Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
Mol Carcinog ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031486

RESUMEN

The effect of triiodothyronine (T3) on the phosphorylation of ERK and the occurrence and development of hepatocellular carcinoma (HCC) is controversial and remains to be clarified. In the present study, both in vitro (hepatoma cell lines) and in vivo (wild-type mice [WT] and mouse models of HCC [HrasG12Vand KrasG12Dtransgenic mice (Hras-Tg and Kras-Tg)]) systems were used to investigate the effect of T3 on p-ERK and hepatocarcinogenesis. The results showed that, in vitro, T3 treatment elevated the levels of p-ERK in hepatoma cells within 30 min. However, p-ERK levels returned to normal after 1 h with no significant effects on cellular proliferation or apoptosis. Interestingly, in vivo, T3 induced early rapid and transient activation of ERK and later persistent downregulation of p-ERK in liver tissues of WT. In Hras-Tg, liver weight, liver/body weight ratio, hepatic tumor numbers and sizes were significantly reduced withT3treatment compared with the untreated group. Furthermore, the levels of albumin, HrasG12V, and p-ERK in hepatic precancerous and tumor tissues were all significantly downregulated with T3 treatment; however, the levels of endogenous Hras were not affected. In WT, T3 also induced downregulation of Albumin in liver tissues, but without influence on the expression of endogenous Hras and p-MEK. Especially, the inhibitory effect of T3 on p-ERK and hepatic tumorigenesis and development without influence on the levels of KrasG12D and p-MEK was further confirmed in Kras-Tg. In conclusion, T3 suppresses hepatic tumorigenesis and development by independently and substantially inhibiting the phosphorylation of ERK in vivo.

2.
Front Neurosci ; 18: 1356448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015375

RESUMEN

In rodents, oxytocin (Oxt) contributes to the onset of maternal care by shifting the perception of pups from aversive to attractive. Both Oxt receptor knockout (Oxtr -/-) and forebrain-specific Oxtr knockout (FB/FB) dams abandon their first litters, likely due to a failure of the brain to 'switch' to a more maternal state. Whether this behavioral shift is neurochemically similar in virgin females, who can display maternal behaviors when repeatedly exposed to pups, or what neuroanatomical substrate is critical for the onset of maternal care remains unknown. To understand similarities and differences in Oxtr signaling in virgin pup-sensitized Oxtr FB/FB as opposed to post-parturient Oxtr -/- and Oxtr FB/FB dams, maternal behavior (pup-sensitized females only) and immediate early gene activation were assessed. Pup-sensitized Oxtr FB/FB females retrieved pups faster on day one of testing and had reduced c-Fos expression in the dorsal lateral septum as compared to virgin pup-sensitized Oxtr +/+ females. This differs from what was observed in post-parturient Oxtr -/- and Oxtr FB/FB dams, where increased c-Fos expression was observed in the nucleus accumbens (NAcc) shell. Based on these data, we then disrupted Oxtr signaling in the NAcc shell or the posterior paraventricular thalamus (pPVT) (control region) of female Oxtr floxed mice using a Cre recombinase expressing adeno-associated virus. Knockout of the Oxtr only in the NAcc shell prevented the onset of maternal care post-parturient females. Our data suggest that a pup-sensitized brain may differ from a post-parturient brain and that Oxtr signaling in the NAcc shell is critical to the onset of maternal behavior.

3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000092

RESUMEN

Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic mice for AD (3xTgAD) and non-transgenic mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1ß, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD mice show a worse pro-inflammatory response and higher oxidative stress than NTg mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.


Asunto(s)
Enfermedad de Alzheimer , Citocinas , Glutatión , Leucocitos , Peroxidación de Lípido , Ratones Transgénicos , Estrés Oxidativo , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Ratones , Leucocitos/metabolismo , Femenino , Citocinas/metabolismo , Glutatión/metabolismo , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Modelos Animales de Enfermedad , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética
4.
J Alzheimers Dis ; 100(1): 119-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848192

RESUMEN

Background: Chronic intake of extra virgin olive oil is beneficial for brain health and protects from age-related cognitive decline and dementia, whose most common clinical manifestation is Alzheimer's disease. Besides the classical pathologic deposits of amyloid beta peptides and phosphorylated tau proteins, another frequent feature of the Alzheimer's brain is neuroinflammation. Objective: In the current study, we assessed the effect that extra virgin olive oil has on neuroinflammation when administered to a mouse model of the disease. Methods: Triple transgenic mice were randomized to receive a diet enriched with extra virgin olive oil or regular diet for 8 weeks. At the end of this treatment period the expression level of several inflammatory biomarkers was assessed in the central nervous system. Results: Among the 79 biomarkers measured, compared with the control group, mice receiving the extra virgin olive oil had a significant reduction in MIP-2, IL-17E, IL-23, and IL-12p70, but an increase in IL-5. To validate these results, specific ELISA kits were used for each of them. Confirmatory results were obtained for MIP-2, IL-17E, IL-23, and IL-12-p70. No significant differences between the two groups were observed for IL-5. Conclusions: Our results demonstrate that chronic administration of extra virgin olive oil has a potent anti-neuroinflammatory action in a model of Alzheimer's disease. They provide additional pre-clinical support and novel mechanistic insights for the beneficial effect that this dietary intervention has on brain health and dementia.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Aceite de Oliva , Animales , Aceite de Oliva/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/dietoterapia , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Humanos , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Biomarcadores , Presenilina-1/genética , Masculino , Citocinas/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38762268

RESUMEN

Antibodies play a crucial role in host defense against various diseases. Antibody engineering is a multidisciplinary field that seeks to improve the quality of life of humans. In the context of disease, antibodies are highly specialized proteins that form a critical line of defense against pathogens and the disease caused by them. These infections trigger the innate arm of immunity by presenting on antigen-presenting cells such as dendritic cells. This ultimately links to the adaptive arm, where antibody production and maturation occur against that particular antigen. Upon binding with their specific antigens, antibodies trigger various immune responses to eliminate pathogens in a process called complement-dependent cytotoxicity and phagocytosis of invading microorganisms by immune cells or induce antibody-dependent cellular cytotoxicity is done by antibodies. These engineered antibodies are being used for various purposes, such as therapeutics, diagnostics, and biotechnology research. Cutting-edge techniques that include hybridoma technology, transgenic mice, display techniques like phage, yeast and ribosome displays, and next-generation sequencing are ways to engineer antibodies and mass production for the use of humankind. Considering the importance of antibodies in protecting from a diverse array of pathogens, investing in research holds great promise to develop future therapeutic targets to combat various diseases.


Asunto(s)
Anticuerpos , Ingeniería de Proteínas , Humanos , Animales , Anticuerpos/inmunología , Anticuerpos/uso terapéutico , Anticuerpos/química
6.
Front Endocrinol (Lausanne) ; 15: 1374825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742194

RESUMEN

Increasing evidence suggests that female individuals have a higher Alzheimer's disease (AD) risk associated with post-menopausal loss of circulating estradiol (E2). However, clinical data are conflicting on whether E2 lowers AD risk. One potential contributing factor is APOE. The greatest genetic risk factor for AD is APOE4, a factor that is pronounced in female individuals post-menopause. Clinical data suggests that APOE impacts the response of AD patients to E2 replacement therapy. However, whether APOE4 prevents, is neutral, or promotes any positive effects of E2 is unclear. Therefore, our goal was to determine whether APOE modulates the impact of E2 on behavior and AD pathology in vivo. To that end, mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß42 were ovariectomized at either 4 months (early) or 8 months (late) and treated with vehicle or E2 for 4 months. In E3FAD mice, we found that E2 mitigated the detrimental effect of ovariectomy on memory, with no effect on Aß in the early paradigm and only improved learning in the late paradigm. Although E2 lowered Aß in E4FAD mice in the early paradigm, there was no impact on learning or memory, possibly due to higher Aß pathology compared to E3FAD mice. In the late paradigm, there was no effect on learning/memory and Aß pathology in E4FAD mice. Collectively, these data support the idea that, in the presence of Aß pathology, APOE impacts the response to E2 supplementation post-menopause.


Asunto(s)
Apolipoproteína E3 , Apolipoproteína E4 , Estradiol , Ovariectomía , Animales , Femenino , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Estradiol/farmacología , Ratones Transgénicos
7.
Cancer Lett ; 593: 216954, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735382

RESUMEN

Prostate cancer (PCa) is a significant health concern for men worldwide and is particularly prevalent in the United States. It is a complex disease presenting different molecular subtypes and varying degrees of aggressiveness. Transgenic/genetically engineered mouse models (GEMMs) greatly enhanced our understanding of the intricate molecular processes that underlie PCa progression and have offered valuable insights into potential therapeutic targets for this disease. The integration of whole-exome and whole-genome sequencing, along with expression profiling, has played a pivotal role in advancing GEMMs by facilitating the identification of genetic alterations driving PCa development. This review focuses on genetically modified mice classified into the first and second generations of PCa models. We summarize whether models created by manipulating the function of specific genes replicate the consequences of genomic alterations observed in human PCa, including early and later disease stages. We discuss cases where GEMMs did not fully exhibit the expected human PCa phenotypes and possible causes of the failure. Here, we summarize the comprehensive understanding, recent advances, strengths and limitations of the GEMMs in advancing our insights into PCa, offering genetic and molecular perspectives for developing novel GEMM models.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Transgénicos , Neoplasias de la Próstata , Animales , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Masculino , Ratones , Humanos , Genómica/métodos , Ingeniería Genética
8.
Neuropharmacology ; 253: 109983, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704023

RESUMEN

Exposure to organophosphorus compounds, such as soman (GD), cause widespread toxic effects, sustained status epilepticus, neuropathology, and death. The A1 adenosine receptor agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), when given 1 min after GD exposure, provides neuroprotection and prevents behavioral impairments. Here, we tested the ability of ENBA at delayed treatment times to improve behavioral outcomes via a two-way active avoidance task in two male animal models, each consisting of saline and GD exposure groups. In a rat model, animals received medical treatments (atropine sulfate [A], 2-PAM [P], and midazolam [MDZ]) or AP + MDZ + ENBA at 15 or 30 min after seizure onset and were subjected to behavioral testing for up to 14 days. In a human acetylcholinesterase knock-in serum carboxylesterase knock-out mouse model, animals received AP, AP + MDZ, AP + ENBA, or AP + MDZ + ENBA at 15 min post seizure onset and were subjected to the behavioral task on days 7 and 14. In rats, the GD/AP + MDZ + ENBA group recovered to saline-exposed avoidance levels while the GD/AP + MDZ group did not. In mice, in comparison with GD/AP + MDZ group, the GD/AP + MDZ + ENBA showed decreases in escape latency, response latency, and pre-session crossings, as well as increases in avoidances. In both models, only ENBA-treated groups showed control level inter-trial interval crossings by day 14. Our findings suggest that ENBA, alone and as an adjunct to medical treatments, can improve behavioral and cognitive outcomes when given at delayed time points after GD intoxication.


Asunto(s)
Acetilcolinesterasa , Agonistas del Receptor de Adenosina A1 , Soman , Animales , Soman/toxicidad , Masculino , Agonistas del Receptor de Adenosina A1/farmacología , Ratas , Acetilcolinesterasa/metabolismo , Humanos , Ratones , Ratones Noqueados , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Memoria/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/farmacología
9.
Front Med (Lausanne) ; 11: 1342752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601113

RESUMEN

Background: The prevalence of neurodegenerative diseases is increasing as is life expectancy with Alzheimer's disease accounting for two-thirds of dementia cases globally. Whether general anesthesia and surgery worsen cognitive decline is still a matter of debate and most likely depending on the interplay of various influencing factors. In order to account for this complexity, Alzheimer's disease animal models have been developed. The Tg2576 model of Alzheimer's disease is a well-established mouse model exhibiting amyloidopathy and age-dependent sex-specific differences in Alzheimer's disease symptomology. Yet, data on anesthesia in this mouse model is scarce and a systematic comparison of vital parameters during anesthesia with wild-type animals is missing. In order to investigate the safety of general anesthesia and changes in vital parameters during general anesthesia in Tg2576 mice, we did a secondary analysis of vital parameters collected during general anesthesia in aged Tg2576 mice. Methods: After governmental approval (General Administration of the Free State of Bavaria, file number: 55.2-1-54-2532-149-11) 60 mice at 10-12 months of age were exposed to isoflurane (1.6 Vol%) for 120 min, data of 58 mice was analyzed. During general anesthesia, heart rate, respiratory rate, temperature, isoflurane concentration and fraction of inspired oxygen were monitored and collected. Data were analyzed using univariate and multivariate linear mixed regression models. Results: During general anesthesia, heart rate decreased in a sex-specific manner. Respiratory rate decreased and body temperature increased dependent on genotype. However, the changes were limited and all vital parameters stayed within physiological limits. Conclusion: Isoflurane anesthesia in the Tg2576 mouse model is safe and does not seem to influence experimental results by interacting with vital parameters. The present study provides information on appropriate anesthesia in order to advance research on anesthesia and AD and could contribute to improving laboratory animal welfare.

10.
Sci Bull (Beijing) ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38670853

RESUMEN

Chronic hepatitis B virus (HBV) infection can lead to advanced liver pathology. Here, we establish a transgenic murine model expressing a basic core promoter (BCP)-mutated HBV genome. Unlike previous studies on the wild-type virus, the BCP-mutated HBV transgenic mice manifest chronic liver injury that culminates in cirrhosis and tumor development with age. Notably, agonistic anti-Fas treatment induces fulminant hepatitis in these mice even at a negligible dose. As the BCP mutant exhibits a striking increase in HBV core protein (HBc) expression, we posit that HBc is actively involved in hepatocellular injury. Accordingly, HBc interferes with Fis1-stimulated mitochondrial recruitment of Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15). HBc may also inhibit multiple Rab GTPase-activating proteins, including Rab7-specific TBC1D15 and TBC1D5, by binding to their conserved catalytic domain. In cells under mitochondrial stress, HBc thus perturbs mitochondrial dynamics and prevents the recycling of damaged mitochondria. Moreover, sustained HBc expression causes lysosomal consumption via Rab7 hyperactivation, which further hampers late-stage autophagy and substantially increases apoptotic cell death. Finally, we show that adenovirally expressed HBc in a mouse model is directly cytopathic and causes profound liver injury, independent of antigen-specific immune clearance. These findings reveal an unexpected cytopathic role of HBc, making it a pivotal target for HBV-associated liver disease treatment. The BCP-mutated HBV transgenic mice also provide a valuable model for understanding chronic hepatitis B progression and for the assessment of therapeutic strategies.

11.
EBioMedicine ; 103: 105132, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677182

RESUMEN

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Asunto(s)
COVID-19 , Receptor gp130 de Citocinas , Interleucina-6 , Ratones Transgénicos , SARS-CoV-2 , Transducción de Señal , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/patología , COVID-19/metabolismo , Tratamiento Farmacológico de COVID-19 , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Interleucina-6/metabolismo , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Neumonía Viral/patología , Neumonía Viral/metabolismo , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos
12.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542516

RESUMEN

Acute kidney injury (AKI) is a serious health concern with high morbidity and high mortality worldwide. Recently, sexual dimorphism has become increasingly recognized as a factor influencing the severity of the disease. This study explores the gender-specific renoprotective pathways in αMUPA transgenic mice subjected to AKI. αMUPA transgenic male and female mice were subjected to ischemia-reperfusion (I/R)-AKI in the presence or absence of orchiectomy, oophorectomy, and L-NAME administration. Blood samples and kidneys were harvested 48 h following AKI for the biomarkers of kidney function, renal injury, inflammatory response and intracellular pathway sensing of or responding to AKI. Our findings show differing responses to AKI, where female αMUPA mice were remarkably protected against AKI as compared with males, as was evident by the lower SCr and BUN, normal renal histologically and attenuated expression of NGAL and KIM-1. Moreover, αMUPA females did not show a significant change in the renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Interestingly, oophorectomized females eliminated the observed resistance to renal injury, highlighting the central protective role of estrogen. Correspondingly, orchiectomy in αMUPA males mitigated their sensitivity to renal damage, thereby emphasizing the devastating effects of testosterone. Additionally, treatment with L-NAME proved to have significant deleterious impacts on the renal protective mediators, thereby underscoring the involvement of eNOS. In conclusion, gender-specific differences in the response to AKI in αMUPA mice include multifaceted and keen interactions between the sex hormones and key biochemical mediators (such as estrogen, testosterone and eNOS). These novel findings shed light on the renoprotective pathways and mechanisms, which may pave the way for development of therapeutic interventions.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Ratones , Masculino , Femenino , Animales , Ratones Transgénicos , NG-Nitroarginina Metil Éster , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Riñón/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Estrógenos , Testosterona , Ratones Endogámicos C57BL
13.
Mol Cell Endocrinol ; 587: 112214, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537882

RESUMEN

Both male and female reproductive functions are impacted by altered gonadotrophin secretion and action, which may also influence the development of endocrine tumours. To ascertain if chronic hypersecretion of human chorionic gonadotropin (hCG) contributes to the development of gonadal tumours, double transgenic (TG) mice that overexpress hCGα- and ß-subunits were analysed. By the age of two months, ovarian tumours with characteristics of teratomas developed with 100% penetrance. Teratomas were also seen in wild-type ovaries orthotopically transplanted into TG mice, demonstrating an endocrine/paracrine mechanism for the hCG-induced ovarian tumorigenesis. Both in vitro and in vivo experiments showed oocyte parthenogenetic activation in TG females. In addition, ovaries showed reduced ovulatory gene expression, inhibited ERK1/2 phosphorylation, and impaired cumulus cell expansion. Hence, persistently high endocrine hCG activity causes parthenogenetic activation and development of ovarian teratomas, along with altered follicle development and impaired ERK1/2 signalling, offering a novel mechanism associated with the molecular pathogenesis of ovarian teratomas.


Asunto(s)
Neoplasias Ováricas , Teratoma , Ratones , Animales , Masculino , Femenino , Humanos , Lactante , Ratones Transgénicos , Gonadotropina Coriónica/farmacología , Oocitos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
14.
Sci China Life Sci ; 67(7): 1502-1513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38478297

RESUMEN

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Ratones Transgénicos , Pangolines , SARS-CoV-2 , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , COVID-19/virología , Pangolines/virología , Ratones , Replicación Viral , Pulmón/virología , Pulmón/patología , Chlorocebus aethiops , Células Vero
15.
Neurotherapeutics ; 21(3): e00346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493058

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease influenced by genetic, epigenetic, and environmental factors, resulting in dysfunction in cellular and molecular pathways. The limited efficacy of current treatments highlights the need for combination therapies targeting multiple aspects of the disease. Niclosamide, an anthelminthic drug listed as an essential medicine, has been repurposed in clinical trials for different diseases due to its anti-inflammatory and anti-fibrotic properties. Niclosamide can inhibit various molecular pathways (e.g., STAT3, mTOR) that are dysregulated in ALS, suggesting its potential to disrupt these altered mechanisms associated with the pathology. We administered niclosamide intraperitoneally to two transgenic murine models, SOD1-G93A and FUS mice, mimicking key pathological processes of ALS. The treatment was initiated at the onset of symptoms, and we assessed disease progression by neurological scores, rotarod and wire tests, and monitored survival. Furthermore, we investigated cellular and molecular mechanisms affected by niclosamide in the spinal cord and muscle of ALS mice. In both models, the administration of niclosamide resulted in a slowdown of disease progression, an increase in survival rates, and an improvement in tissue pathology. This was characterised by reduced gliosis, motor neuron loss, muscle atrophy, and inflammatory pathways. Based on these results, our findings demonstrate that niclosamide can impact multiple pathways involved in ALS. This multi-targeted approach leads to a slowdown in the progression of the disease, positioning niclosamide as a promising candidate for repurposing in the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Progresión de la Enfermedad , Fármacos Neuroprotectores , Niclosamida , Animales , Ratones , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Ratones Transgénicos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Niclosamida/farmacología , Niclosamida/uso terapéutico , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
16.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338657

RESUMEN

Sensitization to HLA can result in allograft loss for kidney transplantation (KT) patients. Therefore, it is required to develop an appropriate desensitization (DSZ) technique to remove HLA-donor-specific anti-HLA antibody (DSA) before KT. The aim of this research was to investigate whether combined use of the IL-6 receptor-blocking antibody, tocilizumab (TCZ), and bone-marrow-derived mesenchymal stem cells (BM-MSCs) could attenuate humoral immune responses in an allo-sensitized mouse model developed using HLA.A2 transgenic mice. Wild-type C57BL/6 mice were sensitized with skin allografts from C57BL/6-Tg (HLA-A2.1)1Enge/J mice and treated with TCZ, BM-MSC, or both TCZ and BM-MSC. We compared HLA.A2-specific IgG levels and subsets of T cells and B cells using flow cytometry among groups. HLA.A2-specific IgG level was decreased in all treated groups in comparison with that in the allo-sensitized control (Allo-CONT) group. Its decrease was the most significant in the TCZ + BM-MSC group. Regarding the B cell subset, combined use of TCZ and BM-MSC increased proportions of pre-pro B cells but decreased proportions of mature B cells in BM (p < 0.05 vs. control). In the spleen, an increase in transitional memory was observed with a significant decrease in marginal, follicular, and long-lived plasma B cells (p < 0.05 vs. control) in the TCZ + BM-MSC group. In T cell subsets, Th2 and Th17 cells were significantly decreased, but Treg cells were significantly increased in the TCZ+BM-MSC group compared to those in the Allo-CONT group in the spleen. Regarding RNA levels, IL-10 and Foxp3 showed increased expression, whereas IL-23 and IFN-γ showed decreased expression in the TCZ + BM-MSC group. In conclusion, combined use of TCZ and BM-MSC can inhibit B cell maturation and up-regulate Treg cells, finally resulting in the reduction of HLA.A2-specific IgG in a highly sensitized mouse model. This study suggests that the combined use of TCZ and BM-MSC can be proposed as a novel strategy in a desensitization protocol for highly sensitized patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Linfocitos B , Ratones Transgénicos , Antígeno HLA-A2/genética , Antígenos HLA/metabolismo , Inmunoglobulina G/metabolismo , Células Madre Mesenquimatosas/metabolismo
17.
Gene ; 909: 148305, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38403172

RESUMEN

OBJECTIVE: The objective of this study was to assess the impact of the total saponins of Panax japonicus (TSPJ) on Type 2 diabetes mellitus (T2DM). RESULTS: The intervention of TSPJ was found to have the ability to reverse physiological indicators associated with T2DM, while also enhancing the expression of genes involved in glucose metabolism and intestinal homeostasis. Additionally, alterations in the composition of the gut microbiota were observed. Based on the findings of experimental results and network pharmacology analysis, it is evident that vascular endothelial growth factor A (VEGFA) serves as a prominent shared target between TSPJ and diabetes. The outcomes observed in T2DM mice overexpressing VEGFA align with those observed in T2DM mice treated with TSPJ. CONCLUSIONS: TSPJ administration and VEGFA overexpression yield similar effects on T2DM in mice. Thus, in terms of mechanism, by upregulating the expression of VEGFA, TSPJ may ameliorate metabolic imbalance, preserve intestinal homeostasis, and lessen the symptoms of type 2 diabetes. The findings demonstrated the viability of using VEGFA as a type 2 diabetes therapy option and offered important insights into the therapeutic mechanisms by TSPJ in the management of T2DM. To determine the exact mechanisms behind the effects of TSPJ and VEGFA and to assess their potential therapeutic uses, more research efforts are necessary.


Asunto(s)
Diabetes Mellitus Tipo 2 , Panax , Saponinas , Animales , Ratones , Saponinas/farmacología , Saponinas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
18.
Ecotoxicol Environ Saf ; 272: 116094, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364759

RESUMEN

Exposure to benzo[a]pyrene (B[a]P) has been linked to lung injury and carcinogenesis. Airway epithelial cells express the B[a]P receptor AHR, so B[a]P is considered to mainly target airway epithelial cells, whereas its potential impact on alveolar cells remains inadequately explored. Metformin, a first-line drug for diabetes, has been shown to exert anti-inflammatory and tissue repair-promoting effects under various injurious conditions. Here, we explored the effect of chronic B[a]P exposure on alveolar cells and the impact of metformin on B[a]P-induced lung injury by examining the various parameters including lung histopathology, inflammation, fibrosis, and related signal pathway activation. MLKL knockout (Mlkl-/-) and AT2-lineage tracing mice (SftpcCre-ERT2;LSL-tdTomatoflox+/-) were used to delineate the role of necroptosis in B[a]P-induced alveolar epithelial injury and repair. Mice receiving weekly administration of B[a]P for 6 weeks developed a significant alveolar damaging phenotype associated with pulmonary inflammation, fibrosis, and activation of the necroptotic cell death pathway. These effects were significantly relieved in MLKL null mice. Furthermore, metformin treatment, which were found to promote AMPK phosphorylation and inhibit RIPK3, as well as MLKL phosphorylation, also significantly alleviated B[a]P-induced necroptosis and lung injury phenotype. However, the protective efficacy of metformin was rendered much less effective in Mlkl null mice or by blocking the necroptotic pathway with RIPK3 inhibitor. Our findings unravel a potential protective efficacy of metformin in mitigating the detrimental effects of B[a]P exposure on lung health by inhibiting necroptosis and protecting AT2 cells.


Asunto(s)
Benzo(a)pireno , Lesión Pulmonar , Proteína Fluorescente Roja , Ratones , Animales , Benzo(a)pireno/toxicidad , Proteínas Quinasas/metabolismo , Necroptosis , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/prevención & control , Fibrosis
19.
Mol Ther ; 32(4): 1125-1143, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311851

RESUMEN

The CTNNB1 gene, encoding ß-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained ß-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (ß-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/ß-catenin complexes in an open conformation upon sustained ß-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in ß-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and ß-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during ß-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cateninas/genética , Cateninas/metabolismo , Proliferación Celular/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regulación hacia Arriba
20.
Artículo en Inglés | MEDLINE | ID: mdl-38308688

RESUMEN

The vagal regulation of cardiac function involves acetylcholine (ACh) receptor activation followed by negative chronotropic and negative as well as positive inotropic effects. The resulting signaling pathways may include Gi/o protein-coupled reduction in adenylyl cyclase (AC) activity, direct Gi/o protein-coupled activation of ACh-activated potassium current (IKACh), inhibition of L-type calcium ion channels, and/or the activation of protein phosphatases. Here, we studied the role of the protein phosphatases 1 (PP1) and 2A (PP2A) for muscarinic receptor signaling in isolated atrial preparations of transgenic mice with cardiomyocyte-specific overexpression of either the catalytic subunit of PP2A (PP2A-TG) or the inhibitor-2 (I2) of PP1 (I2-TG) or in double transgenic mice overexpressing both PP2A and I2 (DT). In mouse left atrial preparations, carbachol (CCh), cumulatively applied (1 nM-10 µM), exerted at low concentrations a negative inotropic effect followed by a positive inotropic effect at higher concentrations. This biphasic effect was noted with CCh alone as well as when CCh was added after ß-adrenergic pre-stimulation with isoprenaline (1 µM). Whereas the response to stimulation of ß-adrenoceptors or adenosine receptors (used as controls) was changed in PP2A-TG, the response to CCh was unaffected in atrial preparations from all transgenic models studied here. Therefore, the present data tentatively indicate that neither PP2A nor PP1, but possibly other protein phosphatases, is involved in the muscarinic receptor-induced inotropic and chronotropic effects in the mouse heart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA