13) underwent detailed anthropometry before and one year after the surgery. Skeletal muscle biopsies were isolated at both time points and subjected to transcriptome and methylome analyses using a comprehensive bioinformatic pipeline. RESULTS: Before surgery, T2D had higher fasting glucose and insulin levels but lower whole-body insulin sensitivity, only glycemia remained higher in T2D than in OB after surgery. Surgery-mediated weight loss affected different subsets of genes with 2,013 differentially expressed in OB and 959 in T2D. In OB differentially expressed genes were involved in insulin, PPAR signaling and oxidative phosphorylation pathways, whereas ribosome and splicesome in T2D. LASSO regression analysis revealed distinct candidate genes correlated with improvement of phenotypic traits in OB and T2D. Compared to OB, DNA methylation was less affected in T2D in response to bariatric surgery. This may be due to increased global hydroxymethylation accompanied by decreased expression of one of the type 2 diabetes risk gene, TET2, encoding a demethylation enzyme in T2D. CONCLUSION: OB and T2D exhibit differential skeletal muscle transcriptome responses to bariatric surgery, presumably resulting from perturbed epigenetic flexibility.

13.
Front Immunol ; 15: 1410638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983865

RESUMEN

Introduction: Angioimmunoblastic T-cell lymphoma (AITL) is a peripheral T-cell lymphoma characterized by a T follicular helper cell phenotype expressing PD-1 (programmed cell death-1). AITL exhibits a poor response to conventional chemotherapy, with a median 5-year overall survival of 44% and a progression-free survival of 32%. Relapse is common, resulting in a median overall survival of 6 months. Recurrent mutations are detected in genes regulating DNA methylation, including TET2, DNMT3A, and IDH2 variants, along with the prevalent RHOA G17V mutation. In this context, patients treated with the hypomethylating agent 5-azacytidine achieved overall response and complete response rates of 75% and 41%, respectively. We hypothesized that targeted therapies combining anti-PD-1 checkpoint blockers with hypomethylating agents could be efficient in AITL patients and less toxic than standard chemotherapy. Methods: Here, we report the efficacy of a regimen combining 5-azacytidine and nivolumab in nine relapsed or refractory AITL patients. Results: This regimen was well-tolerated, especially in elderly patients. The overall response rate was 78%, including four partial responses (44%) and three complete responses (33%). Allogeneic hematopoietic stem cell transplantation was performed in two patients who reached complete response. Discussion: These preliminary favorable results may serve as a basis for further investigation in prospective studies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , Nivolumab , Humanos , Nivolumab/uso terapéutico , Azacitidina/uso terapéutico , Femenino , Masculino , Anciano , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfoma de Células T Periférico/tratamiento farmacológico , Linfoma de Células T Periférico/mortalidad , Resultado del Tratamiento , Anciano de 80 o más Años , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos
14.
Hematol Oncol ; 42(4): e3295, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979860

RESUMEN

The biological role of Ten-11 translocation 2 (TET2) and the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in the development of extra-nodal natural killer/T-cell lymphoma (ENKTL) remains unclear. The level of 5mC and 5hmC was detected in 112 cases of ENKTL tissue specimens by immunohistochemical (IHC) staining. Subsequently, TET2 knockdown and the overexpression cell models were constructed in ENKTL cell lines. Biochemical analyses were used to assess proliferation, apoptosis, cell cycle and monoclonal formation in cells treated or untreated with L-Ascorbic acid sodium salt (LAASS). Dot-Blots were used to detect levels of genome 5mC and 5hmC. Additionally, the ILLUMINA 850k methylation chip was used to analyze the changes of TET2 regulatory genes. RNA-Seq was used to profile differentially expressed genes regulated by TET2. The global level of 5hmC was significantly decreased, while 5mC was highly expressed in ENKTL tissue. TET2 protein expression was negatively correlated with the ratio of 5mC/5hmC (p < 0.0001). The 5mC/5hmC status were related to the site of disease, clinical stage, PINK score and Ki-67 index, as well as the 5-year OS. TET2 knockdown prolonged the DNA synthesis period, increased the cloning ability of tumor cells, increased the level of 5mC and decreased the level of 5hmC in ENKTL cells. While overexpression of TET2 presented the opposite effect. Furthermore, treatment of ENKTL cells with LAASS significantly induced ENKTL cell apoptosis. These results suggest that TET2 plays an important role in ENKTL development via regulation of 5mC and 5hmC and may serve as a novel therapeutic target for ENKTL.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN , Dioxigenasas , Linfoma Extranodal de Células NK-T , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Masculino , Linfoma Extranodal de Células NK-T/metabolismo , Linfoma Extranodal de Células NK-T/patología , Linfoma Extranodal de Células NK-T/genética , Persona de Mediana Edad , Adulto , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Anciano , Línea Celular Tumoral , Proliferación Celular
15.
Leuk Lymphoma ; : 1-11, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004904

RESUMEN

The boundary between myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) has been revised in the latest World Health Organization classification of myeloid malignancies. These changes were motivated by the description of a subgroup of MDS patients identified as oligomonocytic chronic myelomonocytic leukemia (OM-CMML) at risk of evolving into overt CMML. Various studies will be reviewed describing the clinical and biological features of MDS patients evolving to CMML. The efforts to discover biomarkers enabling the identification of these patients at the time of MDS diagnosis will be discussed. Finally, the molecular landscape of these patients will be presented with a specific focus on the biallelic inactivation of TET2 in light of its functional impact on hematopoietic stem cells, granule-monocytic differentiation, and its tight interplay with inflammation.

16.
Brief Funct Genomics ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38944027

RESUMEN

Acute myeloid leukemia (AML) is a type of blood cancer with diverse genetic variations and DNA methylation alterations. By studying the interaction of gene mutations, expression, and DNA methylation, we aimed to gain valuable insights into the processes that lead to block differentiation in AML. We analyzed TCGA-LAML data (173 samples) with RNA sequencing and DNA methylation arrays, comparing FLT3 mutant (48) and wild-type (125) cases. We conducted differential gene expression analysis using cBioPortal, identified DNA methylation differences with ChAMP tool, and correlated them with gene expression changes. Gene set enrichment analysis (g:Profiler) revealed significant biological processes and pathways. ShinyGo and GeneCards were used to find potential transcription factors and their binding sites among significant genes. We found significant differentially expressed genes (DEGs) negatively correlated with their most significant methylation probes (Pearson correlation coefficient of -0.49, P-value <0.001) between FLT3 mutant and wild-type groups. Moreover, our exploration of 450 k CpG sites uncovered a global hypo-methylated status in 168 DEGs. Notably, these methylation changes were enriched in the promoter regions of Homebox superfamily gene, which are crucial in transcriptional-regulating pathways in blood cancer. Furthermore, in FLT3 mutant AML patient samples, we observed overexpress of WT1, a transcription factor known to bind homeobox gene family. This finding suggests a potential mechanism by which WT1 recruits TET2 to demethylate specific genomic regions. Integrating gene expression and DNA methylation analyses shed light on the impact of FLT3 mutations on cancer cell development and differentiation, supporting a two-hit model in AML. This research advances understanding of AML and fosters targeted therapeutic strategy development.

17.
Adv Sci (Weinh) ; 11(31): e2400726, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38881534

RESUMEN

Epigenetic mechanisms such as DNA methylation and hydroxymethylation play a significant role in depression. This research has shown that Ten-eleven translocation 2 (Tet2) deficiency prompts depression-like behaviors, but Tet2's transcriptional regulation remains unclear. In the study, bioinformatics is used to identify nuclear receptor subfamily 2 group E member 3 (Nr2e3) as a potential Tet2 regulator. Nr2e3 is found to enhance Tet2's transcriptional activity by binding to its promoter region. Nr2e3 knockdown in mouse hippocampus leads to reduced Tet2 expression, depression-like behaviors, decreased hydroxymethylation of synaptic genes, and downregulation of synaptic proteins like postsynaptic density 95 KDa (PSD95) and N-methy-d-aspartate receptor 1 (NMDAR1). Fewer dendritic spines are also observed. Nr2e3 thus appears to play an antidepressant role under stress. In search of potential treatments, small molecule compounds to increase Nr2e3 expression are screened. Azacyclonal (AZA) is found to enhance the Nr2e3/Tet2 pathway and exhibited antidepressant effects in stressed mice, increasing PSD95 and NMDAR1 expression and dendritic spine density. This study illuminates Tet2's upstream regulatory mechanism, providing a new target for identifying early depression biomarkers and developing treatments.


Asunto(s)
Proteínas de Unión al ADN , Depresión , Animales , Ratones , Depresión/genética , Depresión/metabolismo , Depresión/tratamiento farmacológico , Depresión/terapia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Factores de Transcripción COUP/genética , Factores de Transcripción COUP/metabolismo , Epigénesis Genética/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética
18.
Cell Stem Cell ; 31(8): 1127-1144.e17, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917807

RESUMEN

Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A- and TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared with HSCs from non-CH samples, revealing a non-cell-autonomous effect. However, DNMT3A- and TET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are resistant to the deleterious impact of inflammation and aging.


Asunto(s)
Envejecimiento , Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Dioxigenasas , Células Madre Hematopoyéticas , Inflamación , Mutación , Humanos , Inflamación/genética , Inflamación/patología , Envejecimiento/genética , Hematopoyesis Clonal/genética , Mutación/genética , Células Madre Hematopoyéticas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Hematopoyesis/genética
19.
Immunol Res ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869819

RESUMEN

The cytotoxicity feature to eliminate malignant cells makes natural killer (NK) cells a candidate for tumor immunotherapy. However, this scenario is currently hampered by inadequate understanding of the regulatory mechanisms of NK cell development. Ten-Eleven-Translocation 2 (Tet2) is a demethylase whose mutation was recently shown to cause phenotypic defects in NK cells. However, the role of Tet2 in the development and maturation of NK cells is not entirely clear. Here we studied the modulatory role of Tet2 in NK cell development and maturation by generating hematopoietic Tet2 knockout mice and mice with Tet2 conditional deletion in NKp46+ NK cells. The results showed that both hematopoietic and NK cell conditional deletion of Tet2 had no effect on the early steps of NK cell development, but impaired the terminal maturation of NK cells defined by CD11b, CD43, and KLRG1 expression. In the liver, Tet2 deletion not only prevented the terminal maturation of NK cells, but also increased the proportion of type 1 innate lymphoid cells (ILC1s) and reduced the proportion of conventional NK cells (cNK). Moreover, hematopoietic deletion of Tet2 lowered the protein levels of perforin in NK cells. Furthermore, hematopoietic deletion of Tet2 downregulated the protein levels of Eomesodermin (Eomes), but not T-bet, in NK cells. In conclusion, our results demonstrate that Tet2 plays an important role in the terminal maturation of NK cells, and the Eomes transcription factor may be involved.

20.
Exp Biol Med (Maywood) ; 249: 10051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881848

RESUMEN

Podocyte injury or dysfunction can lead to proteinuria and glomerulosclerosis. Zonula occludens 1 (ZO-1) is a tight junction protein which connects slit diaphragm (SD) proteins to the actin cytoskeleton. Previous studies have shown that the expression of ZO-1 is decreased in chronic kidney disease (CKD). Thus, elucidation of the regulation mechanism of ZO-1 has considerable clinical importance. Triptolide (TP) has been reported to exert a strong antiproteinuric effect by inhibiting podocyte epithelial mesenchymal transition (EMT) and inflammatory response. However, the underlying mechanisms are still unclear. We found that TP upregulates ZO-1 expression and increases the fluorescence intensity of ZO-1 in a puromycin aminonucleoside (PAN)-induced podocyte injury model. Permeablity assay showed TP decreases podocyte permeability in PAN-treated podocyte. TP also upregulates the DNA demethylase TET2. Our results showed that treatment with the DNA methyltransferase inhibitors 5-azacytidine (5-AzaC) and RG108 significantly increased ZO-1 expression in PAN-treated podocytes. Methylated DNA immunoprecipitation (MeDIP) and hydroxymethylated DNA immunoprecipitation (hMeDIP) results showed that TP regulates the methylation status of the ZO-1 promoter. Knockdown of TET2 decreased ZO-1 expression and increased methylation of its promoter, resulting in the increase of podocyte permeability. Altogether, these results indicate that TP upregulates the expression of ZO-1 and decreases podocyte permeability through TET2-mediated 5 mC demethylation. These findings suggest that TP may alleviate podocyte permeability through TET2-mediated hydroxymethylation of ZO-1.


Asunto(s)
Dioxigenasas , Diterpenos , Compuestos Epoxi , Fenantrenos , Podocitos , Proteína de la Zonula Occludens-1 , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Proteína de la Zonula Occludens-1/metabolismo , Fenantrenos/farmacología , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Dioxigenasas/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Permeabilidad/efectos de los fármacos , Humanos , Metilación de ADN/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA