Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39404742

RESUMEN

MXenes, a novel class of two-dimensional materials, possess exceptional physical and chemical properties, positioning them as promising candidates for lubricant additives. However, their potential is constrained by challenges in dispersion and stability, coupled with a paucity of research on interactions with additives in full-formula oils. In this study, hexadecylphosphonic acid (HDPA) is grafted onto Ti3C2Tx to formulate a polyalkylene glycol dispersion system. The findings reveal that the HDPA-modified Ti3C2Tx (HDPA-Ti3C2) is successfully synthesized, demonstrating superior dispersion stability and notable friction-reduction and antiwear properties. Notably, when combined with zinc dialkyl dithiophosphate (ZDDP), the HDPA-Ti3C2/ZDDP composite additive outperforms single additives in tribological performance, suggesting synergistic effects between them. This enhanced performance may be attributed to the formation of an amorphous polyphosphate tribofilm offering wear resistance, followed by the generation of a TiO2 tribofilm that further safeguards and repairs the worn surface, thereby enhancing the load-bearing capacity. Concurrently, the interlayer sliding mechanism of nanosheets, which substitutes the relative motion of the friction pair, reduces friction under boundary lubrication, ensuring prolonged effective lubrication. This work broadens the application prospects of Ti3C2Tx MXene for the design and development of commercial lubricating additives.

2.
Mikrochim Acta ; 191(7): 371, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839652

RESUMEN

Industrialization and agricultural demand have both improved human life and led to environmental contamination. Especially the discharge of a lot of poisonous and harmful gases, including ammonia, ammonia pollution has become a pressing problem. High concentrations of ammonia can pose significant threats to both the environment and human health. Therefore, accurate monitoring and detection of ammonia gas are crucial. To address this challenge, we have developed an ammonia gas sensor using In(OH)3/Ti3C2Tx nanocomposites through an in-situ electrostatic self-assembly process. This sensor was thoroughly characterized using advanced techniques like XRD, XPS, BET, and TEM. In our tests, the I/M-2 sensor exhibited remarkable performance, achieving a 16.8% response to 100 ppm NH3 at room temperature, which is a 3.5-fold improvement over the pure Ti3C2Tx MXene sensor. Moreover, it provides swift response time (20 s), high response to low NH3 concentrations (≤ 10 ppm), and excellent long-term stability (30 days). These exceptional characteristics indicate the immense potential of our In(OH)3/Ti3C2Tx gas sensor in ammonia detection.

3.
Nanomaterials (Basel) ; 14(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38786843

RESUMEN

Ti3C2Tx MXene, as a common two-dimensional material, has a wide range of applications in electrochemical energy storage. However, the surface forces of few-layer or monolayer Ti3C2Tx MXene lead to easy agglomeration, which hinders the demonstration of its performance due to the characteristics of layered materials. Herein, we report a facile method for preparing monolayer Ti3C2Tx MXene on nickel foam to achieve a self-supporting structure for supercapacitor electrodes under high electrostatic fields. Moreover, the specific capacitance varies with the deposition of different-concentration monolayer Ti3C2Tx MXene on nickel foam. As a result, Ti3C2Tx/NF has a high specific capacitance of 319 mF cm-2 at 2 mA cm-2 and an excellent long-term cycling stability of 94.4% after 7000 cycles. It was observed that the areal specific capacitance increases, whereas the mass specific capacitance decreases with the increasing loading mass. Attributable to the effect of the high electrostatic field, the self-supporting structure of the Ti3C2Tx/NF becomes denser as the concentration of the monolayer Ti3C2Tx MXene ink increases, ultimately affecting its electrochemical performance. This work provides a simple way to overcome the agglomeration problem of few-layer or monolayer MXene, then form a self-supporting electrode exhibiting excellent electrochemical performance.

4.
Environ Sci Pollut Res Int ; 31(26): 38232-38250, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801609

RESUMEN

Water pollutants of non-biodegradable toxic aromatic dye including Methylene blue (MB) and Rhodamine (RhB) are extremely carcinogenic thiazines used in various industries such as leather industry, paper industry, and the dyeing industry. The presence of dyes in wastewater causes severe threats to human health that are responsible for various harmful chronic or acute diseases and also shows an adverse impact on the environment as it reduces transparency and is harmful to water microorganisms. To overcome severe issues, many traditional techniques have been used to remove toxic pollutants, but these methods are insufficient to remove chemically stable dyes that remain in the treated wastewater. However, the photocatalytic degradation process is an efficient approach to degrade the dye up to the maximum extent with improved efficiency. Therefore, in this work, a new class of two-dimensional (2D) transition metal carbide of Titanium Carbide (Ti3C2Tx) MXene material was used for the organic dyes degradation such as MB and RhB using a photocatalytic process. A layered structure of hexagonal lattice symmetry of Ti3C2Tx MXene was successfully synthesized from the Titanium Aluminum Carbide of Ti3AlC2 bulk phase using an exfoliation process. Further, the XRD spectrum confirms the transformation of bulk MAX phase having (002) plane at 9.2° to Ti3C2Tx MXene of (002) plane at 8.88° confirms the successful removal of Al layer from MAX phase. A smooth, transparent, thin sheet-like morphology of Ti3C2Tx nanosheet size were found to be in the range of 70 to 150 nm evaluated from TEM images. Also, no holes or damages in the thin sheets were found after the treatment with strong hydrofluoric acid confirms the formation Ti3C2Tx layered sheets. The synthesized Ti3C2Tx MXene possesses excellent photocatalytic activity for the degradation of dyes MB, RhB, and mixtures of MB and RhB dyes. MB dye degraded with a degradation percentage efficiency of 99.32% in 30 min, while RhB dye was degraded upto 98.9% in 30 min. Also, experiments were conducted for degradation of mixture of MB and RhB dyes by UV light, and the degradation percentage efficiency were found to be 98.9% and 99.75% for mixture of MB and RhB dye in 45 min, respectively. Moreover, reaction rate constant (k) was determined for each dye of MB, RhB, and mixtures of MB and RhB and was found to be 0.0215 min-1 and 0.0058 min-1, and for mixtures, it was 0.0020 min-1 and 0.009 min-1, respectively.


Asunto(s)
Colorantes , Azul de Metileno , Rodaminas , Aguas Residuales , Contaminantes Químicos del Agua , Rodaminas/química , Azul de Metileno/química , Aguas Residuales/química , Colorantes/química , Contaminantes Químicos del Agua/química , Catálisis , Titanio/química
5.
Drug Deliv Transl Res ; 14(11): 3009-3031, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38713400

RESUMEN

In the realm of healthcare and the advancing field of medical sciences, the development of efficient drug delivery systems become an immense promise to cure several diseases. Despite considerable advancements in drug delivery systems, numerous challenges persist, necessitating further enhancements to optimize patient outcomes. Smart nano-carriers, for instance, 2D sheets nano-carriers are the recently emerging nanosheets that may garner attention for targeted delivery of bioactive compounds, drugs, and genes to kill cancer cells. Within these advancements, Ti3C2TX-MXene, characterized as a two-dimensional transition metal carbide, has surfaced as a prominent intelligent nanocarrier within nanomedicine. Its noteworthy characteristics facilitated it as an ideal nanocarrier for cancer therapy. In recent advancements in drug delivery research, Ti3C2TX-MXene 2D nanocarriers have been designed to release drugs in response to specific stimuli, guided by distinct physicochemical  parameters. This review emphasized the multifaceted role of Ti3C2TX-MXene as a potential carrier for delivering poorly hydrophilic drugs to cancer cells, facilitated by various polymer coatings. Furthermore, beyond drug delivery, this smart nanocarrier demonstrates utility in photoacoustic imaging and photothermal therapy, further highlighting its significant role in cellular mechanisms.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Neoplasias , Técnicas Fotoacústicas , Titanio , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Titanio/química , Titanio/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Portadores de Fármacos/química , Portadores de Fármacos/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos , Terapia Fototérmica/métodos , Nanopartículas/química , Nanopartículas/administración & dosificación
6.
Nanomaterials (Basel) ; 14(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38535685

RESUMEN

The combination of two-dimensional material MXene and one-dimensional metal oxide semiconductor can improve the carrier transmission rate, which can effectively improve sensing performance. We prepared a trimethylamine gas sensor based on MoO3 nanofibers and layered Ti3C2Tx MXene. Using electrospinning and chemical etching methods, one-dimensional MoO3 nanofibers and two-dimensional Ti3C2Tx MXene nanosheets were prepared, respectively, and the composites were characterized via XPS, SEM, and TEM. The Ti3C2Tx MXene-MoO3 composite material exhibits excellent room-temperature response characteristics to trimethylamine gas, showing high response (up to four for 2 ppm trimethylamine gas) and rapid response-recovery time (10 s/7 s). Further, we have studied the possible sensitivity mechanism of the sensor. The Ti3C2Tx MXene-MoO3 composite material has a larger specific surface area and more abundant active sites, combined with p-n heterojunction, which effectively improves the sensitivity of the sensor. Because of its low detection limit and high stability, it has the potential to be applied in the detection system of trimethylamine as a biomarker in exhaled air.

7.
ACS Sens ; 9(3): 1447-1457, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38412069

RESUMEN

Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH3) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a Ti3C2Tx MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned Ti3C2Tx-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH3 sensing ability. As a result, the 2D kirigami-shaped NH3 sensor exhibited a good response of 7% to 50 ppm of NH3 with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH3. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/H2O2/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.


Asunto(s)
Amoníaco , Celulasa , Nitritos , Elementos de Transición , Gelatina , Peróxido de Hidrógeno
8.
ACS Nano ; 17(19): 19387-19397, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37747920

RESUMEN

The concept of integrating diverse functional 2D materials into a heterostructure provides platforms for exploring physics that cannot be accessed in a single 2D material. Here, physically mixing two 2D materials, MXene and MoS2, followed by freeze-drying is utilized to successfully fabricate a 3D MoS2/MXene van der Waals heterostructure aerogel. The low-temperature synthetic approach effectively suppresses significant oxidation of the Ti3C2Tx MXene and results in a hierarchical and freestanding 3D heterostructure composed of high-quality MoS2 and MXene nanosheets. Functionalization of MXene with a MoS2 catalytic layer substantially improves sensitivity and long-term stability toward detection of NO2 gas, and computational studies are coupled with experimental results to elucidate that the mechanism behind enhancements in the gas-sensing properties is effective inhibition of HNO2 formation on the MXene surface, due to the presence of MoS2. Overall, this study has a great potential for expansion of applicability to other classes of two-dimensional materials as a general synthesis method, to be applied in future fields of catalysis and electronics.

9.
ACS Appl Mater Interfaces ; 15(25): 29939-29947, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37322878

RESUMEN

Ti3C2Tx MXene is a versatile two-dimensional material that exhibits exceptional properties, such as an abundance of surface functional groups that facilitate modifications. Additionally, Ti3C2Tx MXene possesses remarkable photothermal effects. In this study, ultrathin Ti3C2Tx nanosheets with dimensions (∼200 nm) suitable for biological applications were prepared by ultrasonication of larger pieces of Ti3C2Tx MXene with a cell pulverizer operating at a specific power. The ultrathin nanosheets exhibited a significant photothermal conversion efficiency (47.1%) under an 808 nm infrared laser irradiation. In addition, they showed an excellent mass extinction coefficient of 15.7 L g-1 cm-1. By exploiting the intermolecular force between these ultrathin nanosheets and doxorubicin (DOX), a drug loading efficiency of 72.8% was achieved. Through layer-by-layer surface modification of a sulfhydryl-modified polymethacrylic acid (PMAsh) shell and a transferrin (Tf) layer with targeting function, a multifunctional nanomedicine platform (Ti3C2Tx-DOX-PMAsh-Tf) was constructed. Experiments executed in vitro with cells and in vivo to inhibit tumors manifested that Ti3C2Tx is biocompatible. Furthermore, the results showed that the drug release behavior of Ti3C2Tx-DOX-PMAsh-Tf is responsive to glutathione (GSH) stimulation. The synergistic treatment of photothermal therapy and the anticancer drug DOX effectively achieved the inhibition of human hypopharyngeal squamous cell carcinoma.


Asunto(s)
Neoplasias de Cabeza y Cuello , Titanio , Humanos , Titanio/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello , Sistemas de Liberación de Medicamentos , Doxorrubicina/farmacología
10.
Small Methods ; 7(4): e2201694, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36802141

RESUMEN

MXenes with unique physicochemical properties have shown substantial potential in electromagnetic interference (EMI) shielding. However, the chemical instability and mechanical fragility of MXenes has become a major hurdle for their application. Abundant strategies have been dedicated to improving the oxidation stability of colloidal solution or mechanical properties of films, which always come at the expense of electrical conductivity and chemical compatibility. Here, hydrogen bond (H-bond) and coordination bond are employed to achieve chemical and colloidal stability of MXenes (0.1 mg mL-1 ) by occupying the reaction sites of Ti3 C2 Tx attacking of water and oxygen molecules. Compared to the Ti3 C2 Tx , the Ti3 C2 Tx modified with alanine via H-bond shows significantly improved oxidation stability (at room temperature over 35 days), while the Ti3 C2 Tx modified with cysteine by synergy of H-bond and coordination bond can be maintained even after 120 days. Simulation and experimental results verify the formation of H-bond and Ti-S bond by a Lewis acid-base interaction between Ti3 C2 Tx and cysteine. Furthermore, the synergy strategy significantly improves the mechanical strength of the assembled film (up to 78.1 ± 7.9 MPa), corresponding the increment of 203% compared to untreated one, almost without compromising the electrical conductivity and EMI shielding performance.

11.
Nanomaterials (Basel) ; 12(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36558316

RESUMEN

Nitrogen dioxide is one origin of air pollution from fossil fuels with the potential to cause great harm to human health in low concentrations. Therefore, low-cost, low-power-consumption sensors for low-concentration NO2 detection are essential. Herein, heterojunction by SnO2 quantum wires, a traditional metal oxide NO2 sensing material, and Ti3C2Tx MXene, a novel type of 2D layered material, was synthesized using a simple solvothermal method for enhancing gas-sensing performance and reducing operating temperature. The operating temperature was reduced to 80 °C, with a best performance of 27.8 and a fast response and recovery time (11 s and 23 s, respectively). The SnO2 and Ti3C2Tx MXene composite exhibits high speed and low detection limit due to the construction of the heterojunction with high conductive Ti3C2Tx MXene. The selectivity and stability of gas sensors are carried out. This could enable the realization of fast response, high-sensitivity, and selective NO2 sensing under low operating temperatures.

12.
ACS Appl Mater Interfaces ; 14(46): 52379-52389, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36377783

RESUMEN

A multifunctional electronic skin with thermal radiation regulation and electromagnetic interference (EMI) shielding is urgent for electronic systems because of the thermal radiation emission and electromagnetic wave pollution. Herein, a flexible electronic skin was designed and fabricated, where the polyaniline (PANI) served as the functional layer and Ti3C2Tx MXene was employed as the conductive electrode. The transformation of emeraldine salt (ES) and leucoemeraldine base (LB) of PANI makes the skin achieve an infrared emissivity modulation, and the electromagnetic loss of PANI and ultrahigh electrical conductivity of Ti3C2Tx MXene make it exhibit EMI shielding ability. Benefiting from the special structural design, the multifunctional skin with a small thickness (0.3 mm) and low surface density (0.06 g/cm2) exhibits an excellent infrared emissivity modulation ability (Δε) of 0.32 with emissive power of 119.1 W/m2 at the wavelength range of 2.5-25 µm and total shielding effectiveness (SET) of 36.3 dB over the X-band (8.2-12.4 GHz). Meanwhile, the multifunctional skin remains black in the visible spectrum but a changeable color in the infrared spectrum. Even after repeated bending and twisting, the multifunctional skin still maintains a good emissivity adjustment. The simultaneous realization of dynamic thermal radiation regulation and EMI shielding endows the skin promising potential for various fields, such as adaptive infrared camouflage, thermal regulation, anticounterfeiting, and EMI shielding-related crossing field.

13.
ACS Nano ; 16(11): 19335-19345, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36278500

RESUMEN

For gas sensors, the ultrasensitive and highly selective detection of multiple components is of great significance in a wide range of applications extending from environment to healthcare, which is still a long-term challenge due to the single sensing mechanism of most sensors. Here, we combine the advantages of microfluidic chips and surface-enhanced Raman spectroscopy (SERS) spectra to fabricate a smart single-chip for simultaneously detecting an arbitrary combination of VOCs that incorporates different detection units, working on either a physisorption or chemisorption mechanism. Full integration of microfluidic and multiplex nanostructure components on one chip permits programmable design for sensing multifarious volatile compounds, and enables on-chip signal amplifications with increased reproducibility. As a proof-of-principle experiment, we demonstrate the simultaneous identification of 9 different gases that belong to aromatic compounds, aldehydes, ketones, or sulfides in one mixture, with high sensitivity (ppb level), high selectivity, and high robustness (error ∼8%). We further evaluated the application of our universal gas sensor in two scenarios including indoor air pollution monitoring and exhaled breath-based disease diagnosis. We expect that our design will improve the various practical applications of gas sensors.


Asunto(s)
Compuestos Orgánicos Volátiles , Reproducibilidad de los Resultados , Gases/química , Espectrometría Raman , Aldehídos
14.
Micromachines (Basel) ; 13(10)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296064

RESUMEN

A representative of titanium carbide MXene, Ti3C2Tx is a promising candidate for high performance gas sensing and has attracted significant attention. However, MXene naturally has a multilayer structure with low porosity, which prevents its gas-sensing activity. Zinc oxide (ZnO) has long been utilized as a gas detector. Despite its good response to multiple gases, high operation temperature has limited its widespread use as a gas-sensing material. In this study, a room-temperature toxic gas sensor was prepared from ZnO/Ti3C2Tx MXene nanocomposite consisting of 2D few-layered MXene and 1D ZnO nanoparticles. A simple technique for synthesizing the nanocomposite was established. The physicochemical properties of the nanocomposite were fine-controlled with more active sites and higher porosity. The sensitivity and gas-selectivity of the sensing material were closely examined. The nanocomposite showed enhanced response and recovery behaviors to toxic gases, which outperformed pure Ti3C2Tx MXene and pure ZnO. This study offers a practical strategy by which to increase the gas-sensing performance of Ti3C2Tx MXene, and expands comprehensive understanding of the gas-sensing process of ZnO/Ti3C2Tx p-n heterostructure.

15.
Micromachines (Basel) ; 13(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014224

RESUMEN

In this work, a composite strain sensor is fabricated by synthesizing MXene and deposition of polypyrrole on top of the flexible electrospun PVDF nanofibers. The fabricated sensor exhibits a conductive network constructed with MXene and polypyrrole of microcracks network structure, demonstrating its strain sensing properties. The presence of these microcracks serves as mechanical weak points, which leads to sensitivity enhancement, while the electrospun fiber substrate act as a cushion for strain loading under large deformations. The as-prepared MXene@Polypyrrole PVDF sensor has a gauge factor range of 78-355 with a sensing range between 0-100%. Besides strain deformations, the sensor can operate in torsional deformation and human motion, indicating the sensor's potential as a wearable health monitoring device.

16.
ACS Sens ; 7(7): 1874-1882, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35820060

RESUMEN

MXenes have shown exceptional electrochemical properties and demonstrate great promise in chemiresistive gas analysis applications. However, their sensing applications still face low sensitivity and specificity, slow response, and poor stability among the many challenges. Herein, a novel synthetic approach is reported to produce single-atom Pt (Pt SA)-implanted Ti3C2Tx MXene nanosheets as the sensing channel in field-effect transistor (FET) gas sensors. This is a pioneer study of single-atom catalysts loaded on MXene nanosheets for gas detection, which demonstrates that Pt SA can greatly enhance the sensing performance of pristine Ti3C2Tx. The Pt SA-Ti3C2Tx sensor exhibits high sensitivity and specificity toward ppb level (a low detection limit of 14 ppb) triethylamine (TEA) with good multicycle sensing performance. Moreover, the mechanism study and density functional theory (DFT) simulation show that the chemical sensitization effect and TEA adsorption enhancement from highly catalytic and uniformly distributed Pt SA lead to the enhanced sensing performances. This work presents a new prospect of single-atom catalysts for gas analysis applications, which will promote the development of cutting-edge sensing techniques for gas detection for public health and environment.


Asunto(s)
Compuestos Orgánicos Volátiles , Adsorción , Catálisis , Titanio
17.
Electrophoresis ; 43(20): 2033-2043, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35856660

RESUMEN

The detection of cancer biomarkers is of great significance for the early screening of cancer. Detecting the content of sarcosine in blood or urine has been considered to provide a basis for the diagnosis of prostate cancer. However, it still lacks simple, high-precision and wide-ranging sarcosine detection methods. In this work, a Ti3 C2 TX /Pt-Pd nanocomposite with high stability and excellent electrochemical performance has been synthesized by a facile one-step alcohol reduction and then used on a glassy carbon electrode (GCE) with sarcosine oxidase (SOx ) to form a sarcosine biosensor (GCE/Ti3 C2 TX /Pt-Pd/SOx ). The prominent electrocatalytic activity and biocompatibility of Ti3 C2 TX /Pt-Pd enable the SOx to be highly active and sensitive to sarcosine. Under the optimized conditions, the prepared biosensor has a wide linear detection range to sarcosine from 1 to 1000 µM with a low limit of detection of 0.16 µM (S/N = 3) and a sensitivity of 84.1 µA/mM cm2 . Besides, the reliable response in serum samples shows its potential in the early diagnosis of prostate cancer. More importantly, the successful construction and application of the amperometric biosensor based on Ti3 C2 TX /Pt-Pd will provide a meaningful reference for detecting other cancer biomarkers.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Próstata , Humanos , Masculino , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , Carbono/química , Límite de Detección , Neoplasias de la Próstata/diagnóstico , Sarcosina , Sarcosina-Oxidasa/química , Titanio , Platino (Metal) , Plomo
18.
Artículo en Inglés | MEDLINE | ID: mdl-35537183

RESUMEN

In this work, a two-dimensional (2D) MOF sheet with electrochemiluminescence (ECL) activity is prepared with Ti3C2Tx MXene as the metal precursor and the meso-tetra(4-carboxyl-phenyl) porphyrin (H2TCPP) as the organic ligand. The atomically thin 2D Ti3C2Tx MXene is utilized as the metal precursor and soft template to produce the MOF with a 2D nanosheet morphology (Ti3C2Tx-PMOF). Ti3C2Tx MXene is a kind of strong electron acceptor, which can deprotonate H2TCPP due to the high electronegativity and low work function of its terminal atoms. The deprotonated H2TCPP continues to bind with Ti atoms to form the 2D MOF sheet. The ECL activity is inherited from H2TCPP and stabilized by introducing Ag NPs. Then, we construct an ECL biosensor based on the Ag NPs/Ti3C2Tx-PMOF to detect the oral cancer overexpressed 1 (ORAOV 1). A bipedal three-dimensional DNA walker strategy is adopted to further improve the biosensor sensitivity. As expected, the biosensor exhibits sterling sensitivity and selectivity. The ECL biosensor responds linearly to ORAOV 1 concentrations in the range of 10 fM-1 nM, and the detection limit is as low as 3.3 fM (S/N = 3). It means that Ag NPs/Ti3C2Tx-PMOF is a potential material to design and construct the high-performance ECL biosensors.

19.
ACS Appl Mater Interfaces ; 14(18): 21474-21485, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35486453

RESUMEN

Multiresponsive and high-performance flexible actuators with a simple configuration, high mechanical strength, and low-power consumption are highly desirable for soft robotics. Here, a novel mechanically robust and multiresponsive Ti3C2Tx MXene-based actuator with high actuation performance via dual-mechanism synergistic effect driven by the hygroexpansion of bacterial cellulose (BC) layer and the thermal expansion of biaxially oriented polypropylene (BOPP) layer is developed. The actuator is flexible and shows an ultrahigh tensile strength of 195 MPa. Unlike the conventional bimorph-structured actuators based on a single-mechanism, the actuator developed provides a favorable architecture for dual-mechanism synergism, resulting in exceptionally reversible actuation performance under electricity and near-infrared (NIR) light stimuli. Typically, the developed actuator can produce the largest bending angle (∼400°) at the lowest voltage (≤4 V) compared with that reported previously for single mechanism soft actuators. Furthermore, the actuator also can be driven by a NIR light at a 2 m distance, displaying an excellent long-distance photoresponsive property. Finally, various intriguing applications are demonstrated to show the great potential of the actuator for soft robotics.

20.
J Nanobiotechnology ; 20(1): 119, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264180

RESUMEN

In this work, Ti3C2Tx MXene was identified as efficient nanozyme with area-dependent electrocatalytic activity in oxidation of phenolic compounds, which originated from the strong adsorption effect between the phenolic hydroxyl group and the oxygen atom on the surface of Ti3C2Tx MXene flake. On the basis of the novel electrocatalytic activity, Ti3C2Tx MXene was combined with alkaline phosphatase to construct a novel cascading catalytic amplification strategy using 1-naphthyl phosphate (1-NPP) as substrate, thereby realizing efficient electrochemical signal amplification. Taking advantage of the novel cascading catalytic amplification strategy, an electrochemical biosensor was fabricated for BCR/ABL fusion gene detection, which achieved excellent sensitivity with linear range from 0.2 fM to 20 nM and limit of detection down to 0.05 fM. This biosensor provided a promising tool for ultrasensitive fusion gene detection in early diagnosis of chronic myelogenous leukemia and acute lymphocytic leukemia. Moreover, the manageable catalytic activity of MXene broke a path for developing nanozymes, which possessed enormous application potential in not only electrochemical analysis but also the extensive fields including organic synthesis, pollutant disposal and so on.


Asunto(s)
Técnicas Biosensibles , Titanio , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA