Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.445
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biol (Mosk) ; 58(2): 220-233, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39355880

RESUMEN

RNA polymerase III synthesizes a wide range of noncoding RNAs shorter than 400 nucleotides in length. These RNAs are involved in protein synthesis (tRNA, 5S rRNA, and 7SL RNA), maturation, and splicing of different types of RNA (RPR, MRP RNA, and U6 snRNA), regulation of transcription (7SK RNA), replication (Y RNA), and intracellular transport (vault RNA). BC200 and BC1 RNA genes are transcribed by RNA polymerase III in neurons only where these RNAs regulate protein synthesis. Mutations in the regulatory elements of the genes transcribed by RNA polymerase III as well as in transcription factors of this RNA polymerase are associated with the development of a number of diseases, primarily oncological and neurological. In this regard, the mechanisms of regulation of the expression of the genes containing various RNA polymerase III promoters were actively studied. This review describes the structural and functional classification of polymerase III promoters, as well as the factors involved in the regulation of promoters of different types. A number of examples demonstrate the role of the described factors in the pathogenesis of human diseases.


Asunto(s)
Regiones Promotoras Genéticas , ARN Polimerasa III , Transcripción Genética , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Regulación de la Expresión Génica
2.
Mol Biol (Mosk) ; 58(2): 295-304, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39355886

RESUMEN

Multiple exogenous or endogenous factors alter gene expression patterns by different mechanisms that are poorly understood. We used RNA-Seq analysis in order to study changes in gene expression in melanoma cells that are capable of vasculogenic mimicry that is inhibited upon the action of an inhibitor of vasculogenic mimicry. Here, we show that the drug induces a strong upregulation of 50 genes that control the cell cycle and microtubule cytoskeleton coupled with a strong downregulation of 50 genes that control different cellular metabolic processes. We found that both groups of genes are simultaneously regulated by multiple sets of transcription factors. We conclude that one way for coordinated regulation of large groups of genes is regulation simultaneously by multiple transcription factors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma , Humanos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Melanoma/tratamiento farmacológico , Línea Celular Tumoral , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biosíntesis , Ciclo Celular/efectos de los fármacos
3.
Hypertension ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355924

RESUMEN

BACKGROUND: Primary aldosteronism (PA), the most common curable salt-dependent form of arterial hypertension, features renal K+ loss and enhanced Na+ reabsorption. We investigated whether the electrolyte, water, and TonEBP (tonicity-responsive enhancer binding protein)/NFAT5 (nuclear factor of activated T cells 5) content is altered in the skin of patients with PA and corrected by surgical cure. METHODS: We obtained skin biopsies from 80 subjects: 49 consecutive patients with PA, optimally treated with a mineralocorticoid receptor antagonist; 6 essential hypertensives; and 25 normotensive controls. We measured Na+, K+, water content with atomic absorption spectroscopy after ashing, and NFAT5 mRNA with digital droplet polymerase chain reaction. The patients with PA were retested after adrenalectomy. RESULTS: We discovered a higher dry weight of the skin biopsy specimen at surgery than at follow-up (P<0.001) and a direct correlation with electrolyte and water content (all P<0.01), indicating the need for dry weight adjustment of electrolyte and water data. Surgical cure of PA markedly increased skin dry weight-adjusted K+ (from 1.14±0.1 to 2.81±0.27 µg/mg; P<0.001) and water content (from 2.92±1.4 to 3.85±0.23 mg/mg; P<0.001), but left dry weight-adjusted skin Na+ content unaffected. In patients with PA, NFAT5 mRNA was higher (P=0.031) than in normotensive controls and decreased after surgery (P=0.035). CONCLUSIONS: Despite mineralocorticoid receptor antagonist treatment ensuring normokalemia, the patients with PA had a skin cell K+ depletion that was corrected by adrenalectomy. The activated NFAT5/TonEBP pathway during mineralocorticoid receptor antagonist administration suggests enhanced skin Na+ lymphatic drainage and can explain the lack of overt skin Na+ accumulation in patients with PA. Its deactivation after surgical cure can account for the lack of skin Na+ decrease postadrenalectomy. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT06090617.

4.
Cell Commun Signal ; 22(1): 470, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354571

RESUMEN

PURPOSE: DNA methylation prominently inactivates tumor suppressor genes and facilitates oncogenesis. Previously, we delineated a chromosome 18 deletion encompassing the erythrocyte membrane protein band 4.1-like 3 (EPB41L3) gene, a progenitor for the tumor suppressor that is differentially expressed in adenocarcinoma of the lung-1 (DAL-1) in gastric cancer (GC). METHODS: Our current investigation aimed to elucidate EPB41L3 expression and methylation in GC, identify regulatory transcription factors, and identify affected downstream pathways. Immunohistochemistry demonstrated that DAL-1 expression is markedly reduced in GC tissues, with its downregulation serving as an independent prognostic marker. RESULTS: High-throughput bisulfite sequencing of 70 GC patient tissue pairs revealed that higher methylation of non-CpGs in the EPB41L3 promoter was correlated with more malignant tumor progression and higher-grade tissue classification. Such hypermethylation was shown to diminish DAL-1 expression, thus contributing to the malignancy of GC phenotypes. The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) was found to partially restore DAL-1 expression. Moreover, direct binding of the transcription factor CDC5L to the upstream region of the EPB41L3 promoter was identified via chromosome immunoprecipitation (ChIP)-qPCR and luciferase reporter assays. Immunohistochemistry confirmed the positive correlation between CDC5L and DAL-1 protein levels. Subsequent RNA-seq analysis revealed that DAL-1 significantly influences the extracellular matrix and space-related pathways. GC cell RNA-seq post-5-Aza-CdR treatment and single-cell RNA-seq data of GC tissues confirmed the upregulation of AREG and COL17A1, pivotal tumor suppressors, in response to EPB41L3 demethylation or overexpression in GC epithelial cells. CONCLUSION: In conclusion, this study elucidates the association between non-CpG methylation of EPB41L3 and GC progression and identifies the key transcription factors and downstream molecules involved. These findings enhance our understanding of the role of EPB41L3 in gastric cancer and provide a solid theoretical foundation for future research and potential clinical applications.


The EPB41L3 gene, frequently exhibiting haplotype deletions and reduced expression in gastric cancer tissues, points to its potential role as a tumor suppressor. However, tumor suppressor genes are not only influenced by genomic deletions but also by their methylation status. Our study highlights the significantly lower expression of EPB41L3 in gastric cancer compared to adjacent non-cancerous tissues across 262 patients. We also discovered that elevated non-CpG island methylation of EPB41L3 correlates strongly with tumor malignancy progression, based on the analysis of 70 paired gastric cancer samples. Moreover, we identified CDC5L as a crucial transcription factor interacting with the EPB41L3 promoter. Integrative analyses of transcriptomic and single-cell sequencing data further revealed that AREG and COL17A1 are key downstream molecules regulated by DAL-1, with their expression tightly controlled by EPB41L3 methylation and expression levels. These insights enhance our understanding of EPB41L3's role in gastric cancer and could open new avenues for targeted therapies.


Asunto(s)
Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Regiones Promotoras Genéticas , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Metilación de ADN/genética , Femenino , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Línea Celular Tumoral , Anciano , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos
5.
Mol Oncol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374163

RESUMEN

Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men. Moreover, bone metastases are incurable and very painful. Hepatocyte growth factor receptor (MET) and fusion of genes encoding E26 transformation-specific (ETS) transcription factors are both involved in the progression of the disease. ETS gene fusions, in particular, have the ability to induce the migratory and invasive properties of prostate cancer cells, whereas MET receptor, through its signalling cascades, is able to activate transcription factor expression. MET signalling and ETS gene fusions are intimately linked to high-grade prostate cancer. However, the collaboration of these factors in prostate cancer progression has not yet been investigated. Here, we show, using cell models of advanced prostate cancer, that ETS translocation variant 1 (ETV1) and transcriptional regulator ERG (ERG) transcription factors (members of the ETS family) promote tumour properties, and that activation of MET signalling enhances these effects. By using a specific MET tyrosine kinase inhibitor in a humanised hepatocyte growth factor (HGF) mouse model, we also establish that MET activity is required for ETV1/ERG-mediated tumour growth. Finally, by performing a comparative transcriptomic analysis, we identify target genes that could play a relevant role in these cellular processes. Thus, our results demonstrate for the first time in prostate cancer models a functional interaction between ETS transcription factors (ETV1 and ERG) and MET signalling that confers more aggressive properties and highlight a molecular signature characteristic of this combined action.

6.
Pathologie (Heidelb) ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377913

RESUMEN

BACKGROUND: Pancreatic neuroendocrine tumors (PanNETs) show pronounced heterogeneity in terms of hormone and transcription factor (TF) expression. TFs such as ARX and PDX1 are related to alpha- and beta-cell-type features, respectively, and partly associate with patient outcome. However, detailed studies correlating hormone expression, histology, and clinical data are lacking. OBJECTIVE: The aim of this study was to identify subtypes of PanNETs that associate with histological, hormonal, and prognostic findings. METHODS: A total of 185 resected PanNETs were divided into five subtypes (types A1, A2, B, C, and D) by cluster analysis based on expression of four TFs (ARX, PDX1, ISL1, and CDX2) and correlated to the expression of hormones and DAXX/ATRX as well as ALT activation status, histology, and progression-free survival. RESULTS: Subgroup A1 (ISL1+/ARX+/PDX-/CDX2-) was most frequent (46%), followed by type B (18%; ISL1+/ARX-/PDX+/CDX2-), A2 (15%; ISL1+/ARX+/PDX+/CDX2-), C (15%; ISL1-/ARX-/PDX-/CDX2-), and D (5%; ISL1-/ARX-/PDX+/CDX2+). Subgroups A1 and A2 showed a strong association with a trabecular growth pattern and glucagon and pancreatic polypeptide (PP) expression (p < 0.001), while A2 was in addition associated with gastrin expression. Subgroup B was associated with insulin production (p < 0.001) and included all 17 insulinomas. Subgroup C was associated with solid morphology and expression of serotonin, calcitonin, and adrenocorticotropic hormone (ACTH). Subgroup D showed solid morphology, expression of ACTH, somatostatin, or serotonin and had the shortest disease-free survival (p < 0.01). ALT positivity was associated with poorer outcome in types A1 and A2 but not in other types. CONCLUSION: PanNETs can be categorized into five subgroups based on different TF signatures, which associate strongly with histology, hormone production, functionality, and patient outcome.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39384103

RESUMEN

PURPOSE: Although post-irradiation hyposalivation significantly impairs patient quality of life, the underlying mechanisms driving radiation-induced salivary gland fibrosis and hyposalivation remain poorly understood. This study aims to explore the role of calcium-mediated signaling pathways in radiation-induced salivary gland fibrosis. MATERIALS AND METHODS: Primary human submandibular gland (SG) cells and C57BL/6J female mouse SGs were exposed to irradiation to model fibrosis development. Following 15 Gy irradiation exposure, RNA sequencing and bioinformatic analysis were conducted on mouse SGs. The effects of Store-Operated Calcium Entry (SOCE) inhibition using SKF96365 and YM58483 on fibrosis markers were assessed in vitro and in vivo. Additionally, the involvement of ORAI2 protein and the newly identified JNK/NFAT1/TGF-ß1 signaling axis in SG fibrosis was explored. RESULTS: We identified that the calcium release-activated calcium modulator ORAI2 was important in promoting early-stage post-irradiation fibrosis in SGs. Calcium channel signaling was activated in both human patients and irradiated C57BL/6J female mice SGs. Inhibition of SOCE signaling effectively blocked fibrosis in an ORAI2-dependent manner 30 days after irradiation. Our mechanistic studies revealed a novel ORAI2/JNK/NFAT1 axis within the SOCE pathway critical in driving TGF-ß1-mediated fibrogenesis. Encouragingly, pharmacological inhibition of NFAT1 significantly mitigated radiation-induced SG fibrosis and restored saliva flow to 84.61% of normal levels in treated mice 30 days after irradiation, without detectable side effects. CONCLUSIONS: Our findings highlight the significance of the ORAI2-mediated calcium signaling pathway, specifically via the ORAI2/JNK/NFAT1 axis, in promoting TGF-ß1 expression and contributing to the development of early-stage salivary gland fibrosis following irradiation exposure. Targeting the ORAI2/JNK/NFAT1 axis emerges as a promising therapeutic strategy to alleviate radiation-induced hyposalivation and fibrosis, potentially improving the quality of life for patients undergoing radiotherapy.

8.
Mol Cell ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39383879

RESUMEN

The role of long non-coding RNAs (lncRNAs) in malignant cell transformation remains elusive. We previously identified an enhancer-associated lncRNA, LINC01116 (named HOXDeRNA), as a transformative factor converting human astrocytes into glioma-like cells. Employing a combination of CRISPR editing, chromatin isolation by RNA purification coupled with sequencing (ChIRP-seq), in situ mapping RNA-genome interactions (iMARGI), chromatin immunoprecipitation sequencing (ChIP-seq), HiC, and RNA/DNA FISH, we found that HOXDeRNA directly binds to CpG islands within the promoters of 35 glioma-specific transcription factors (TFs) distributed throughout the genome, including key stem cell TFs SOX2, OLIG2, POU3F2, and ASCL1, liberating them from PRC2 repression. This process requires a distinct RNA quadruplex structure and other segments of HOXDeRNA, interacting with EZH2 and CpGs, respectively. Subsequent transformation activates multiple oncogenes (e.g., EGFR, miR-21, and WEE1), driven by the SOX2- and OLIG2-dependent glioma-specific super enhancers. These results help reconstruct the sequence of events underlying the process of astrocyte transformation, highlighting HOXDeRNA's central genome-wide activity and suggesting a shared RNA-dependent mechanism in otherwise heterogeneous and multifactorial gliomagenesis.

9.
Plant Pathol J ; 40(5): 512-524, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39397305

RESUMEN

Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.

10.
Clin Exp Pharmacol Physiol ; 51(11): e13911, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39360626

RESUMEN

Sepsis-induced acute lung injury (ALI) is characterized by inflammatory damage to pulmonary endothelial and epithelial cells. The aim of this study is to probe the significance and mechanism of tripartite motif-containing protein 21 (TRIM21) in sepsis-induced ALI. The sepsis-induced ALI mouse model was established by cecum ligation and puncture. The mice were infected with lentivirus and treated with proteasome inhibitor MG132. The lung respiratory damage, levels of interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), IL-10 and pathological changes were observed. The expression levels of TRIM21, interferon regulatory factors 1 (IRF1) and triggering receptor expressed on myeloid cells 2 (TREM2) were measured and their interactions were analysed. The ubiquitination level of IRF1 was detected. TRIM21 and TREM2 were downregulated and IRF1 was upregulated in sepsis-induced ALI mice. TRIM21 overexpression eased inflammation and lung injury. TRIM21 promoted IRF1 degradation via ubiquitination modification. IRF1 bonded to the TREM2 promoter to inhibit its transcription. Overexpression of IRF1 or silencing TREM2 reversed the improvement of TRIM21 overexpression on lung injury in mice. In conclusion, TRIM21 reduced IRF1 expression by ubiquitination to improve TREM2 expression and ameliorate sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Factor 1 Regulador del Interferón , Ribonucleoproteínas , Sepsis , Ubiquitinación , Animales , Sepsis/metabolismo , Sepsis/complicaciones , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/genética , Ratones , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Masculino , Ratones Endogámicos C57BL
11.
Synth Biol (Oxf) ; 9(1): ysae013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39399720

RESUMEN

In vitro metabolic systems allow the reconstitution of natural and new-to-nature pathways outside of their cellular context and are of increasing interest in bottom-up synthetic biology, cell-free manufacturing, and metabolic engineering. Yet, the analysis of the activity of such in vitro networks is very often restricted by time- and cost-intensive methods. To overcome these limitations, we sought to develop an in vitro transcription (IVT)-based biosensing workflow that is compatible with the complex conditions of in vitro metabolism, such as the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle, a 27-component in vitro metabolic system that converts CO2 into glycolate. As proof of concept, we constructed a novel glycolate sensor module that is based on the transcriptional repressor GlcR from Paracoccus denitrificans and established an IVT biosensing workflow that allows us to quantify glycolate from CETCH samples in the micromolar to millimolar range. We investigate the influence of 13 (shared) cofactors between the two in vitro systems to show that Mg2+, adenosine triphosphate , and other phosphorylated metabolites are critical for robust signal output. Our optimized IVT biosensor correlates well with liquid chromatography-mass spectrometry-based glycolate quantification of CETCH samples, with one or multiple components varying (linear correlation 0.94-0.98), but notably at ∼10-fold lowered cost and ∼10 times faster turnover time. Our results demonstrate the potential and challenges of IVT-based systems to quantify and prototype the activity of complex reaction cascades and in vitro metabolic networks.

12.
Cancer Med ; 13(19): e70303, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39403898

RESUMEN

BACKGROUND: The highly homologous T-box transcription factors TBX2 and TBX3 are critical for embryonic development, and their overexpression in postnatal tissues contributes to a wide range of malignancies, including melanoma and rhabdomyosarcoma. Importantly, when TBX2 and TBX3 are depleted in cancers where they are overexpressed, the malignant phenotype is inhibited, and they have therefore been regarded as druggable targets. However, the time and costs associated with de novo drug development are challenging and result in drugs that are costly, especially for patients in low- and middle-income countries. In the current study, we therefore combined a targeted and drug repurposing approach to identify drugs that are expected to be more efficacious and cost-effective with significantly reduced side effects. METHODS: A high-throughput cell-based immunofluorescence screen was performed to identify drugs in the Pharmakon 1600 drug library that can negatively regulate TBX2 and/or TBX3 levels. "Hit" drugs were validated for their effect on TBX2/TBX3 levels and cytotoxicity in TBX2/TBX3-dependent melanoma and rhabdomyosarcoma cells. To this end, immunofluorescence, western blotting, quantitative real-time PCR, and MTT cell viability assays were performed. RESULTS: Niclosamide, piroctone olamine, and pyrvinium pamoate, were identified as TBX2 and/or TBX3-targeting drugs, and they exhibited cytotoxicity in a TBX2/TBX3-dependent manner. Furthermore, these "Hit" drugs were shown to induce senescence and/or apoptosis. CONCLUSIONS: Niclosamide, piroctone olamine, and pyrvinium pamoate are promising, cost-effective therapeutic agents for the treatment of TBX2/TBX3-dependent cancers.


Asunto(s)
Antineoplásicos , Reposicionamiento de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Proteínas de Dominio T Box , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Humanos , Reposicionamiento de Medicamentos/métodos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
14.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273087

RESUMEN

Activating enhancer-binding protein 2 (AP-2) is a family of transcription factors (TFs) that play crucial roles in regulating embryonic and oncogenic development. In addition to splice isoforms, five major family members encoded by the TFAP2A/B/C/D/E genes have been identified in humans, i.e., AP-2α/ß/γ/δ/ε. In general, the first three TFs have been studied more thoroughly than AP-2δ or AP-2ε. Currently, there is a relatively limited body of literature focusing on the AP-2 family in the context of gastroenterological research, and a comprehensive overview of the existing knowledge and recommendations for further research directions is lacking. Herein, we have collected available gastroenterological data on AP-2 TFs, discussed the latest medical applications of each family member, and proposed potential future directions. Research on AP-2 in gastrointestinal tumors has predominantly been focused on the two best-described family members, AP-2α and AP-2γ. Surprisingly, research in the past decade has highlighted the importance of AP-2ε in the drug resistance of gastric cancer (GC) and colorectal cancer (CRC). While numerous questions about gastroenterological disorders await elucidation, the available data undoubtedly open avenues for anti-cancer targeted therapy and overcoming chemotherapy resistance. In addition to gastrointestinal cancers, AP-2 family members (primarily AP-2ß and marginally AP-2γ) have been associated with other health issues such as obesity, type 2 diabetes, liver dysfunction, and pseudo-obstruction. On the other hand, AP-2δ has been poorly investigated in gastroenterological disorders, necessitating further research to delineate its role. In conclusion, despite the limited attention given to AP-2 in gastroenterology research, pivotal functions of these transcription factors have started to emerge and warrant further exploration in the future.


Asunto(s)
Factor de Transcripción AP-2 , Humanos , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/metabolismo , Animales
15.
Blood Cells Mol Dis ; 110: 102894, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303396

RESUMEN

GATAs are a family of transcription factors consisting of six members. Particularly, GATA1 and GATA2 have been reported to promote the development of erythrocytes, megakaryocytes, eosinophils, and mast cells. However, little information is available on the extracellular ligands that promote GATA1 expression. We evaluated whether growth hormone (GH) is an extracellular stimulator that participates in the signal transduction of GATAs, focusing on GATA1 expression in hematopoietic cell lineages. We used a reporter assay, RT-PCR, real-time quantitative PCR, and western blotting to evaluate GH-induced expression of GATA1 and GATA2 in the human erythroleukemic cell line K562 and the non-erythroid cell line U937. GATA1 expression in these hematopoietic cell lines increased at the transcriptional and protein levels in the presence of GH, and was inhibited by a STAT5 specific inhibitor. Cells transfected with activated STAT5B showed increased expression of GATA1. We identified functional STAT5B consensus sequences as binding site-158 bp from the transcription starting site in the GATA1 promoter region. These results suggest that GH directly induces GATA1 expression via GHR/JAK/STAT5 and is related to hematopoietic cell proliferation.

16.
Res Vet Sci ; 180: 105426, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39342922

RESUMEN

Avian pathogenic Escherichia coli (APEC) leads to significant economic losses in the poultry industry worldwide and restricts the development of the poultry industry. Oxidative stress, through the production of reactive oxygen species (ROS), damage iron­sulfur (FeS) clusters, cysteine and methionine protein residues, and DNA, and then result in bacterial cells death. APEC has evolved a series of regulation systems to sense and quickly and appropriately respond to oxidative stress. Quorum sensing (QS), second messenger (SM), transcription factors (TFs), small regulatory RNAs (sRNAs), and two-component system (TCS) are important regulation systems ubiquitous in bacteria. It is of great significance to control APEC infection through investigating the molecular regulation mechanism on APEC adapting to oxidative stress. However, how the cross-talk among these regulation systems co-regulates transcription of oxidative stress-response genes in APEC has not been reported. This review suggests exploring connector proteins that co-regulate these regulation systems that co-activate transcription of oxidative stress-response genes to disrupt bacterial antioxidative defense mechanism in APEC, and then using these connector proteins as drug targets to control APEC infection. This review might contribute to illustrating the functional mechanism of APEC adapting to oxidative stress and exploring potential drug targets for the prevention and treatment of APEC infection.

17.
Biochem Genet ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325241

RESUMEN

Inflammatory bowel disease (IBD) has become a common global health problem as prevalence continues to rise. It is often associated with increased risk of colorectal cancer (CRC) development. Limitations in current IBD biomarker-based diagnosis hinder the accuracy of early detection of CRC progression. Therefore, in this study, we proposed the use of transcription factor (TF)-based biomarkers that can potentially detect the transition of IBD to CRC. Various bioinformatic analysis and online database validations, and RT-qPCR validations were performed to identify possible diagnostic TFs. RUNX1 was identified as a promising TF that regulates 106 IBD/CRC-related genes. The incorporation of RUNX1 in combination with currently known IBD biomarkers, FEV + NFKB1 + RELA, achieved a comparable sensitivity and specificity scores of 99% and 87%, respectively, while RUNX1 in combination with known CRC markers, CEA + TIMP1 + CA724 + CA199, achieved a sensitivity and specificity score of 97% and 99%, respectively. Furthermore, a small pilot RT-qPCR-based analysis confirmed a demarcated shift in expression profiles in CA724, CEA, RUNX1 and TIMP1 in IBD patients compared to CRC patients' tissue samples. Specifically, CA724 is noticeably elevated in IBD, while the levels of CEA, RUNX1 with TIMP1 are probable genes that may be employed in discerning IBD progression to CRC. Therefore, these preliminary results once validated in large patient cohorts could potentially have a significant impact on CRC disease stratification, resulting in a more precise prediction for treatment and treatment outcomes, especially in South African patients.

18.
EMBO J ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284910

RESUMEN

Transcription factors (TFs) regulate gene expression by binding with varying strengths to DNA via their DNA-binding domain. Additionally, some TFs also interact with RNA, which modulates transcription factor binding to chromatin. However, whether RNA-mediated TF binding results in differential transcriptional outcomes remains unknown. In this study, we demonstrate that estrogen receptor α (ERα), a ligand-activated TF, interacts with RNA in a ligand-dependent manner. Defects in RNA binding lead to genome-wide loss of ERα recruitment, particularly at weaker ERα-motifs. Furthermore, ERα mobility in the nucleus increases in the absence of its RNA-binding capacity. Unexpectedly, this increased mobility coincides with robust polymerase loading and transcription of ERα-regulated genes that harbor low-strength motifs. However, highly stable binding of ERα on chromatin negatively impacts ligand-dependent transcription. Collectively, our results suggest that RNA interactions spatially confine ERα on low-affinity sites to fine-tune gene transcription.

19.
bioRxiv ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39257758

RESUMEN

Prostate cancer (PCa) neuroendocrine tumor (NET)-like cells with low or absent androgen receptor (AR) signaling cause hormone therapy resistance and poor prognosis. Small cell lung carcinoma (SCLC), a high-grade NET, presents with metastasis early and has poor survival. ONC201/TIC10 is a first-in-class cancer therapeutic with clinical activity in diffuse gliomas and neuroendocrine tumors. We hypothesized that markers of neuroendocrine differentiation, activation of the integrated stress response (ISR) and the TRAIL pathway, as well as the expression of ClpP, contribute to neuroendocrine tumor cell death and sensitivity to ONC201. We show that PCa and SCLC cell lines (N=6) are sensitive to ONC201, regardless of the extent of neuroendocrine differentiation. Endogenous levels of some NET markers (CgA, FoxO1, ENO2, PGP9.5, SOX2) are present in a spectrum in PCa and SCLC cell lines. Overexpression of neural transcription factor BRN2 in DU145 PCa cells does not increase expression of NET differentiation markers FoxO1, ENO2, PGP9.5, and CgA at 48 hours. However, the transient BRN2 overexpression showed slight decreases in some NET markers on the spectrum while maintaining sensitivity of PCa cells to ONC201 before any phenotypic change related to NET differentiation. Our results show that ONC201 has preclinical activity against PCa including those without NET markers or in PCa cells with transient overexpression of neural transcription factor BRN2. Our results have relevance to activity of ONC201 in PCa where most castrate-resistant androgen-independent cancers are not therapy resistant due to NET differentiation. Importantly, NET differentiation does not promote resistance to ONC201 supporting further clinical investigations across the spectrum of PCa.

20.
Int J Biol Macromol ; 279(Pt 2): 134950, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226982

RESUMEN

Acer rubrum, an ornamental tree known for its stunning autumn colors, has an elusive molecular mechanism that governs its leaf senescence. We performed the genome-wide analysis of NAC transcription factor genes and PYRABACTIN RESISTANCE1-LIKE (PYLs) and found that ArNAC148 and ArPYL13 were significantly upregulated in senescing leaves as compared to mature leaves. Subcellular localization studies confirmed the nuclear localization of ArNAC148 and the cytoplasmic localization of ArPYL13. Electrophoretic mobility shift assay and yeast one-hybrid assay demonstrated that ArNAC148 directly binds to the promoter of ArPYL13. Luciferase reporter assays further showed that ArNAC148 activates the transcription of ArPYL13. The transient expression of ArNAC148 and ArPYL13 in tobacco leaves promoted chlorophyll degradation, increased H2O2 level, MDA contents, and electrolyte leakage in response to abscisic acid (ABA). Moreover, the virus-induced gene silencing of ArNAC148 and ArPYL13 in A. rubrum produced results that were opposite to those observed in transient expression experiments. Our findings suggest that ArNAC148 induces leaf senescence by directly activating the transcription of ArPYL13, providing insights into the ABA-mediated regulatory mechanisms governing leaf senescence in A. rubrum. This study offers new perspectives for researchers to explore the roles of NAC and PYL genes in regulating leaf senescence in woody ornamental plants.


Asunto(s)
Ácido Abscísico , Acer , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Acer/genética , Acer/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescencia de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Activación Transcripcional , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA