Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.722
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1420643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962310

RESUMEN

Lung cancer, recognized globally as a leading cause of malignancy-associated morbidity and mortality, is marked by its high prevalence and lethality, garnering extensive attention within the medical community. Mitophagy is a critical cellular process that plays a crucial role in regulating metabolism and ensuring quality control within cells. Its relevance to lung cancer has garnered significant attention among researchers and scientists. Mitophagy's involvement in lung cancer encompasses its initiation, progression, metastatic dissemination and treatment. The regulatory landscape of mitophagy is complex, involving numerous signaling proteins and pathways that may exhibit aberrant alterations or mutations within the tumor environment. In the field of treatment, the regulation of mitophagy is considered key to determining cancer chemotherapy, radiation therapy, other treatment options, and drug resistance. Contemporary investigations are directed towards harnessing mitophagy modulators, both inhibitors and activators, in therapeutic strategies, with an emphasis on achieving specificity to minimize collateral damage to healthy cellular populations. Furthermore, molecular constituents and pathways affiliated with mitophagy, serving as potential biomarkers, offer promising avenues for enhancing diagnostic accuracy, prognostic assessment, and prediction of therapeutic responses in lung cancer. Future endeavors will also involve investigating the impact of mitophagy on the composition and function of immune cells within the tumor microenvironment, aiming to enhance our understanding of how mitophagy modulates the immune response to lung cancer. This review aims to comprehensively overview recent advancements about the role of mitophagy in the tumor genesis, progenesis and metastasis, and the impact of mitophagy on the treatment of lung cancer. We also discussed the future research direction of mitophagy in the field of lung cancer.

2.
FASEB J ; 38(13): e23809, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967126

RESUMEN

The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/ß-catenin, Hippo, TGF-ß, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.


Asunto(s)
Carcinogénesis , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Neurofibromatosis 2/genética , Neurofibromatosis 2/metabolismo , Neurofibromatosis 2/patología , Transducción de Señal , Mutación
3.
Comput Struct Biotechnol J ; 23: 2534-2547, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38974885

RESUMEN

Cancers share common cellular and physiological features. Little is known about whether distinctive gene expression patterns can be displayed at the single-cell level by gene families in cancer cells. The expression of gene homologs within a family can exhibit concurrence and exclusivity. Concurrence can promote all-or-none expression patterns of related genes and underlie alternative physiological states. Conversely, exclusive gene families express the same or similar number of homologs in each cell, allowing a broad repertoire of cell identities to be generated. We show that gene families involved in the cell-cycle and antigen presentation are expressed concurrently. Concurrence in the DNA replication complex MCM reflects the replicative status of cells, including cell lines and cancer-derived organoids. Exclusive expression requires precise regulatory mechanism, but cancer cells retain this form of control for ion homeostasis and extend it to gene families involved in cell migration. Thus, the cell adhesion-based identity of healthy cells is transformed to an identity based on migration in the population of cancer cells, reminiscent of epithelial-mesenchymal transition.

4.
Oncol Rep ; 52(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994754

RESUMEN

Cancer constitutes a multifaceted ailment characterized by the dysregulation of numerous genes and pathways. Among these, LIM domain only 7 (LMO7) has emerged as a significant player in various cancer types, garnering substantial attention for its involvement in tumorigenesis and cancer progression. This review endeavors to furnish a comprehensive discourse on the functional intricacies and mechanisms of LMO7 in cancer, with a particular emphasis on its potential as both a therapeutic target and prognostic indicator. It delves into the molecular attributes of LMO7, its implications in cancer etiology and the underlying mechanisms propelling its oncogenic properties. Furthermore, it underscores the extant challenges and forthcoming prospects in targeting LMO7 for combating cancer.


Asunto(s)
Proteínas con Dominio LIM , Neoplasias , Factores de Transcripción , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión Génica , Pronóstico , Carcinogénesis/genética , Terapia Molecular Dirigida/métodos
5.
Cells ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38994962

RESUMEN

Muscle-enriched A-type lamin-interacting protein (MLIP) is an emerging protein involved in cellular homeostasis and stress adaptation. Eukaryotic cells regulate various cellular processes, including metabolism, DNA repair, and cell cycle progression, to maintain cellular homeostasis. Disruptions in this homeostasis can lead to diseases such as cancer, characterized by uncontrolled cell growth and division. This review aims to explore for the first time the unique role MLIP may play in cancer development and progression, given its interactions with the PI3K/Akt/mTOR pathway, p53, MAPK9, and FOXO transcription factors, all critical regulators of cellular homeostasis and tumor suppression. We discuss the current understanding of MLIP's involvement in pro-survival pathways and its potential implications in cancer cells' metabolic remodeling and dysregulated homeostasis. Additionally, we examine the potential of MLIP as a novel therapeutic target for cancer treatment. This review aims to shed light on MLIP's potential impact on cancer biology and contribute to developing innovative therapeutic strategies.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Animales , Carcinogénesis/patología , Carcinogénesis/metabolismo , Carcinogénesis/genética
6.
Oncol Res ; 32(7): 1221-1229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948025

RESUMEN

At present, the role of many long non-coding RNAs (lncRNAs) as tumor suppressors in the formation and development of cervical cancer (CC) has been studied. However, lncRNA prostate cancer gene expression marker 1 (PCGEM1), whose high expression not only aggravates ovarian cancer but also can induce tumorigenesis and endometrial cancer progression, has not been studied in CC. The objective of this study was to investigate the expression and the underlying role of PCGEM1 in CC. The relative expression of PCGEM1 in CC cells was detected by real-time PCR. After the suppression of PCGEM1 expression by shRNA, the changes in the proliferation, migration, and invasion capacities were detected via CCK-8 assay, EdU assay, and colony formation assay wound healing assay. Transwell assay and the changes in expressions of epithelial-to-mesenchymal transition (EMT) markers were determined by western blot and immunofluorescence. The interplay among PCGEM1, miR-642a-5p, and kinesin family member 5B (KIF5B) was confirmed by bioinformatics analyses and luciferase reporter assay. Results showed that PCGEM1 expressions were up-regulated within CC cells. Cell viabilities, migration, and invasion were remarkably reduced after the suppression of PCGEM1 expression by shRNA in Hela and SiHa cells. N-cadherin was silenced, but E-cadherin expression was elevated by sh-PCGEM1. Moreover, by sponging miR-642a-5p in CC, PCGEM1 was verified as a competitive endogenous RNA (ceRNA) that modulates KIF5B levels. MiR-642a-5p down-regulation partially rescued sh-PCGEM1's inhibitory effects on cell proliferation, migration, invasion, and EMT process. In conclusion, the PCGEM1/miR-642a-5p/KIF5B signaling axis might be a novel therapeutic target in CC. This study provides a research basis and new direction for targeted therapy of CC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Cinesinas , MicroARNs , ARN Largo no Codificante , Neoplasias del Cuello Uterino , Humanos , ARN Largo no Codificante/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , MicroARNs/genética , Femenino , Cinesinas/genética , Cinesinas/metabolismo , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Línea Celular Tumoral , Células HeLa , Invasividad Neoplásica
7.
Helicobacter ; 29(4): e13109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951739

RESUMEN

BACKGROUND: Integrin-linked kinase (ILK) is crucial in solid tumors by regulating the Hippo-Yes-associated protein 1 (YAP) pathway. This study aimed to uncover how Helicobacter pylori influences ILK levels and its role in regulating YAP during H. pylori-induced gastric cancer. MATERIALS AND METHODS: GES-1 cells with stable Ilk knockdown and overexpression and a mouse carcinogenesis model for H. pylori infection were constructed. And ILK, the phosphorylated mammalian STE20-like protein kinase 1 (MST1), large tumor suppressor 1 (LATS1; S909, T1079), and YAP (S109, S127) were detected in cells, and mice by western blotting, as well as fluorescence intensity of YAP were assayed by immunofluorescence. YAP downstream genes Igfbp4 and Ctgf, the pathological changes and tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1ß), and nitric oxide (NO) levels in mice gastric tissues were detected by real-time PCR, H&E, and ELISA assays. RESULTS: In this study, stable Ilk knockdown cells exhibited significantly higher phosphorylated levels of MST1, LATS1, and YAP, as well as increased YAP in the nuclei of GES-1 cells. Conversely, cells with Ilk overexpression showed opposite results. H. pylori infection led to decreased ILK levels in gastric epithelial cells but increased ILK levels in gastric cancer cell lines (MGC803, SGC7901) and gastric cancer tissues in mice. Treatment with the ILK inhibitor OST-T315 elevated the phosphorylated MST, LATS1, and YAP levels, and inhibited the mRNA levels of Igfbp4 and Ctgf at 44, 48 week-aged mice. OST-T315 also reduced the release of TNF-α, IL-6, IL-1ß, and NO, as well as the progression of gastric cancer caused by H. pylori and N-Nitroso-N-methylurea (NMU) treatment. CONCLUSION: Upon initiation of gastric tumorigenesis signals, H. pylori increases ILK levels and suppresses Hippo signaling, thereby promoting YAP activation and gastric cancer progression. ILK can serve as a potential prevention target to impede H. pylori-induced gastric cancer.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Proteínas Serina-Treonina Quinasas , Neoplasias Gástricas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Ratones , Humanos , Modelos Animales de Enfermedad , Línea Celular , Masculino
8.
mBio ; : e0031524, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953352

RESUMEN

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.

9.
Int Immunopharmacol ; 138: 112569, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38959540

RESUMEN

BACKGROUND: Bladder cancer (BLCA) is one of the top ten most common cancers in the world. Aberrant sialylation is a common feature in tumorigenesis and tumor immunity. This study seeks to explore the potential impact of sialyltransferase ST3Gal5 on BLCA. METHODS: Initially, glycosyltransferase-related DEGs (GRDEGs) were identified using multiple bioinformatics approaches in TCGA-BLCA cohort and validated using GEO databases. Clinical prognosis integration facilitated the determination of ST3Gal5 as an independent prognostic factor in BLCA, employing univariate and multivariate Cox regression analyses. Immune cell infiltration was assessed via CIBERSORT and ssGSEA analyses, while HLA and immune checkpoint genes' levels, along with drug sensitivity, were evaluated in low- and high-ST3Gal5 groups. The TIDE and IPS scores were used to gauge the immune checkpoint blockade (ICB) response. Furthermore, functional experiments, both in vivo and in vitro, were conducted to elucidate the biological roles of ST3Gal5. RESULTS: In agreement with bioinformatics findings, ST3Gal5 expression was down-regulated in BLCA tissues and cells, correlating with poorer prognostic outcomes. The StromalScore, ImmuneScore, and ESTIMATEScore were significantly elevated in low-ST3Gal5 group. Moreover, the levels of HLA and immune checkpoint genes were upregulated in low-ST3Gal5 group. Down-regulated ST3Gal5 promoted the proliferation, migration, and invasion of BLCA cells in vivo and in vitro. CONCLUSION: Our findings demonstrated that low ST3Gal5 level promoted tumorigenesis and progression of BLCA, implying its potential as a predictive biomarker and therapeutic target.

10.
Biochim Biophys Acta Mol Basis Dis ; : 167336, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972433

RESUMEN

Epiregulin (EREG) is a member of the epidermal growth factor (EGF) family. An increasing body of evidence has demonstrated the pivotal role of EREG in the pathogenesis and progression of various malignancies. However, the clinical significance and biological role of EREG in pancreatic ductal adenocarcinoma (PDAC) have yet to be fully elucidated. We found that EREG is highly expressed in PDAC tissues compared with paracancerous tissues through public databases and clinical samples. High EREG expression predicted worse overall survival (OS) and recurrence-free survival (RFS) in patients with PDAC. Multivariate analysis revealed that EREG can serve as an independent prognostic indicator. In addition, EREG silencing inhibited PDAC cell proliferation, migration, progression, altered cell cycle, facilitated apoptosis in vitro and suppressed tumor growth in vivo. Conversely, EREG overexpression facilitated the proliferation, migration, and invasion in PaTu-8988 t cell. Through transcriptome sequencing and experimental verification, we found EREG mediates PDAC tumorigenesis through ERK/p38 MAPK signaling pathway. Moreover, we found EREG expression is closely related to PD-L1 expression in PDAC tissues and cells. Therefore, EREG is expected to be a prospective prognostic and therapeutic marker for PDAC.

11.
Pharmacol Res Perspect ; 12(4): e1226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886975

RESUMEN

Although classically recognized as a neurotransmitter, gamma aminobutyric acid (GABA) has also been identified in colonic tumors. Moreover, the gut microbiome represents another potential source of GABA. Both GABAA and GABAB receptors have been implicated in contributing to the effects of GABA in colorectal cancer, with both pro- and anti-tumorigenic functions identified. However, their subunit composition is often overlooked. Studies to date have not addressed whether the GABA-producing potential of the microbiome changes over the course of colon tumor development or whether receptor subunit expression patterns are altered in colon cancer. Therefore, we investigated the clusters of orthologous group frequencies of glutamate decarboxylase (GAD) in feces from two murine models of colon cancer and found that the frequency of microbial GAD was significantly decreased early in the tumorigenic process. We also determined that microbial-derived GABA inhibited proliferation of colon cancer cells in vitro and that this effect of GABA on SW480 cells involved both GABAA and GABAB receptors. GABA also inhibited prostaglandin E2 (PGE2)-induced proliferation and interleukin-6 (IL-6) expression in these cells. Gene expression correlations were assessed using the "Cancer Exploration" suite of the TIMER2.0 web tool and identified that GABA receptor subunits were differentially expressed in human colon cancer. Moreover, GABAA receptor subunits were predominantly positively associated with PGE2 synthase, cyclooxygenase-2 and IL-6. Collectively, these data demonstrate decreased potential of the microbiome to produce GABA during tumorigenesis, a novel anti-tumorigenic pathway for GABA, and that GABA receptor subunit expression adds a further layer of complexity to GABAergic signaling in colon cancer.


Asunto(s)
Proliferación Celular , Neoplasias del Colon , Microbioma Gastrointestinal , Receptores de GABA-A , Receptores de GABA-B , Transducción de Señal , Ácido gamma-Aminobutírico , Animales , Neoplasias del Colon/metabolismo , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Ácido gamma-Aminobutírico/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Dinoprostona/metabolismo , Glutamato Descarboxilasa/metabolismo , Interleucina-6/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Carcinogénesis , Heces/microbiología , Receptores de GABA/metabolismo , Receptores de GABA/genética , Masculino , Ratones Endogámicos C57BL , Femenino
12.
Cancers (Basel) ; 16(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893271

RESUMEN

Epidemiological studies point to cholesterol as a possible key factor for both prostate cancer incidence and progression. It could represent a targetable metabolite as the most aggressive tumors also appear to be sensitive to therapies designed to decrease hypercholesterolemia, such as statins. However, it remains unknown whether and how cholesterol, through its dietary uptake and its metabolism, could be important for early tumorigenesis. Oncogene clonal induction in the Drosophila melanogaster accessory gland allows us to reproduce tumorigenesis from initiation to early progression, where tumor cells undergo basal extrusion to form extra-epithelial tumors. Here we show that these tumors accumulate lipids, and especially esterified cholesterol, as in human late carcinogenesis. Interestingly, a high-cholesterol diet has a limited effect on accessory gland tumorigenesis. On the contrary, cell-specific downregulation of cholesterol uptake, intracellular transport, or metabolic response impairs the formation of such tumors. Furthermore, in this context, a high-cholesterol diet suppresses this impairment. Interestingly, expression data from primary prostate cancer tissues indicate an early signature of redirection from cholesterol de novo synthesis to uptake. Taken together, these results reveal that during early tumorigenesis, tumor cells strongly increase their uptake and use of dietary cholesterol to specifically promote the step of basal extrusion. Hence, these results suggest the mechanism by which a reduction in dietary cholesterol could lower the risk and slow down the progression of prostate cancer.

13.
Lung ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850292

RESUMEN

Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.

14.
Discov Oncol ; 15(1): 209, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834851

RESUMEN

Colorectal cancer is a leading cause of cancer-related mortality worldwide. Traditionally, colorectal cancer has been recognized as a disease caused by genetic mutations. However, recent studies have revealed the significant role of epigenetic alterations in the progression of colorectal cancer. Epithelial-mesenchymal transition, a critical step in cancer cell metastasis, has been found to be closely associated with the tumor microenvironment and immune factors, thereby playing a crucial role in many kinds of biological behaviors of cancers. In this review, we explored the impact of N6-methyladenosine and post-translational modifications (like methylation, acetylation, ubiquitination, SUMOylation, glycosylation, etc.) on the process of epithelial-mesenchymal transition in colorectal cancer and the epigenetic regulation for the transcription factors and pathways correlated to epithelial-mesenchymal transition. Furthermore, we emphasized that the complex regulation of epithelial-mesenchymal transition by epigenetics can provide new strategies for overcoming drug resistance and improving treatment outcomes. This review aims to provide important scientific evidence for the prevention and treatment of colorectal cancer based on epigenetic modifications.

15.
Cancer Cell Int ; 24(1): 197, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834986

RESUMEN

BACKGROUND: Syntaxin6 (STX6) is a SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein complex located in the trans-Golgi network and endosomes, which is closely associated with a variety of intracellular membrane transport events. STX6 has been shown to be overexpressed in a variety of human malignant tumors such as esophageal, colorectal, and renal cell carcinomas, and participates in tumorigenesis and development. METHODS: Based on clinical public database and clinical liver samples analysis, the expression of STX6 in hepatocellular carcinoma (HCC) tissues was investigated. The effects of STX6 on proliferation, migration and invasion of HCC cell in vitro and in vivo were evaluated through gain- and loss-of-function studies. We further performed RNA-seq analysis and protein interactome analysis, to further decifer the detailed mechanisms of STX6 in the regulation of the JAK-STAT pathway in HCC. RESULTS: STX6 expression was upregulated in HCC tissues and its expression was highly correlated with the high histological grade of the tumor. STX6 promoted HCC cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, STX6 mediated tumor progression depending on promoting the activation of JAK-STAT signaling pathway. Receptor for activated protein kinase C (RACK1) as an essential adaptor protein mediating STX6 regulation of JAK-STAT pathway. Specifically, STX6 interacted with RACK1 and then recruited signal transducer and activator of transcription 3 (STAT3) to form a protein-binding complex and activates STAT3 transcriptional activity. CONCLUSIONS: This study provided a novel concept that STX6 exerted oncogenic effects by activating the STAT3 signaling pathway, and STX6 might be a promising therapeutic target for HCC.

16.
Cancer Cell Int ; 24(1): 198, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835077

RESUMEN

Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.

17.
Am J Cancer Res ; 14(5): 2253-2271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859857

RESUMEN

Colorectal cancer (CRC) is a multifactorial disease characterized by accumulation of multiple genetic and epigenetic alterations, transforming colonic epithelial cells into adenocarcinomas. Alteration of DNA methylation (DNAm) is a promising biomarker for predicting cancer risk and prognosis, but its role in CRC tumorigenesis is inconclusive. Notably, few DNAm studies have used pre-diagnostic peripheral blood (PB) DNA, causing difficulty in postulating the underlying biologic mechanism of CRC initiation. We conducted epigenome-wide association (EWA) scans in postmenopausal women from Women's Health Initiative (WHI) with their pre-diagnostic DNAm in PB leukocytes (PBLs) to prospectively evaluate CRC development. Our site-specific DNAm analyses across the genome adjusted for DNAm-age, leukocyte heterogeneities, as well as body mass index, diabetes, and insulin resistance. We validated 20 top EWA-CpGs in 2 independent CRC tissue datasets. Also, we detected differentially methylated regions (DMRs) associated with CRC, further mapped to transcriptomic profile, and finally conducted a Gene Set Enrichment Analysis. We detected multiple novel CpGs validated across WHI and tissue datasets. In particular, 2 CpGs (B4GALNT4cg10321339, SV2Bcg18144285) had the strongest effect on CRC risk. Results from our DMR scans contained MIR663cg06007966, which was also validated in EWA analyses. Also, we detected 1 methylome region in PEG10 of Chr7 shared across datasets. Our findings reflect both novel and well-established epigenomic and transcriptomic sites in CRC, warranting further functional validations. Our study contributes to better understanding of the complex interrelated mechanisms on the methylome underlying CRC tumorigenesis and suggests novel preventive DNAm-targets in PBLs for detecting at-risk individuals for CRC development.

18.
Cancer Treat Res Commun ; 40: 100823, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38875884

RESUMEN

Tumors can produce bioactive substances called tumor-derived supernatants (TDS) that modify the immune response in the host body. This can result in immunosuppressive effects that promote the growth and spread of cancer. During tumorigenesis, the exudation of these substances can disrupt the function of immune sentinels in the host and reinforce the support for cancer cell growth. Tumor cells produce cytokines, growth factors, and proteins, which contribute to the progression of the tumor and the formation of premetastatic niches. By understanding how cancer cells influence the host immune system through the secretion of these factors, we can gain new insights into cancer diagnosis and therapy.

19.
Tumour Virus Res ; 18: 200286, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914377

RESUMEN

In the past decade, research has demonstrated that viral miRNAs encoded by a number of viral genomes, particularly by most of the herpesvirus including Marek's disease virus (MDV), play important regulatory roles in viral infection, replication, and regulation of tumorigenesis. As macrovesicles in cells, exosomes can deliver viral miRNAs and exert gene regulatory functions. Whether the exosomes play a role in the replication, pathogenesis/tumorigenesis of avian herpesviruses such as oncogenic Marek's disease virus (MDV) remains unclear. Herein we extracted and identified the exosomes from MDV-transformed T cell line MSB-1 and demonstrated high abundance of MDV-1 miRNA expression. Using dual luciferase-based reporter assay, we also demonstrated that the exosomes derived from MSB-1 can deliver functional miRNA successfully into primary chicken embryo fibroblasts. These findings provide new insights into the role of exosomes and the mechanisms of how virus-encoded miRNA function in MDV latency/activation switching, viral replication, pathogenesis and/or tumorigenesis.

20.
Biology (Basel) ; 13(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38927305

RESUMEN

Tumor cells display abnormal growth and division, avoiding the natural process of cell death. These cells can be benign (non-cancerous growth) or malignant (cancerous growth). Over the past few decades, numerous in vitro or in vivo tumor models have been employed to understand the molecular mechanisms associated with tumorigenesis in diverse regards. However, our comprehension of how non-tumor cells transform into tumor cells at molecular and cellular levels remains incomplete. The nematode C. elegans has emerged as an excellent model organism for exploring various phenomena, including tumorigenesis. Although C. elegans does not naturally develop cancer, it serves as a valuable platform for identifying oncogenes and the underlying mechanisms within a live organism. In this review, we describe three distinct germline tumor models in C. elegans, highlighting their associated mechanisms and related regulators: (1) ectopic proliferation due to aberrant activation of GLP-1/Notch signaling, (2) meiotic entry failure resulting from the loss of GLD-1/STAR RNA-binding protein, (3) spermatogenic dedifferentiation caused by the loss of PUF-8/PUF RNA-binding protein. Each model requires the mutations of specific genes (glp-1, gld-1, and puf-8) and operates through distinct molecular mechanisms. Despite these differences in the origins of tumorigenesis, the internal regulatory networks within each tumor model display shared features. Given the conservation of many of the regulators implicated in C. elegans tumorigenesis, it is proposed that these unique models hold significant potential for enhancing our comprehension of the broader control mechanisms governing tumorigenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA