Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629021

RESUMEN

Reversibly glycosylated polypeptides (RGPs) have been identified in many plant species and play an important role in cell wall formation, intercellular transport regulation, and plant-virus interactions. Most plants have several RGP genes with different expression patterns depending on the organ and developmental stage. Here, we report on four members of the RGP family in N. benthamiana. Based on a homology search, NbRGP1-3 and NbRGP5 were assigned to the class 1 and class 2 RGPs, respectively. We demonstrated that NbRGP1-3 and 5 mRNA accumulation increases significantly in response to tobacco mosaic virus (TMV) infection. Moreover, all identified class 1 NbRGPs (as distinct from NbRGP5) suppress TMV intercellular transport and replication in N. benthamiana. Elevated expression of NbRGP1-2 led to the stimulation of callose deposition at plasmodesmata, indicating that RGP-mediated TMV local spread could be affected via a callose-dependent mechanism. It was also demonstrated that NbRGP1 interacts with TMV movement protein (MP) in vitro and in vivo. Therefore, class 1 NbRGP1-2 play an antiviral role by impeding intercellular transport of the virus by affecting plasmodesmata callose and directly interacting with TMV MP, resulting in the reduced viral spread and replication.


Asunto(s)
Nicotiana , Virus del Mosaico del Tabaco , Nicotiana/genética , Péptidos , Glicosilación , Antivirales
2.
Glycobiology ; 29(12): 839-846, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31679023

RESUMEN

l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.


Asunto(s)
Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Oryza/enzimología , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Oryza/citología
3.
J Plant Res ; 131(2): 307-317, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29052022

RESUMEN

Plant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. Arabinose is a constituent of many different cell wall components, including pectic rhamnogalacturonan I (RG-I) and II (RG-II), glucuronoarabinoxylans (GAX), and arabinoxyloglucan (AXG). Arabinose is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. The UDP-arabinopyranose mutases (UAMs) have been demonstrated to convert UDP-arabinopyranose (UDP-Arap) to UDP-arabinofuranose (UDP-Araf) in rice (Oryza sativa L.). The UAMs have been implicated in polysaccharide biosynthesis and developmental processes. Arabinose residues could be a component of many polysaccharides, including branched (1→5)-α-arabinans, arabinogalactans in pectic polysaccharides, and arabinoxyloglucans, which are abundant in the cell walls of solanaceous plants. Therefore, to elucidate the role of UAMs and arabinan side chains, we analyzed the UAM RNA interference transformants in tobacco (Nicotiana tabacum L.). The tobacco UAM gene family consists of four members. We generated RNAi transformants (NtUAM-KD) to down-regulate all four of the UAM members. The NtUAM-KD showed abnormal leaf development in the form of a callus-like structure and many holes in the leaf epidermis. A clear reduction in the pectic arabinan content was observed in the tissue of the NtUAM-KD leaf. The arabinose/xylose ratio in the xyloglucan-rich cell wall fraction was drastically reduced in NtUAM-KD. These results suggest that UAMs are required for Ara side chain biosynthesis in both RG-I and AXG in Solanaceae plants, and that arabinan-mediated cell wall networks might be important for normal leaf expansion.


Asunto(s)
Expresión Génica , Transferasas Intramoleculares/genética , Nicotiana/genética , Hojas de la Planta/crecimiento & desarrollo , Arabinosa/metabolismo , Glucanos , Transferasas Intramoleculares/metabolismo , Pectinas/metabolismo , Hojas de la Planta/metabolismo , Polisacáridos/metabolismo , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Azúcares de Uridina Difosfato/metabolismo
4.
FEBS Lett ; 591(23): 3872-3880, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29110302

RESUMEN

The sucrose synthase (SUS) interactome of developing castor oilseeds (COS; Ricinus communis) was assessed using coimmunoprecipitation (co-IP) with anti-(COS RcSUS1)-IgG followed by proteomic analysis. A 41-kDa polypeptide (p41) that coimmunoprecipitated with RcSUS1 from COS extracts was identified as reversibly glycosylated polypeptide-1 (RcRGP1) by LC-MS/MS and anti-RcRGP1 immunoblotting. Reciprocal Far-western immunodot blotting corroborated the specific interaction between RcSUS1 and RcRGP1. Co-IP using anti-(COS RcSUS1)-IgG and clarified extracts from other developing seeds as well as cluster (proteoid) roots of white lupin and Harsh Hakea consistently recovered 90 kDa SUS polypeptides along with p41/RGP as a SUS interactor. The results suggest that SUS interacts with RGP in diverse sink tissues to channel UDP-glucose derived from imported sucrose into hemicellulose and/or glycoprotein/glycolipid biosynthesis.


Asunto(s)
Glucosiltransferasas/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Ricinus communis/química , Ricinus communis/enzimología , Ricinus/química , Ricinus/enzimología , Far-Western Blotting , Ricinus communis/genética , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Glicosilación , Inmunoprecipitación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mapeo de Interacción de Proteínas , Proteómica , Ricinus/genética , Espectrometría de Masas en Tándem
5.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 4): 241-245, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368284

RESUMEN

The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstrate DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.


Asunto(s)
Transferasas Intramoleculares/química , Oryza/química , Proteínas de Plantas/química , Azúcares de Uridina Difosfato/química , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Ditiotreitol/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Oryza/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Subtilisina/química , Azúcares de Uridina Difosfato/metabolismo , Difracción de Rayos X
6.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 510-519, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28192204

RESUMEN

UDP-arabinopyranose mutase (UAM) is a plant enzyme which interconverts UDP-arabinopyranose (UDP-Arap; a six-membered sugar) to UDP-arabinofuranose (UDP-Araf; a five-membered sugar). Plant mutases belong to a small gene family called Reversibly Glycosylated Proteins (RGPs). So far, UAM has been identified in Oryza sativa (Rice), Arabidopsis thaliana and Hordeum vulgare (Barley). The enzyme requires divalent metal ions for catalytic activity. Here, the divalent metal ion dependency of UAMs from O. sativa (rice) and A. thaliana have been studied using HPLC-based kinetic assays. It was determined that UAM from these species had the highest relative activity in a range of 40-80µM Mn2+. Excess Mn2+ ion concentration decreased the enzyme activity. This trend was observed when other divalent metal ions were used to test activity. To gain a perspective of the role played by the metal ion in activity, an ab initio structural model was generated based on the UAM amino acid sequence and a potential metal binding region was identified. Based on our results, we propose that the probable role of the metal in UAM is stabilizing the diphosphate of the substrate, UDP-Arap.


Asunto(s)
Arabidopsis/enzimología , Transferasas Intramoleculares/química , Oryza/enzimología , Azúcares de Uridina Difosfato/química , Sitios de Unión , Catálisis , Pared Celular/enzimología , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Iones/química , Cinética , Metales/química , Unión Proteica , Azúcares de Uridina Difosfato/metabolismo
7.
Front Plant Sci ; 7: 1580, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833622

RESUMEN

Background: Switchgrass (Panicum virgatum L.) is a C4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. Results: The expression of a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Conclusion: Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA