Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
J Cosmet Dermatol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248229

RESUMEN

BACKGROUND: The aim of this study was to investigate the protective effect of quercetin loaded on solid lipid nanoparticles (SLN) in protecting human hair from ultraviolet-B (UV-B) light in vitro. METHODS: In this study, solvent-emulsified diffusion method was used to fabricate nanoparticle formulations and then particle size, loading, and drug release tests were performed from different formulations. Variables include oily part proportion, liquid to solid oil part ratio, and surfactant to lipid ratio. The optimal formulation was prepared by examining the eight formulations and optimizing them. Six groups of hair with different treatments were exposed to UV light for 600 h and the changes were investigated by examining four factors: RMS (root mean square average, the microscopic profile peaks and valleys), peak to valley roughness, the amount of chemical changes by Fourier transform infrared spectroscopy (FTIR), and the amount of protein loss. RESULTS: The selected formulation had a suitable particle size, loading percent, and release rate for penetration to hair. Quercetin-loaded SLN controlled RMS factor, peak to valley roughness, and reduced chemical changes and protein loss compared to other treatments. CONCLUSION: The optimize formulation showed positive effects in protecting the hair strands from UV-B radiation.

2.
Microbiome ; 12(1): 165, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244575

RESUMEN

BACKGROUND: To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation. RESULTS: Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1. CONCLUSION: These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract.


Asunto(s)
Metabolismo Secundario , Taxus , Rayos Ultravioleta , Taxus/microbiología , Endófitos/genética , Endófitos/metabolismo , Hongos/genética , Hongos/clasificación , Hongos/efectos de la radiación , Hongos/metabolismo , Microbiota
3.
Foods ; 13(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123575

RESUMEN

Isoflavones, a class of substances with high biological activity, are abundant in soybeans. This study investigated isoflavone biosynthesis in soybean cell suspension cultures under UV-B radiation. UV-B radiation enhanced the transcription level and activity of key enzymes involved in isoflavone synthesis in cell suspension cultures. As a result, the isoflavone contents significantly increased by 19.80% and 91.21% in hypocotyl and cotyledon suspension cultures compared with the control, respectively. Meanwhile, a significant difference was observed in the composition of isoflavones between soybean hypocotyl and cotyledon suspension cultures. Genistin was only detected in hypocotyl suspension cultures, whereas glycitin, daidzein, and genistein accumulated in cotyledon suspension cultures. Therefore, UV-B radiation exhibited tissue-specific regulation of isoflavone biosynthesis in soybean cell suspension cultures. The combination of suspension cultures and abiotic stress provides a novel technological approach to isoflavone accumulation.

4.
Plants (Basel) ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999560

RESUMEN

Epimedium brevicornu Maxim. is a herbal plant with various therapeutic effects, and its aboveground tissues contain flavonol compounds such as icaritin that can be used to produce new drugs for the treatment of advanced liver cancer. Previous studies have shown that ultraviolet-B (UV-B, 280-315 nm) stress can increase the levels of flavonoid substances in plants. In the current study, we observed the microstructure of E. brevicornu leaves after 0, 5, 10, 15, and 20 d of UV-B radiation (60 µw·cm-2) and quality formation mechanism of E. brevicornu leaves after 0, 10, and 20 d of UV-B radiation by LC‒ESI‒MS/MS. The contents of flavonols such as icariside I, wushanicaritin, icaritin, and kumatakenin were significantly upregulated after 10 d of radiation. The results indicated that UV-B radiation for 10 d inhibited the morphological development of E. brevicornu but increased the content of active medicinal components, providing a positive strategy for epimedium quality improvement.

5.
Plants (Basel) ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732457

RESUMEN

Increasing the ultraviolet radiation (UV) level, particularly UV-B due to damage to the stratospheric ozone layer by human activities, has huge negative effects on plant and animal metabolism. As a widely grown cool-season forage grass and turfgrass in the world, perennial ryegrass (Lolium perenne) is UV-B-sensitive. To study the effects of miR164, a highly conserved microRNA in plants, on perennial ryegrass under UV stress, both OsmiR164a overexpression (OE164) and target mimicry (MIM164) transgenic perennial ryegrass plants were generated using agrobacterium-mediated transformation, and UV-B treatment (~600 µw cm-2) of 7 days was imposed. Morphological and physiological analysis showed that the miR164 gene affected perennial ryegrass UV tolerance negatively, demonstrated by the more scorching leaves, higher leaf electrolyte leakage, and lower relative water content in OE164 than the WT and MIM164 plants after UV stress. The increased UV sensitivity could be partially due to the reduction in antioxidative capacity and the accumulation of anthocyanins. This study indicated the potential of targeting miR164 and/or its targeted genes for the genetic manipulation of UV responses in forage grasses/turfgrasses; further research to reveal the molecular mechanism underlying how miR164 affects plant UV responses is needed.

6.
Environ Sci Pollut Res Int ; 31(22): 31989-32002, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642230

RESUMEN

The present study aimed to analyse the integrated histopathological lesions (IHLs) of the gill, liver and intestine of Catla catla exposed to the different doses of UV-B radiation. Gill exhibited the lesions like hypertrophy, hyperplasia, vacuolation, fusion of the gill filaments, rupture in the gill lamellae, epithelial cell lifting and necrosis. The UV-B-exposed liver of Catla showed the lesions like the degeneration of nucleus, the disarrangement of hepatocytes, sinusoidal vacuolation, epitheliod histiocyst, hepatocellular adenoma, exocrine adenoma, cyst formation and diffused epithelial necrosis (DEN). UV-B-exposed intestine showed the lesions like the distortion of columnar epithelial cells (CECs), distortion in lamina propria (LP), disruption in brush border (BB), vacuolation in LP, the presence of submucosal mass (SM), the degeneration of nucleus, the presence of tactoid bodies, the presence of aschoff nodules and metatypical cell carcinoma. These histopathological alterations can be considered as the main blocking alterations of the growth and absorption as well as the final production of fish which can cause a serious loss in total yield to fish farmers which can interrupt the profitable economical production of fish.


Asunto(s)
Cyprinidae , Branquias , Intestinos , Hígado , Rayos Ultravioleta , Animales , Branquias/patología , Hígado/patología , Intestinos/patología
7.
Plants (Basel) ; 13(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38502046

RESUMEN

In plants exposed to ultraviolet B radiation (UV-B; 280-315 nm), metabolic responses are activated, which reduce the damage caused by UV-B. Although several metabolites responding to UV-B stress have been identified in plants, the accumulation of these metabolites at different time points under UV-B stress remains largely unclear, and the transcription factors regulating these metabolites have not been well characterized. Here, we explored the changes in metabolites in rice after UV-B treatment for 0 h, 6 h, 12 h, and 24 h and identified six patterns of metabolic change. We show that the rice transcription factor OsbZIP18 plays an important role in regulating phenylpropanoid and flavonoid biosynthesis under UV-B stress in rice. Metabolic profiling revealed that the contents of phenylpropanoid and flavonoid were significantly reduced in osbzip18 mutants compared with the wild-type plants (WT) under UV-B stress. Further analysis showed that the expression of many genes involved in the phenylpropanoid and flavonoid biosynthesis pathways was lower in osbzip18 mutants than in WT plants, including OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2, and OsF3H. Electrophoretic mobility shift assays (EMSA) revealed that OsbZIP18 bind to the promoters of these genes, suggesting that OsbZIP18 function is an important positive regulator of phenylpropanoid and flavonoid biosynthesis under UV-B stress. In conclusion, our findings revealed that OsbZIP18 is an essential regulator for phenylpropanoid and flavonoid biosynthesis and plays a crucial role in regulating UV-B stress responses in rice.

8.
Foods ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38397485

RESUMEN

UV-B radiation and water deficit can challenge Pinot noir growth and fruit quality. The aim of this work is to determine the effects of UV-B and water deficit on the physiological indices, amino acids, and volatile compounds of Pinot noir vine and fruit. The results showed that both individual and combined treatments caused a decrease in the leaf SPAD, with the largest amplitude being observed in the combined treatment. Water deficit also decreased the leaf water potential and increased the juice δ13C‱ at harvest, which was the opposite of the latter under UV-B radiation. Interestingly, most of the physiological indices under combined stresses did not show significant changes compared with that under no UV-B and the well-watered control treatment. Moreover, the concentrations of amino acids and volatile compounds in the berries were determined at harvest. The amino acid contents were significantly increased by the combined treatment, particularly proline (Pro), aspartate (Arg), alanine (Ala), and threonine (Thr). There were slight increases in volatile compounds. This research substantially contributed to improve our scientific understanding of UV-B and water deficit responses in an important commercial species. In addition, it highlighted some future research to produce high-quality wines with the anticipated specific characteristics.

9.
J Cosmet Dermatol ; 23(5): 1816-1827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38193246

RESUMEN

BACKGROUND: The purpose of this study was to investigate the protective effect of Silibinin-loaded polymeric micelles from human hair against UV-B radiation. METHODS: Eight formulations with different concentrations of Silibinin, Pluronic F-127, and Labrasol-Labrafil were made by a solvent evaporation method, and the selected formulation was chosen by examining their properties like particle size and loading efficiency. Six groups of human hair, including a group that received the selected formulation, were exposed to UV-B radiation and by calculating its factors such as peak-to-valley roughness, RMS roughness, FTIR, and the amount of protein loss, the protective effect of the selected formulation was judged. RESULTS: According to the results, the loading efficiency and particle size of the selected formulation were 45.34% and 43.19 nm. The Silibinin release profile had two parts, fast and slow, which were suitable for creating a drug depot on hair. Its zeta potential also confirmed the minimum electrostatic interference between the formulation and hair surface. The zeta potential of selected formulation was -5.9 mv. Examination of AFM images showed that the selected formulation was able to prevent the increase in peak-to-valley roughness and RMS roughness caused by UV-B radiation. RMS roughness after 600 h of UV radiation in Groups 5 and 6 was significantly lower than the negative control group and the amount of this factor did not differ significantly between 0 and 600, so it can be concluded that the selected formulation containing Silibinin and the positive control group was able to prevent the increase of RMS roughness and hair destruction. In other hands, the two positive control groups and the selected formulation containing Silibinin were able to effectively reduce hair protein loss. CONCLUSION: Silibinin-loaded polymeric micelles were able to effectively protect hair from structural and chemical changes caused by UV-B radiation.


Asunto(s)
Cabello , Micelas , Tamaño de la Partícula , Silibina , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , Silibina/farmacología , Silibina/administración & dosificación , Silibina/química , Cabello/efectos de los fármacos , Cabello/efectos de la radiación , Silimarina/farmacología , Silimarina/administración & dosificación , Silimarina/química , Polímeros/química , Liberación de Fármacos/efectos de la radiación , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación
10.
Sci Total Environ ; 915: 170097, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38224898

RESUMEN

Despite widespread recognition of pollen's potential sensitivity to ultraviolet-B (UV-B) radiation (280-315 nm), there remains ongoing debate surrounding the extent and mechanisms of this effect. In this study, using published data on pollen germination and tube growth including 377 pair-wise comparisons from 77 species in 30 families, we present the first global quantification of the effects of UV-B radiation on pollen germination and tube growth, along with its underlying mechanisms. Our results showed a substantial reduction in both pollen germination and tube growth in response to UV-B radiation, affecting 90.9 % and 84.2 % of species, respectively. Notably, these reductions exhibited phylogenetic constraints, highlighting the role of evolutionary history in shaping the sensitivity of pollen germination and tube growth to UV-B radiation. A negative correlation between elevation and the sensitivity of pollen tube growth was detected, suggesting that pollens from plants at higher elevations exhibit greater resistance to UV-B radiation. Our investigation also revealed that the effects of UV-B radiation on pollen germination and tube growth were influenced by a range of abiotic and biotic factors. Nevertheless, the intensity and duration of UV-B radiation exposure exhibited the highest explanatory power for the effects on both pollen germination and tube growth. This suggests that the responses of pollens to UV-B radiation are profoundly influenced by its dose, a critical consideration within the context of global change. In conclusion, our study provides valuable insights into the diverse responses of pollen germination and tube growth to UV-B radiation, highlighting the environment and species-dependent nature of pollen's susceptibility to UV-B radiation, with substantial implications for our understanding of the ecological and agricultural consequences of ongoing changes in UV-B radiation.


Asunto(s)
Germinación , Polen , Humanos , Filogenia , Polen/fisiología , Plantas , Evolución Biológica
11.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38264772

RESUMEN

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Asunto(s)
Magnoliopsida , Magnoliopsida/genética , Tamaño del Genoma , Genoma de Planta , Poliploidía , Plantas/genética , Filogenia
12.
Protoplasma ; 261(1): 161-171, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37428235

RESUMEN

Enhanced ultraviolet-B (UV-B) radiation can change the interaction between crops and pathogens. The effects of single and compound stresses of enhanced UV-B radiation (5.0 kJ·m-2) and Magnaporthe oryzae on the morphology, anatomy, and ultrastructure of rice leaves were investigated. M. oryzae infection decreased the leaf area and thickness, reduced the stomatal area and density, and caused damages to the leaf ultrastructure, such as cytoplasm-cell wall separation, atrophy and sinking of fan-shaped bulliform cells, and chloroplast deformation. The enhanced UV-B radiation supplied before or during M. oryzae infection remarkably decreased the mycelia number of M. oryzae in leaf epidermis, increased the leaf area, leaf thickness, stomatal density, and mastoid number; and alleviated the ultrastructural damages induced by M. oryzae to keep an integral chloroplast. While the UV-B radiation was supplied after M. oryzae infection, its alleviation effects on the damages induced by M. oryzae infection on the morphology and structure of rice leaf were attenuated. Thus, the alleviation of enhanced UV-B radiation on damages induced by M. oryzae infection on rice leaves was related to its application period. The enhanced UV-B radiation supplied before or during M. oryzae infection allowed the rice leaf to resist M. oryzae infection.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Enfermedades de las Plantas , Hojas de la Planta
13.
Fungal Biol ; 127(12): 1524-1533, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38097326

RESUMEN

We investigated conidial mass production of eight isolates of six entomopathogenic fungi (EPF), Aphanocladium album (ARSEF 1329), Beauveria bassiana (ARSEF 252 and 3462), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium anisopliae sensu lato (ARSEF 2341), Metarhizium pingshaense (ARSEF 1545), and Simplicillium lanosoniveum (ARSEF 6430 and 6651) on white or brown rice at four moisture conditions (75-100%). The tolerance of mass-produced conidia of the eight fungal isolates to UV-B radiation and heat (45 °C) were also evaluated. For each moisture content compared, a 20-g sample of rice in a polypropylene bag was inoculated with each fungal isolate in three replicates and incubated at 28 ± 1 °C for 14 days. Conidia were then harvested by washing the substrate, and conidial concentrations determined by haemocytometer counts. Conidial suspensions were inoculated on PDAY with 0.002% benomyl in Petri plates and exposed to 978 mW m-2 of Quaite-weighted UV-B for 2 h. Additionally, conidial suspensions were exposed to 45 °C for 3 h, and aliquots inoculated on PDAY with benomyl. The plates were incubated at 28 ± 1 °C, and germination was assessed at 400 × magnification after 48 h. Conidial production was generally higher on white rice than on brown rice for all fungal species, except for L. aphanocladii ARSEF 6433, regardless of moisture combinations. The 100% moisture condition provided higher conidial production for B. bassiana (ARSEF 252 and ARSEF 3462) and M. anisopliae (ARSEF 2341) isolates, while the addition of 10% peanut oil enhanced conidial yield for S. lanosoniveum isolate ARSEF 6430. B. bassiana ARSEF 3462 on white rice with 100% water yielded the highest conidial production (approximately 1.3 × 1010 conidia g-1 of substrate). Conidia produced on white rice with the different moisture conditions did not differ in tolerance to UV-B radiation or heat. However, high tolerance to UV-B radiation and heat was observed for B. bassiana, M. anisopliae, and A. album isolates. Heat-treated conidia of S. lanosoniveum and L. aphanocladii did not germinate.


Asunto(s)
Beauveria , Metarhizium , Esporas Fúngicas , Calor , Benomilo , Control Biológico de Vectores
14.
Fungal Biol ; 127(12): 1544-1550, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38097328

RESUMEN

Metarhizium spp. is used as a biocontrol agent but is limited because of low tolerance to abiotic stress. Metarhizium robertsii is an excellent study model of fungal pathogenesis in insects, and its tolerance to different stress conditions has been extensively investigated. Priming is the time-limited pre-exposure of an organism to specific stress conditions that increases adaptive response to subsequent exposures. Congo red is a water-soluble azo dye extensively used in stress assays in fungi. It induces morphological changes and weakens the cell wall at sublethal concentrations. Therefore, this chemical agent has been proposed as a stressor to induce priming against other stress conditions in entomopathogenic fungi. This study aimed to evaluate the capacity of Congo red to induce priming in M. robertsii. Conidia were grown on potato dextrose agar with or without Congo red.The tolerance of conidia produced from mycelia grown in these three conditions was evaluated against stress conditions, including osmotic, oxidative, heat, and UV-B radiation. Conidia produced on medium supplemented with Congo red were significantly more tolerant to UV-B radiation but not to the other stress conditions assayed. Our results suggest that Congo red confers trans-priming to UV-B radiation but not for heat, oxidative, or osmotic stress.


Asunto(s)
Metarhizium , Metarhizium/fisiología , Rojo Congo , Rayos Ultravioleta , Esporas Fúngicas/fisiología
15.
Curr Issues Mol Biol ; 45(12): 9943-9960, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38132467

RESUMEN

Enhanced ultraviolet-B (UV-B) radiation promotes anthocyanin biosynthesis in leaves, flowers and fruits of plants. However, the effects and underlying mechanisms of enhanced UV-B radiation on the accumulation of anthocyanins in the tubers of potatoes (Solanum tuberosum L.) remain unclear. Herein, reciprocal grafting experiments were first conducted using colored and uncolored potatoes, demonstrating that the anthocyanins in potato tubers were synthesized in situ, and not transported from the leaves to the tubers. Furthermore, the enhanced UV-B radiation (2.5 kJ·m-2·d-1) on potato stems and leaves significantly increased the contents of total anthocyanin and monomeric pelargonidin and peonidin in the red-fleshed potato '21-1' tubers, compared to the untreated control. A comparative transcriptomic analysis showed that there were 2139 differentially expressed genes (DEGs) under UV-B treatment in comparison to the control, including 1724 up-regulated and 415 down-regulated genes. The anthocyanin-related enzymatic genes in the tubers such as PAL, C4H, 4CL, CHS, CHI, F3H, F3'5'H, ANS, UFGTs, and GSTs were up-regulated under UV-B treatment, except for a down-regulated F3'H. A known anthocyanin-related transcription factor StbHLH1 also showed a significantly higher expression level under UV-B treatment. Moreover, six differentially expressed MYB transcription factors were remarkably correlated to almost all anthocyanin-related enzymatic genes. Additionally, a DEGs enrichment analysis suggested that jasmonic acid might be a potential UV-B signaling molecule involved in the UV-B-induced tuber biosynthesis of anthocyanin. These results indicated that enhanced UV-B radiation in potato stems and leaves induced anthocyanin accumulation in the tubers by regulating the enzymatic genes and transcription factors involved in anthocyanin biosynthesis. This study provides novel insights into the mechanisms of enhanced UV-B radiation that regulate the anthocyanin biosynthesis in potato tubers.

16.
Biomolecules ; 13(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136571

RESUMEN

The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.


Asunto(s)
Rhododendron , Cromatografía Liquida , Espectrometría de Masas en Tándem , Rayos Ultravioleta , Plantas
17.
Ecotoxicol Environ Saf ; 262: 115319, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37542982

RESUMEN

Ultraviolet B (UV-B, 280-320 nm) radiation is a major environmental stressor for aquatic organisms on Earth's surface. Its effects on biological systems are well known, but the mechanisms by which organisms respond and adapt to UV-B radiation are still being explored. In this study, we investigated the effects of UV-B radiation on the monogonont rotifer Brachionus asplanchnoidis, focusing on physiological parameters, antioxidant systems, DNA damage, and DNA repair-related molecular mechanism. Our results showed that the LD50 was at 28.53 kJ/m2, indicating strong tolerance to UV-B. However, UV-B radiation caused adverse effects on growth and reproduction, with shortened reproductive period and longevity, decreased fecundity and hatchability, and inhibition of population growth. Biochemical analyses revealed severe oxidative damage and lipid peroxidation, with increased ROS and MDA levels. Activities of antioxidant enzymes were highly induced at low doses but decreased at high doses. DNA damage also occurred in UV-B-exposed rotifers. Furthermore, selected DNA repair-related genes were up-regulated in a dose-dependent manner. These findings provide a comprehensive understanding of the effects of UV-B radiation on rotifers and highlight the importance of considering both ecological and molecular responses in assessing the impact of UV-B radiation on aquatic organisms.

18.
Chemosphere ; 335: 139141, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37285984

RESUMEN

The high concentrations of herbicide and UV-B radiation are two stresses for Tibetan soil microorganisms, but there is limited information about the combined effects of herbicide and UV-B radiation on their levels of stress. In this study, the Tibetan soil cyanobacterium Loriellopsis cavernicola was used to investigate the combined inhibitory effect of the herbicide glyphosate and UV-B radiation on the cyanobacterial photosynthetic electron transport through an analysis of the photosynthetic activity, photosynthetic pigments, chlorophyll fluorescence and antioxidant system activity. The results demonstrated that treatment with herbicide or UV-B radiation and the combination of both stresses caused a decrease in the photosynthetic activity, interfered with the photosynthetic electron transport, and caused the accumulation of oxygen radicals and the degradation of photosynthetic pigments. In contrast, the combined treatment of glyphosate and UV-B radiation had a synergistic effect, i.e., the sensitivity of cyanobacteria to glyphosate increased in the presence of UV-B radiation, which caused the photosynthesis of cyanobacteria to have a greater impact. Since cyanobacteria are the primary producers of soil ecosystems, a high intensity of UV-B radiation in the plateau areas could enhance the inhibition of glyphosate on cyanobacteria, which could affect the ecological health and sustainable development of plateau soils.


Asunto(s)
Cianobacterias , Herbicidas , Ecosistema , Herbicidas/farmacología , Tibet , Rayos Ultravioleta , Cianobacterias/metabolismo , Fotosíntesis , Antioxidantes/metabolismo , Clorofila/metabolismo , Glifosato
19.
Oncol Res ; 31(1): 71-82, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303736

RESUMEN

Cutaneous squamous cell carcinoma (cSCC), a type of non-melanoma skin cancer (NMSC), is the most common malignancy worldwide. Thioredoxin (TXN) domain-containing protein 9 (TXNDC9) is a member of the TXN family that is important in cell differentiation. However, the biological function of this protein in cancer, particularly cSCC, is still unknown. In the present study, our experiments revealed the protective effects of TXNDC9 on UV-B-irritated cSCC cells. The initial findings showed that TXNDC9 is significantly upregulated in cSCC tissue and cells compared to normal skin tissue and keratinocytes. UV-B radiation robustly induces the expression of TXNDC9, and UV-B-induced cSCC cell death is boosted by TXNDC9 deficiency. Moreover, cSCC cells lacking TXNDC9 displayed attenuated activation of the NF-κB pathway. Additional studies by inhibiting TXNDC9 confirmed this finding, as TXNDC9 deficiency attenuated UV-B radiation-induced translocation of NF-κB p65 from the cytoplasm to the nucleus of cSCC. In conclusion, our work demonstrates the biological roles of TXNDC9 in cSCC progression and may provide a novel therapeutic target to treat cSCC in the future.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Tiorredoxinas , Humanos , Apoptosis , Carcinoma de Células Escamosas/genética , FN-kappa B , Neoplasias Cutáneas/genética , Tiorredoxinas/genética
20.
Foods ; 12(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37372561

RESUMEN

High UV-B radiation can challenge Pinot noir growth in the wine-making region of the Southern Hemisphere. The aim of this work was to determine UV-B effects on amino acids, phenolic composition and aroma compounds of Pinot noir fruit. Sunlight exposure with or without UV-B did not affect fruit production capacity, °Brix and total amino acids in the vineyard over the two years. This research reported increased contents of skin anthocyanin and skin total phenolics in berry skins under UV-B. The research showed that there were no changes in C6 compounds. Some monoterpenes concentrations were decreased by UV-B. The information also indicated how important leaf canopy management was for vineyard management. Therefore, UV radiation potentially affected fruit ripeness and crop load, and even stimulated the accumulation of phenolic compounds that may affect Pinot noir quality. This research reported that canopy management (UV-B exposure) may be a good way for vineyard management to increase the accumulation of anthocyanins and tannins in berry skins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA