Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.478
Filtrar
1.
Curr Med Chem ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092735

RESUMEN

Polymeric micelles are becoming the method of choice for a nano-drug delivery system, especially in colorectal cancer treatment. These tiny structures have become popular for their amazing qualities that make drug delivery more efficient and therapies better. Colorectal cancer, also known as colon cancer, is one of the most common and deadly cancers in the world. Traditional chemotherapy is good, but it has big downsides, like harming other parts of the body and making people sick all over. Polymeric micelles give a new way to fix these problems by being easier on the body, breaking down naturally, and staying in the blood longer. The polymeric micelles, which are loaded with drugs, are sheltered within the tumor, which leads to a reduction in off-site effects and an increase in the targeting and accumulation of chemotherapeutics at the cancer site. This review paper elaborates on the current status of polymeric micelles as a method for nano-drug delivery for chemotherapy, emphasizing their efficacy in managing cancer. The paper also talks about the various types of copolymers that are used to create polymeric micelles, the different types of micelles, their physicochemical properties, the preparation process, characterization, and their application in cancer diagnostics.

2.
J Colloid Interface Sci ; 677(Pt A): 400-415, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096708

RESUMEN

Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (H2O2) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe2+-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe2+ release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe2+/Fe3+ redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.

3.
Biomaterials ; 312: 122712, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39098305

RESUMEN

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.

4.
Talanta ; 279: 126629, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39106649

RESUMEN

Considering the excellent properties such as deep tissue penetration, high signal-to-noise ratio, and in-situ recharge and reactivation, near-infrared luminescence long afterglow nanoparticles show considerable promise for biological application, especially in multifunctional imaging, targeting, and synergistic therapeutic. In this paper, Zn3Ga4GeO11: 0.1 % Cr3+, 1 % Yb3+, 0.1 % Tm3+@Ag-FA (ZGGO@Ag-FA, ZGA-FA) nanoparticles were synthesized by in-situ growth of Ag nanoparticles on the surface of long afterglow nanoparticles, and further modified with folic acid. Through precise adjustments, the luminescent properties of ZnGa2O4 were enhanced and notably boosted the photothermal effect of Ag by leveraging the upconversion emission of ZGGO, with a photothermal conversion efficiency reaching about 59.9 %. The ZGA-FA nanoparticles are ultra-small, measuring less than 50 nm. The modification with folic acid provides the ZGA-FA nanoparticles with excellent tumor-targeting capabilities, demonstrating effective enrichment and retention in tumor tissues, thus enabling long-term imaging and therapy through in vivo re-excitation. Due to its stable photothermal effect, outstanding near-infrared (NIR) afterglow imaging, and red-light charged characteristics, combined with effective tumor-targeting abilities, the therapeutic strategy proposed by this study has significant potential for clinical applications.

5.
J Cancer Immunol (Wilmington) ; 6(1): 20-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119270

RESUMEN

The emergence of chimeric antigen receptor T cell (CAR-T cell) therapy has revolutionized cancer treatment, particularly for hematologic malignancies. This commentary discusses developments in CAR-T cell therapy, focusing on the molecular mechanisms governing T cell fate and differentiation. Transcriptional and epigenetic factors play a pivotal role in determining the specificity, effectiveness, and durability of CAR-T cell therapy. Understanding these mechanisms is crucial to improve the efficacy and decrease the adverse events associated with CAR-T cell therapies, unlocking the full potential of these approaches. T cell differentiation in CAR-T cell product manufacturing plays an important role in clinical outcomes. A positive correlation exists between the clinical efficacy of CAR-T cell therapy and signatures of memory, whereas a negative correlation has been observed with signatures of effector function or exhaustion. The effectiveness of CAR-T cell products is likely influenced by T-cell frequency and by their ability to proliferate, which is closely linked to early T cell differentiation. The differentiation process involving distinct T memory cell subsets is initiated upon antigen elimination, indicating infection resolution. In chronic infections or cancer, T cells may undergo exhaustion, marked by continuous inhibitory receptor expression, decreased cytokine production, and diminished proliferative capacity. Other cell subsets, such as CD4+ T cells, innate-like T lymphocytes, NKT cells, and cord blood-derived hematopoietic stem cells, offer unique advantages in developing the next-generation CAR-T cell-based therapies. Future research should focus on optimizing T-cell-enhancing approaches and developing strategies to potentially cure patients with hematological diseases and solid tumors.

6.
Adv Healthc Mater ; : e2400290, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021323

RESUMEN

Molecularly imprinted polymers (MIPs) show significant promise as effective alternatives to antibodies in disease diagnosis and therapy. However, the challenging process of screening extensive libraries of monomer combinations and synthesis conditions to identify formulations with enhanced selectivity and affinity presents a notable time constraint. The need for expedient methods becomes clear in accelerating the strategic development of MIPs tailored for precise molecular recognition purposes. In this study, an innovative high-throughput screening methodology designed to identify the optimal MIP formulation for targeting tumors is presented. Employing a microtiter plate format, over 100 polymer syntheses are conducted, incorporating diverse combinations of functional monomers. Evaluation of binding performance utilizes fluorescence-based assays, focusing on an epitope of the epidermal growth factor receptor (EGFR). Through this meticulously structured screening process, synthesis conditions that produced MIP nanoparticles exhibiting substantial specificity for EGFR targeting (KD = 10-12 m) are identified. These "bionic antibodies" demonstrate selective recognition of cancer cells in whole blood samples, even at concentrations as low as 5 cells mL-1. Further validation through fluorescent imaging confirms the tumor-specific localization of the MIPs in vivo. This highly efficient screening approach facilitates the strategic synthesis of imprinted polymers functioning as precision bioprobes.

7.
Acta Pharm Sin B ; 14(7): 3009-3026, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027237

RESUMEN

The application of extracellular vesicles, particularly exosomes (EXs), is rapidly expanding in the field of medicine, owing to their remarkable properties as natural carriers of biological cargo. This study investigates utilization of exosomes derived from stromal cells of tumor adjacent normal tissues (NAF-EXs) for personalized medicine, which can be derived at the time of diagnosis by endoscopic ultrasound. Herein, we show that exosomes (EXs) derived from NAFs demonstrate differential bio-physical characteristics, efficient cellular internalization, drug loading efficiency, pancreatic tumor targeting and delivery of payloads. NAF-derived EXs (NAF-EXs) were used for loading ormeloxifene (ORM), a potent anti-cancer and desmoplasia inhibitor as a model drug. We found that ORM maintains normal fibroblast cell phenotype and renders them incompatible to be triggered for a CAF-like phenotype, which may be due to regulation of Ca2+ influx in fibroblast cells. NAF-EXs-ORM effectively blocked oncogenic signaling pathways involved in desmoplasia and epithelial mesenchymal transition (EMT) and repressed tumor growth in xenograft mouse model. In conclusion, our data suggests preferential tropism of NAF-EXs for PDAC tumors, thus imply feasibility of developing a novel personalized medicine for PDAC patients using autologous NAF-EXs for improved therapeutic outcome of anti-cancer drugs. Additionally, it provides the opportunity of utilizing this biological scaffold for effective therapeutics in combination with standard therapeutic regimen.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39041265

RESUMEN

Skin cancer, a global burden for particularly white people, is classified as various histopathological types, including malignant melanoma, basal and squamous cell carcinoma, on the basis of affected different skin layers. Clinical adjuvant therapy (electro-chemotherapy, radio- and immuno therapy), surgical techniques (Cryosurgery, laser treatment, dermabrasion, Moh's micrographic surgery), photodynamic treatment and theranostic approaches are confined only for the treatment of serious health issues. Therefore, nanotechnology based approaches, especially nanoemulsion, a non-spontaneous, transparent or translucent, kinetically stable nanostructured (1-1000nm) colloidal dispersion (comprised of oil, water and surfactant/cosurfactant), are being popularised as a potential topical nanocarrier to deliver BCS class II and IV anti-neoplastic drugs attributing to its capacity for both active and passive tumor targeting in controlled or sustained manner and improving bioavailability via enhancing permeabilityretention effect with minimal adverse effects. Numerous research on nanoemulsion for the treatment of both melanoma and non-melanoma skin cancer is only limited to preclinical stages as several physiological variables reduce the effectiveness of nanoemulsion via restricting topical penetration.

9.
Biomed Pharmacother ; 178: 117189, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059353

RESUMEN

The prevalence of breast cancer underscores the imperative for early diagnosis in guiding treatment decisions. This study introduces a novel contrast agent, Gd-DTPA-VGB3, derived from the peptide VGB3 targeting vascular endothelial growth factor receptor-1 (VEGFR1) and VEGFR2, to enhance the contrast of conventional drug Magnevist in breast tumor MRI. The MRI contrast agent was synthesized on rink amide resin via Fmoc strategy, incorporating amino acids, and coupling to diethylenetriaminepentaacetic acid (DTPA). Gadolinium (Gd)-DTPA-VGB3 displayed specific binding to VEGFR1/2 in a displacement binding assay. Gd-DTPA-VGB3 exhibited minimal cytotoxicity to normal MCF-10 cells while inhibiting 4T1 mammary carcinoma cell proliferation. Compared to Magnevist, Gd-DTPA-VGB3 demonstrated a 2.8-fold increase in contrast-to-noise ratio (CNR) (355 vs. 125). Gd-DTPA-VGB3 exhibited enhanced accumulation in 4T1 tumor-bearing mice, resulting in significant signal intensity improvement. The findings highlight Gd-DTPA-VGB3's specific binding to VEGFRs, substantiating its potential as a candidate for enhancing MRI contrast in breast cancer diagnostics.

10.
ACS Appl Mater Interfaces ; 16(29): 38377-38386, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996001

RESUMEN

Photothermal therapy (PTT) holds great potential in the field of cancer treatment due to its high specificity and low invasiveness. However, the low conversion efficiency, inadequate tumor accumulation, and limited cellular uptake continue to impede PTT effectiveness in treating tumors. The present study focuses on the utilization of quinoxaline and its nanoparticles to develop an organic semiconducting photothermal agent (PAQI-BDTT) for tumor photothermal therapy. To achieve this, PAQI-BDTT was encapsulated within liposomes modified with cyclic Arg-Gly-Asp (cRGD) peptide targeting tumors (named T-BDTT-Lipo). Notably, T-BDTT-Lipo demonstrated a positive photothermal conversion efficiency of 74% when exposed to an 808 nm laser, along with NIR-II fluorescence imaging capabilities. The efficacy of T-BDTT-Lipo in tumor tissue accumulation and precise targeting of malignant cells has been confirmed through both in vitro and in vivo experiments guided by fluorescence imaging. Under single dose and 808 nm light irradiation, T-BDTT-Lipo generated local intracellular hyperthermia at the tumor site. The elevated temperature additionally exerted a significant inhibitory effect on tumor growth and recurrence, thereby extending the survival duration of mice harboring tumors. The therapeutic nanosystem (T-BDTT-Lipo) proposed in this work demonstrates the enormous potential of semiconducting photothermal agents in photothermal therapy, laying the foundation for the next clinical application.


Asunto(s)
Terapia Fototérmica , Quinoxalinas , Animales , Ratones , Quinoxalinas/química , Quinoxalinas/farmacología , Humanos , Semiconductores , Polímeros/química , Liposomas/química , Nanopartículas/química , Nanopartículas/uso terapéutico , Ratones Endogámicos BALB C , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Péptidos Cíclicos/química , Femenino
11.
Int J Nanomedicine ; 19: 6693-6715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979534

RESUMEN

Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/terapia , Nanopartículas/química , Lípidos/química , Animales , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Terapia Genética/métodos , Sistemas de Liberación de Medicamentos/métodos , Liposomas
12.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969429

RESUMEN

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Asunto(s)
Biotina , Glutatión , Técnicas Fotoacústicas , Fotoquimioterapia , Glutatión/química , Glutatión/metabolismo , Animales , Humanos , Ratones , Biotina/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Imagen Óptica , Femenino , Terapia Fototérmica , Ratones Desnudos , Ratones Endogámicos BALB C , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/uso terapéutico
13.
Mol Ther Nucleic Acids ; 35(3): 102256, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39045515

RESUMEN

Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.

14.
Biomed Pharmacother ; 177: 117102, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991303

RESUMEN

Paclitaxel (PTX) is a first-line drug for the treatment of lung cancer, but its targeting and therapeutic effect are unsatisfactory. Herein, lung cancer cell (A549) membrane biomimetic PTX-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (AM@PTX-NPs) were constructed to eliminate the shortcomings of PTX. The AM@PTX-NPs were successfully prepared with a high drug loading efficiency (10.90±0.06 %). Moreover, transmission electron microscopy, SDS-PAGE, and western blotting proved that AM@PTX-NPs were spherical nanoparticles camouflaged by the A549 cell membrane. Both in vitro and in vivo assays revealed that the AM@PTX-NPs displayed outstanding targeting capacity due to A549 membrane modification. The cytotoxicity experiment showed that the developed biomimetic formulation was able to effectively reduce the proliferation of A549 cells. Moreover, AM@PTX-NPs exhibited a significant tumor growth inhibition rate (73.00 %) with good safety in the tumor-bearing mice, which was higher than that of the PTX-NPs without A549 membrane coating (37.39 %). Overall, the constructed bioinspired vector could provide a novel platform for the PTX delivery and demonstrated a promising strategy for the targeted cancer treatment.


Asunto(s)
Membrana Celular , Neoplasias Pulmonares , Nanopartículas , Paclitaxel , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Paclitaxel/farmacología , Paclitaxel/administración & dosificación , Paclitaxel/química , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Células A549 , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Nanopartículas/química , Ratones , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Ratones Desnudos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Portadores de Fármacos/química
15.
Adv Sci (Weinh) ; : e2401095, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946578

RESUMEN

Conventional androgen deprivation therapy (ADT) targets the androgen receptor (AR) inhibiting prostate cancer (PCa) progression; however, it can eventually lead to recurrence as castration-resistant PCa (CRPC), which has high mortality rates and lacks effective treatment modalities. The study confirms the presence of high glutathione peroxidase 4 (GPX4) expression, a key regulator of ferroptosis (i.e., iron-dependent program cell death) in CRPC cells. Therefore, inducing ferroptosis in CRPC cells might be an effective therapeutic modality for CRPC. However, nonspecific uptake of ferroptosis inducers can result in undesirable cytotoxicity in major organs. Thus, to precisely induce ferroptosis in CRPC cells, a genetic engineering strategy is proposed to embed a prostate-specific membrane antigen (PSMA)-targeting antibody fragment (gy1) in the macrophage membrane, which is then coated onto mesoporous polydopamine (MPDA) nanoparticles to produce a biomimetic nanoplatform. The results indicate that the membrane-coated nanoparticles (MNPs) exhibit high specificity and affinity toward CRPC cells. On further encapsulation with the ferroptosis inducers RSL3 and iron ions, MPDA/Fe/RSL3@M-gy1 demonstrates superior synergistic effects in highly targeted ferroptosis therapy eliciting significant therapeutic efficacy against CRPC tumor growth and bone metastasis without increased cytotoxicity. In conclusion, a new therapeutic strategy is reported for the PSMA-specific, CRPC-targeting platform for ferroptosis induction with increased efficacy and safety.

16.
Nanotheranostics ; 8(4): 458-472, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961887

RESUMEN

A cutting-edge non-invasive cancer treatment method called boron neutron capture therapy (BNCT) allows for the removal of cancerous tumor cells with the least possible damage to healthy tissue. It involves the exposure of cancer cells with low-energy thermal neutrons, boron-10 (10B) cellular uptake causes cancer cell death by producing alpha particles and recoiling lithium-7 (7 Li) nuclei. Despite positive outcomes from clinical trials conducted all around the world, these substances have relatively limited tumor selectivity or low boron content per molecule. The development of new boron delivery agents with more selectivity and enhanced boron loading would advance this technique and promote its use in clinics as a primary cancer treatment. As peptide-binding cell surface receptors are typically overexpressed on cancer cells, they can be seen as interesting targets for targeted tumor therapy. The attachment of meta-carboranes to peptide conjugates that target tumor cells specifically by their overexpressed receptors may be a method to get around these problems. A state-of-the-art overview of current developments in the application of BNCT for cancer targeted therapy via peptide conjugation is the goal of this review.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias , Péptidos , Terapia por Captura de Neutrón de Boro/métodos , Humanos , Neoplasias/radioterapia , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Péptidos/química , Animales
17.
Biotechnol Bioeng ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965775

RESUMEN

Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.

18.
Int J Nanomedicine ; 19: 7033-7048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015675

RESUMEN

Purpose: The anticancer potential of indomethacin and other nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro, in vivo, and in clinical trials is well known and widely reported in the literature, along with their side effects, which are mainly observed in the gastrointestinal tract. Here, we present a strategy for the application of the old drug indomethacin as an anticancer agent by encapsulating it in nanostructured lipid carriers (NLC). We describe the production method of IND-NLC, their physicochemical parameters, and the results of their antiproliferative activity against selected cancer cell lines, which were found to be higher compared to the activity of free indomethacin. Methods: IND-NLC were fabricated using the hot high-pressure homogenization method. The nanocarriers were physicochemically characterized, and their biopharmaceutical behaviour and therapeutic efficacy were evaluated in vitro. Results: Lipid nanoparticles IND-NLC exhibited a particle size of 168.1 nm, a negative surface charge (-30.1 mV), low polydispersity index (PDI of 0.139), and high encapsulation efficiency (over 99%). IND-NLC were stable for over 60 days and retained integrity during storage at 4 °C and 25 °C. The potential therapeutic benefits of IND-NLC were screened using in vitro cancer models, where nanocarriers with encapsulated drug effectively inhibited the growth of breast cancer cell line MDA-MB-468 at dosage 15.7 µM. Conclusion: We successfully developed IND-NLC for delivery of indomethacin to cancer cells and confirmed their antitumoral efficacy in in vitro studies. The results suggest that indomethacin encapsulated in lipid nanoparticles possesses high anticancer potential. Moreover, the presented strategy is highly promising and may offer a new alternative for future therapeutic drug innovations.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Indometacina , Lípidos , Tamaño de la Partícula , Indometacina/química , Indometacina/farmacología , Indometacina/administración & dosificación , Indometacina/farmacocinética , Humanos , Portadores de Fármacos/química , Lípidos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Nanoestructuras/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación , Supervivencia Celular/efectos de los fármacos
19.
Artículo en Inglés | MEDLINE | ID: mdl-38900703

RESUMEN

Background: Lung cancer is a leading cause of cancer deaths in the United States. An increasing understanding of relevant non-small cell lung cancer (NSCLC) biomarkers has led to the recent development of molecular-targeted therapies and immune checkpoint inhibitors that have revolutionized treatment for patients with advanced and metastatic disease. The purpose of this review is to provide surgeons with a state-of-the-art understanding of the current medical and surgical treatment trends and their implications in the future of management of NSCLC. Materials and Methods: A systematic search of PubMed was conducted to identify English language articles published between January 2010 and March 2024 focusing on molecular markers, tumor targeting, and immunotherapy in the diagnosis and treatment of NSCLC. Case series, observational studies, randomized trials, guidelines, narrative reviews, systematic reviews, and meta-analyses were included. Results: There is now increasing data to suggest that molecular-targeted therapies and immune therapies have a role in the neoadjuvant setting. Advances in intraoperative imaging allow surgeons to perform increasingly parenchymal-sparing lung resections without compromising tumor margins. Liquid biopsies can noninvasively detect targetable mutations in cancer cells and DNA from a blood draw, potentially allowing for earlier diagnosis, personalized therapy, and long-term monitoring for disease recurrence. Conclusions: The management of NSCLC has advanced dramatically in recent years fueled by a growing understanding of the cancer biology of NSCLC. Advances in medical therapies, surgical techniques, and diagnostic and surveillance modalities continue to evolve but have already impacted current treatment strategies for NSCLC, which are encompassed in this review.

20.
Bioorg Chem ; 149: 107531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850779

RESUMEN

Nitroreductase (NTR) overexpression often occurs in tumors, highlighting the significance of effective NTR detection. Despite the utilization of various optical methods for this purpose, the absence of an efficient tumor-targeting optical probe for NTR detection remains a challenge. In this research, a novel tumor-targeting probe (Cy-Bio-NO2) is developed to perform dual-modal NTR detection using near-infrared fluorescence and photoacoustic techniques. This probe exhibits exceptional sensitivity and selectivity to NTR. Upon the reaction with NTR, Cy-Bio-NO2 demonstrates a distinct fluorescence "off-on" response at 800 nm, with an impressive detection limit of 12 ng/mL. Furthermore, the probe shows on-off photoacoustic signal with NTR. Cy-Bio-NO2 has been successfully employed for dual-modal NTR detection in living cells, specifically targeting biotin receptor-positive cancer cells for imaging purposes. Notably, this probe effectively detects tumor hypoxia through dual-modal imaging in tumor-bearing mice. The strategy of biotin incorporation markedly enhances the probe's tumor-targeting capability, facilitating its engagement in dual-modal imaging at tumor sites. This imaging capacity holds substantial promise as an accurate tool for cancer diagnosis.


Asunto(s)
Colorantes Fluorescentes , Nitrorreductasas , Imagen Óptica , Animales , Humanos , Ratones , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Neoplasias/diagnóstico por imagen , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Nitrorreductasas/metabolismo , Nitrorreductasas/análisis , Técnicas Fotoacústicas , Dióxido de Nitrógeno/síntesis química , Dióxido de Nitrógeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA