Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.366
Filtrar
1.
Sci Rep ; 14(1): 22938, 2024 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358540

RESUMEN

Activating transcription factor 4 (ATF4) plays a central role in the integrated stress response (ISR) and one overlapping branch of the unfolded protein response (UPR). We recently reported that the splicing inhibitor isoginkgetin (IGG) induced ATF4 protein along with several known ATF4-regulated transcripts in a response that resembled the ISR and UPR. However, the contribution of ATF4-dependent and -independent transcriptional responses to IGG exposure was not known. Here we used RNA-sequencing in HCT116 colon cancer cells and an isogenic subline lacking ATF4 to investigate the contribution of ATF4 to IGG-induced changes in gene expression. Approximately 85% of the IGG-responsive DEGs in HCT116 cells were also differentially expressed in response to the ER stressor thapsigargin (Tg) and these were enriched for genes associated with the UPR and ISR. Most of these were positively regulated by IGG with impaired responses in the ATF4-deficient cells. Nonetheless, there were DEGs that responded similarly in both cell lines. The ATF4-independent IGG-induced DEGs included several metal responsive transcripts encoding metallothionines and a zinc transporter. Taken together, the predominant IGG response was ATF4-dependent in these cells and resembled the UPR and ISR while a second less prominent response involved the ATF4-independent regulation of metal responsive mRNAs.


Asunto(s)
Factor de Transcripción Activador 4 , Biflavonoides , Humanos , Células HCT116 , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Biflavonoides/farmacología , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
2.
Biochem Biophys Res Commun ; 734: 150737, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39388734

RESUMEN

Microproteins synthesized through non-canonical translation pathways are frequently found within mitochondria. However, the functional significance of these mitochondria-localized microproteins in energy-intensive organs such as the heart remains largely unexplored. In this study, we demonstrate that the long non-coding RNA CD63-AS1 encodes a mitochondrial microprotein. Notably, in ribosome profiling data of human hearts, there is a positive correlation between the expression of CD63-AS1 and genes associated with cardiomyopathy. We have termed this microprotein CEAM (CD63-AS1 encoded amyloid-like motif containing microprotein), reflecting its sequence characteristics. Our biochemical assays show that CEAM forms protease-resistant aggregates within mitochondria, whereas deletion of the amyloid-like motif transforms CEAM into a soluble cytosolic protein. Overexpression of CEAM triggers mitochondrial stress responses and adversely affect mitochondrial bioenergetics in cultured cardiomyocytes. In turn, the expression of CEAM is reciprocally inhibited by the activation of mitochondrial stresses induced by oligomycin. When expressed in mouse hearts via adeno-associated virus, CEAM impairs cardiac function. However, under conditions of pressure overload-induced cardiac hypertrophy, CEAM expression appears to offer a protective benefit and mitigates the expression of genes associated with cardiac remodeling, presumably through a mechanism that suppresses stress-induced translation reprogramming. Collectively, our study uncovers a hitherto unexplored amyloid-like microprotein expressed in the human cardiomyocytes, offering novel insights into myocardial hypertrophy pathophysiology.

3.
Biochim Biophys Acta Mol Cell Res ; 1872(1): 119854, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39353469

RESUMEN

Anterior gradient 2 (AGR2) is often overexpressed in many human cancers, including pancreatic ductal adenocarcinoma (PDAC). Elevated AGR2 expression is known to play a critical role in tumor development, progression, and metastasis and positively correlates with poor patient survival. However, the relationship between AGR2 expression and tumor growth is not fully understood. Our study aims to investigate the impact of AGR2 knockdown on the survival of two pancreatic cancer cell lines, HPAF-II and PANC-1, that exhibit high AGR2 expression. This study revealed that the knockdown of AGR2 expression through an inducible shRNA-mediated approach reduced the proliferative ability and colony-forming potential of PDAC cells compared to scramble controls. Significantly, knocking down AGR2 led to the inhibition of multiple protein biosynthesis pathways and induced ER stress through unfolded protein response (UPR) activation. AGR2 knockdown induced ER stress and increased mitochondrial fission, while mitochondrial fusion remained unaffected. Ultimately, apoptotic cell death was heightened in AGR2 knockdown PDAC cells compared to the controls. Overall, these data reveal a new axis involving AGR2-ER stress-associated mitochondrial fission that could be targeted to improve PDAC patient outcomes.

4.
Biochim Biophys Acta Mol Basis Dis ; 1871(1): 167533, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368714

RESUMEN

Endoplasmic reticulum-associated degradation (ERAD) serves as a crucial quality and quantity control system that removes misfolded or unassembled proteins from the Endoplasmic Reticulum (ER) through the cytoplasmic ubiquitin-proteasome system (UPS), which is critical for cell fate decision. ER stress arises when misfolded proteins accumulated within the ER lumen, potentially leading to cell death via proapoptotic unfolded protein response (UPR). UFD1 in associated with VCP-Npl4, is recognized as a key regulator of protein homeostasis in ERAD. However, the factors that control VCP complex assembly remain unclear. The study elucidates the function of Trim21, an E3 ubiquitin ligase, through its interaction with UFD1, facilitating K27-linkage ubiquitination of UFD1 and inhibiting its incorporation into the VCP complex. This results in the suppression of ERAD substrates degradation and the activation of a proapoptotic unfolded protein response in cancer cells. Additionally, Trim21 over-expression enhances ER stress response and promotes apoptosis upon expose to the ER inducer Tunicamycin. Notably, elevated Trim21 expression correlates with improved overall survival in various tumor types. Overall, the findings highlight the critical role of Trim21 in regulating ERAD progression and cell fate determination in cancer cells through modulation of VCP/Npl4/UFD1 complex assembly.

5.
Cell Biol Int ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364680

RESUMEN

Since suppressor/enhancer of Lin-12-like (SEL1L) was cloned in 1997, various pieces of evidence from lower species suggest it plays a significant role in protein degradation via the ubiquitin-proteasome system. The relevance of SEL1L in many aspects of malignant transformation and tumorigenic events has been the subject of research, which has shown compelling in vitro and in vivo findings relating its altered expression to changes in tumor aggressiveness. The Endoplasmic Reticulum (ER) in tumor cells is crucial for preserving cellular proteostasis by inducing the unfolded protein response (UPR), a stress response. A crucial component of the UPR is ER-associated degradation (ERAD), which guards against ER stress-induced apoptosis and the removal of unfolded or misfolded proteins by the ubiquitin-proteasome system. As a protein stabilizer of HMG-CoA reductase degradation protein 1 (HRD1), one of the main components of ERAD, SEL1L plays an important role in ER homeostasis. Notably, the expression levels of these two proteins fluctuate independently in various cancer types, yet changes in their expression affect the levels of other associated proteins during cancer pathogenesis. Recent studies have also outlined the function of SEL1L in cancer medication resistance. This review explores the value of targeting SEL1L as a novel treatment approach for cancer, focusing on the molecular processes of SEL1L and its involvement in cancer etiology.

6.
Adv Sci (Weinh) ; : e2405441, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39401430

RESUMEN

Aberrant regulation of unfolded protein response (UPR)/endoplasmic reticulum (ER) stress pathway is associated with cancer development, metastasis, and relapse, and the UPR signal transducer ATF6 has been proposed as a diagnostic and prognostic marker for many cancers. However, a causal molecular link between ATF6 activation and carcinogenesis is not established. Here, it is found that tumor protein D52 (TPD52) integrates ER stress and UPR signaling with the chaperone machinery by promoting S2P-mediated cleavage of ATF6. Although TPD52 has been generally considered as an oncogene, TPD52 is identified as a novel tumor suppressor in bladder cancer. Significantly, attenuation of the ER stress via depletion of TPD52 facilitated tumorigenesis in a subset of human carcinomas. Furthermore, the APCCdc20 E3 ligase is validated as the upstream regulator marking TPD52 for polyubiquitination-mediated proteolysis. In addition, inactivation of Cdc20 sensitized cancer cells to treatment with the ER stress inducer in a TPD52-dependent manner. Thus, the study suggests that TPD52 is a novel Cdc20 substrate that may modulate ER stress to prevent tumorigenesis.

7.
Physiol Rep ; 12(18): e70044, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39294861

RESUMEN

Cancer cachexia manifests as whole body wasting, however, the precise mechanisms governing the alterations in skeletal muscle and cardiac anabolism have yet to be fully elucidated. In this study, we explored changes in anabolic processes in both skeletal and cardiac muscles in the Yoshida AH-130 ascites hepatoma model of cancer cachexia. AH-130 tumor-bearing rats experienced significant losses in body weight, skeletal muscle, and heart mass. Skeletal and cardiac muscle loss was associated with decreased ribosomal (r)RNA, and hypophosphorylation of the eukaryotic factor 4E binding protein 1. Endoplasmic reticulum stress was evident by higher activating transcription factor mRNA in skeletal muscle and growth arrest and DNA damage-inducible protein (GADD)34 mRNA in both skeletal and cardiac muscles. Tumors provoked an increase in tissue expression of interferon-γ in the heart, while an increase in interleukin-1ß mRNA was apparent in both skeletal and cardiac muscles. We conclude that compromised skeletal muscle and heart mass in the Yoshida AH-130 ascites hepatoma model involves a marked reduction translational capacity and efficiency. Furthermore, our observations suggest that endoplasmic reticulum stress and tissue production of pro-inflammatory factors may play a role in the development of skeletal and cardiac muscle wasting.


Asunto(s)
Caquexia , Músculo Esquelético , Miocardio , Respuesta de Proteína Desplegada , Animales , Caquexia/metabolismo , Caquexia/etiología , Caquexia/patología , Caquexia/genética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratas , Miocardio/metabolismo , Miocardio/patología , Ratas Wistar , Estrés del Retículo Endoplásmico , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética
8.
Int J Biochem Mol Biol ; 15(4): 107-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309612

RESUMEN

Cadmium (Cd) is a heavy metal pollutant widely distributed in the environment due to industrial activities, mining, and agricultural practices. Cadmium-induced Toxicity exerts profound effects on ER functioning through multiple mechanisms, leading to cellular dysfunction and pathological consequences. Cadmium disrupts protein folding and activates the unfolded protein response (UPR). Cd exposure leads to the accumulation of misfolded proteins, triggering UPR pathways mediated by critical ER transmembrane sensors: IRE1, PERK, and ATF6. The subsequent UPR aims to restore ER homeostasis but can also induce apoptosis under severe stress conditions. Cd disrupts ER calcium homeostasis by inhibiting the SERCA pump, further exacerbating ER stress. The generation of reactive oxygen species (ROS also plays a critical role in Cd toxicity, damaging ER-resident proteins and amplifying UPR activation). Cadmium also affects the lipid metabolism. This review examines the mechanisms by which Cd toxicity impairs ER functioning, disruption of protein folding and quality control mechanisms, and dysregulation of calcium signaling and lipid metabolism. The subsequent cellular consequences, including oxidative stress, apoptosis, and inflammation, are discussed in the context of Cd-induced pathogenesis of diseases such as Cancer and neurodegenerative and cardiovascular disorders. Finally, potential therapeutic strategies must be explored to mitigate the adverse effects of Cd on ER functioning and human health.

9.
Cancer Metab ; 12(1): 27, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285269

RESUMEN

BACKGROUND: High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive subtype of epithelial ovarian carcinoma. It is primarily diagnosed at stage III or IV when the 5-year survival rate ranges between 20% and 40%. Here, we aimed to validate the hypothesis, based on HGSOC cell lines, that proposed the existence of two distinct groups of HGSOC cells with high and low oxidative phosphorylation (OXPHOS) metabolism, respectively, which are associated with their responses to glucose and glutamine withdrawal. METHODS: We isolated and cultivated primary cancer cell cultures from HGSOC and nontransformed ovarian fibroblasts from the surrounding ovarium of 45 HGSOC patients. We tested the metabolic flexibility of the primary cells, particularly in response to glucose and glutamine depletion, analyzed and modulated endoplasmic reticulum stress, and searched for indices of the existence of previously reported groups of HGSOC cells with high and low OXPHOS metabolism. RESULTS: The primary HGSOC cells did not form two groups with high and low OXPHOS that responded differently to glucose and glutamine availabilities in the cell culture medium. Instead, they exhibited a continuum of OXPHOS phenotypes. In most tumor cell isolates, the responses to glucose or glutamine withdrawal were mild and surprisingly correlated with those of nontransformed ovarian fibroblasts from the same patients. The growth of tumor-derived cells in the absence of glucose was positively correlated with the lipid trafficking regulator FABP4 and was negatively correlated with the expression levels of HK2 and HK1. The correlations between the expression of electron transport chain (ETC) proteins and the oxygen consumption rates or extracellular acidification rates were weak. ER stress markers were strongly expressed in all the analyzed tumors. ER stress was further potentiated by tunicamycin but not by the recently proposed ER stress inducers based on copper(II)-phenanthroline complexes. ER stress modulation increased autophagy in tumor cell isolates but not in nontransformed ovarian fibroblasts. CONCLUSIONS: Analysis of the metabolism of primary HGSOC cells rejects the previously proposed hypothesis that there are distinct groups of HGSOC cells with high and low OXPHOS metabolism that respond differently to glutamine or glucose withdrawal and are characterized by ETC protein levels.

10.
Cells ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39273003

RESUMEN

TRIM44, a tripartite motif (TRIM) family member, is pivotal in linking the ubiquitin-proteasome system (UPS) to autophagy in multiple myeloma (MM). However, its prognostic impact and therapeutic potential remain underexplored. Here, we report that TRIM44 overexpression is associated with poor prognosis in a Multiple Myeloma Research Foundation (MMRF) cohort of 858 patients, persisting across primary and recurrent MM cases. TRIM44 expression notably increases in advanced MM stages, indicating its potential role in disease progression. Single-cell RNA sequencing across MM stages showed significant TRIM44 upregulation in smoldering MM (SMM) and MM compared to normal bone marrow, especially in patients with t(4;14) cytogenetic abnormalities. This analysis further identified high TRIM44 expression as predictive of lower responsiveness to proteasome inhibitor (PI) treatments, underscoring its critical function in the unfolded protein response (UPR) in TRIM44-high MM cells. Our findings also demonstrate that TRIM44 facilitates SQSTM1 oligomerization under oxidative stress, essential for its phosphorylation and subsequent autophagic degradation. This process supports the survival of PI-resistant MM cells by activating the NRF2 pathway, which is crucial for oxidative stress response and, potentially, other chemotherapy-induced stressors. Additionally, TRIM44 counters the TRIM21-mediated suppression of the antioxidant response, enhancing MM cell survival under oxidative stress. Collectively, our discoveries highlight TRIM44's significant role in MM progression and resistance to therapy, suggesting its potential value as a therapeutic target.


Asunto(s)
Mieloma Múltiple , Complejo de la Endopetidasa Proteasomal , Proteínas de Motivos Tripartitos , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Humanos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Pronóstico , Línea Celular Tumoral , Complejo de la Endopetidasa Proteasomal/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Autofagia/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Inhibidores de Proteasoma/farmacología , Resistencia a Antineoplásicos/genética , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Regulación Neoplásica de la Expresión Génica
11.
Sci Rep ; 14(1): 22382, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333235

RESUMEN

Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate (STS), while beneficial when used in standard risk hepatoblastoma, is associated with reduced survival in disseminated pediatric malignancy, highlighting the need for more specific drugs without potential tumor protective effects. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo, and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin, and UPR marker gene expression and cell death measured. Treatment with ISRIB (Integrated Stress Response InhIBitor), a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested for its ability to reduce apoptosis in HEK cells, hair-cell death in cochlear cultures, and hearing loss using an in vivo mouse model of cisplatin ototoxicity. Finally, to evaluate whether ISRIB might interfere with cisplatin chemoeffectiveness, we tested it in head and neck squamous cell carcinoma (HNSCC) cell-based assays of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact cisplatin's cytotoxic effects on HNSCC cell viability, unlike STS. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.


Asunto(s)
Cisplatino , Estrés del Retículo Endoplásmico , Ototoxicidad , Respuesta de Proteína Desplegada , Cisplatino/efectos adversos , Cisplatino/toxicidad , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Ototoxicidad/prevención & control , Ototoxicidad/metabolismo , Ototoxicidad/etiología , Humanos , Ratones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Antineoplásicos/efectos adversos , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , eIF-2 Quinasa/metabolismo
12.
Cell Host Microbe ; 32(10): 1725-1743.e7, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39243761

RESUMEN

The cytokine tumor necrosis factor (TNF) plays important roles in limiting infection but is also linked to sepsis. The mechanisms underlying these paradoxical roles are unclear. Here, we show that TNF limits the antimicrobial activity of Paneth cells (PCs), causing bacterial translocation from the gut to various organs. This TNF-induced lethality does not occur in mice with a PC-specific deletion in the TNF receptor, P55. In PCs, TNF stimulates the IFN pathway and ablates the steady-state unfolded protein response (UPR), effects not observed in mice lacking P55 or IFNAR1. TNF triggers the transcriptional downregulation of IRE1 key genes Ern1 and Ern2, which are key mediators of the UPR. This UPR deficiency causes a significant reduction in antimicrobial peptide production and PC antimicrobial activity, causing bacterial translocation to organs and subsequent polymicrobial sepsis, organ failure, and death. This study highlights the roles of PCs in bacterial control and therapeutic targets for sepsis.


Asunto(s)
Traslocación Bacteriana , Células de Paneth , Sepsis , Transducción de Señal , Factor de Necrosis Tumoral alfa , Animales , Células de Paneth/metabolismo , Sepsis/microbiología , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Respuesta de Proteína Desplegada , Ratones Endogámicos C57BL , Ratones Noqueados , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos Antimicrobianos/metabolismo
13.
Neoplasia ; 57: 101055, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39260131

RESUMEN

BACKGROUND: Glioblastoma (GBM) poses a significant medical challenge due to its aggressive nature and poor prognosis. Mitochondrial unfolded protein response (UPRmt) and the heat shock factor 1 (HSF1) pathway play crucial roles in GBM pathogenesis. Post-translational modifications, such as SUMOylation, regulate the mechanism of action of HSF1 and may influence the progression of GBM. Understanding the interplay between SUMOylation-modified HSF1 and GBM pathophysiology is essential for developing targeted therapies. METHODS: We conducted a comprehensive investigation using cellular, molecular, and in vivo techniques. Cell culture experiments involved establishing stable cell lines, protein extraction, Western blotting, co-immunoprecipitation, and immunofluorescence analysis. Mass spectrometry was utilized for protein interaction studies. Computational modeling techniques were employed for protein structure analysis. Plasmid construction and lentiviral transfection facilitated the manipulation of HSF1 SUMOylation. In vivo studies employed xenograft models for tumor growth assessment. RESULTS: Our research findings indicate that HSF1 primarily undergoes SUMOylation at the lysine residue K298, enhancing its nuclear translocation, stability, and downstream heat shock protein expression, while having no effect on its trimer conformation. SUMOylated HSF1 promoted the UPRmt pathway, leading to increased GBM cell proliferation, migration, invasion, and reduced apoptosis. In vivo studies have confirmed that SUMOylation of HSF1 enhances its oncogenic effect in promoting tumor growth in GBM xenograft models. CONCLUSION: This study elucidates the significance of SUMOylation modification of HSF1 in driving GBM progression. Targeting SUMOylated HSF1 may offer a novel therapeutic approach for GBM treatment. Further investigation into the specific molecular mechanisms influenced by SUMOylated HSF1 is warranted for the development of effective targeted therapies to improve outcomes for GBM patients.


Asunto(s)
Progresión de la Enfermedad , Glioblastoma , Factores de Transcripción del Choque Térmico , Sumoilación , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Animales , Ratones , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Modelos Animales de Enfermedad , Respuesta de Proteína Desplegada , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética
14.
Adv Exp Med Biol ; 1460: 539-574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287864

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is in parallel with the obesity epidemic, and it is the most common cause of liver diseases. The patients with severe insulin-resistant diabetes having high body mass index (BMI), high-grade adipose tissue insulin resistance, and high hepatocellular triacylglycerols (triglycerides; TAG) content develop hepatic fibrosis within a 5-year follow-up. Insulin resistance with the deficiency of insulin receptor substrate-2 (IRS-2)-associated phosphatidylinositol 3-kinase (PI3K) activity causes an increase in intracellular fatty acid-derived metabolites such as diacylglycerol (DAG), fatty acyl CoA, or ceramides. Lipotoxicity-related mechanism of NAFLD could be explained still best by the "double-hit" hypothesis. Insulin resistance is the major mechanism in the development and progression of NAFLD/nonalcoholic steatohepatitis (NASH). Metabolic oxidative stress, autophagy, and inflammation induce NASH progression. In the "first hit" the hepatic concentrations of diacylglycerol increase with an increase in saturated liver fat content in human NAFLD. Activities of mitochondrial respiratory chain complexes are decreased in the liver tissue of patients with NASH. Hepatocyte lipoapoptosis is a critical feature of NASH. In the "second hit," reduced glutathione levels due to oxidative stress lead to the overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling that induces cell death in the steatotic liver. Accumulation of toxic levels of reactive oxygen species (ROS) is caused at least by two ineffectual cyclical pathways. First is the endoplasmic reticulum (ER) oxidoreductin (Ero1)-protein disulfide isomerase oxidation cycle through the downstream of the inner membrane mitochondrial oxidative metabolism and the second is the Kelch like-ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. In clinical practice, on ultrasonographic examination, the elevation of transaminases, γ-glutamyltransferase, and the aspartate transaminase to platelet ratio index indicates NAFLD. Fibrosis-4 index, NAFLD fibrosis score, and cytokeratin18 are used for grading steatosis, staging fibrosis, and discriminating the NASH from simple steatosis, respectively. In addition to ultrasonography, "controlled attenuation parameter," "magnetic resonance imaging proton-density fat fraction," "ultrasound-based elastography," "magnetic resonance elastography," "acoustic radiation force impulse elastography imaging," "two-dimensional shear-wave elastography with supersonic imagine," and "vibration-controlled transient elastography" are recommended as combined tests with serum markers in the clinical evaluation of NAFLD. However, to confirm the diagnosis of NAFLD, a liver biopsy is the gold standard. Insulin resistance-associated hyperinsulinemia directly accelerates fibrogenesis during NAFLD development. Although hepatocyte lipoapoptosis is a key driving force of fibrosis progression, hepatic stellate cells and extracellular matrix cells are major fibrogenic effectors. Thereby, these are pharmacological targets of therapies in developing hepatic fibrosis. Nonpharmacological management of NAFLD mainly consists of two alternatives: lifestyle modification and metabolic surgery. Many pharmacological agents that are thought to be effective in the treatment of NAFLD have been tried, but due to lack of ability to attenuate NAFLD, or adverse effects during the phase trials, the vast majority could not be licensed.


Asunto(s)
Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Resistencia a la Insulina , Hígado/patología , Hígado/metabolismo , Progresión de la Enfermedad , Estrés Oxidativo , Índice de Severidad de la Enfermedad , Animales
15.
Artículo en Inglés | MEDLINE | ID: mdl-39288010

RESUMEN

PURPOSE: Silent corticotroph adenoma (SCA) exhibits more tumor aggressiveness features than functioning adenomas (FCA). We aimed to investigate PCSK1N expression in CA and examine if ER stress-induced responses affect cell survival in a corticotroph tumor cell model. METHODS: Clinical and imaging characteristics were recorded in 33 patients with FCA (20 women, 11 macroadenomas) and 18 SCA (8 women, all macroadenomas). Gene expression of proopiomelanocortin (POMC), T-box transcription factor 19(TBX19)/TPIT, proprotein convertase subtilisin/kexin type 1(PCSK1)/PC1/3, and its inhibitor PCSK1N, was measured by RT-qPCR in adenoma tissue.Mouse pituitary corticotroph tumor (AtT-20) cells were treated with tanespimycin (17-AAG), a HSP90 chaperone inhibitor, to induce ER stress, followed by gene and protein analyses. RESULTS: POMC, TPIT, and PCSK1 expression were higher, whereas PCSK1N was lower in FCA compared to SCA. PCSK1N correlated with POMC (rs= -0.514, p <0.001), TPIT (rs= -0.386, p = 0.005), PCSK1 (rs= -0.3691, p = 0.008), and tumor largest diameter (rs= 0.645, p <0.001), in all CA. Induction of ER stress by 17-AAG in AtT-20 cells led to a decrease of POMC and an increase of PCSK1N gene expression at 24h. Moreover, a downregulation of cell cycle, apoptosis, and senescence pathways, and alterations in cell adhesion and cytoskeleton were observed at the protein level. CONCLUSIONS: PCSK1N is higher in SCA compared with FCA, and associated with corticotroph cell markers and tumor size. PCSK1N is likely to be part of the adaptive response to ER stress, potentially conferring a survival advantage to the corticotroph tumor cell in conjunction with other proteins.

16.
Int J Cancer ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239852

RESUMEN

14-3-3σ functions as an oncogene in colorectal cancer and is associated with therapy resistance. However, the mechanisms underlying these observations are not clear. The results in this report demonstrate that loss of 14-3-3σ in colorectal cancer cells leads to a decrease in tumor formation and increased sensitivity to chemotherapy. The increased sensitivity to chemotherapy is due to a decrease in the expression of UPR pathway genes in the absence of 14-3-3σ. 14-3-3σ promotes expression of the UPR pathway genes by binding to the transcription factor YY1 and preventing the nuclear localization of YY1. YY1, in the absence of 14-3-3σ, shows increased nuclear localization and binds to the promoter of the UPR pathway genes, resulting in decreased gene expression. Similarly, a YY1 mutant that cannot bind to 14-3-3σ also shows increased nuclear localization and is enriched on the promoter of the UPR pathway genes. Finally, inhibition of the UPR pathway with genetic or pharmacological approaches sensitizes colon cancer cells to chemotherapy. Our results identify a novel mechanism by which 14-3-3σ promotes tumor progression and therapy resistance in colorectal cancer by maintaining UPR gene expression.

17.
Proteomics Clin Appl ; : e202400008, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226110

RESUMEN

PURPOSE: High throughput technologies have identified molecular patterns in colorectal cancer (CRC) cells, aiding in modeling responses to anti-cancer treatments. The different responses observed depend on the type of cancer, the tumour grade and the functional programme of the cancer cells. Recent studies suggest that the unfolded protein response (UPR), autophagy and apoptosis could be involved in treatment resistance mechanisms by interacting with the tumour microenvironment (TME). EXPERIMENTAL DESIGN: We analysed by LC-MS/MS the proteome of two representative colon adenocarcinoma epithelial cell lines from different tumour grades (CCL-233 and CCL-221) at the basal state or after the UPR induction. RESULTS: Cell lines expressed a different proteome on about 10% of their total proteins identified, especially on UPR, autophagy and apoptosis pathways proteins at basal state. After UPR induction, the proteome of the cells was modified with a greater adaptive response to cellular stress in CCL-221 cells where the UPR was strongly activated at the basal state. CONCLUSIONS AND CLINICAL RELEVANCE: CRC cell lines at different tumour grades expressed different functional programmes at the proteomic level and were characterised by different responses to the UPR induction. This study suggests that baseline cancer cell stress status could have an impact on the efficiency of cancer therapies.

18.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273594

RESUMEN

This study was designed to examine the association between myocardial concentrations of the trace elements Cu, Fe, Mn, Mo, and Zn and the expression of mitochondrial unfolded protein response (UPRmt) elements and the age of patients who received heart transplantation or a left-ventricular assist device (ageHTx/LVAD). Inductively coupled plasma mass spectrometry was used to determine the concentration of Cu, Fe, Mn, Mo, and Zn in the myocardium of control subjects and patients undergoing heart transplantation or left-ventricular assist device (LVAD) implantation. We used ELISA to quantify the expression of UPRmt proteins and 4-Hydroxynonenal (4-HNE), which served as a marker of oxidative-stress-induced lipid peroxidation. Concentrations of Cu, Mn, Mo, and Zn were similar in the control and heart failure (HF) myocardium, while Fe showed a significant decrease in the HF group compared to the control. A higher cumulative concentration of Fe and Zn in the myocardium was associated with reduced ageHTx/LVAD, which was not observed for other combinations of trace elements or their individual effects. The trace elements Cu, Mn, and Zn showed positive correlations with several UPRmt proteins, while Fe had a negative correlation with UPRmt effector protease YME1L. None of the trace elements correlated with 4-HNE in the myocardium. The concentrations of the trace elements Mn and Zn were significantly higher in the myocardium of patients with dilated cardiomyopathy than in patients with ischemic cardiomyopathy. A higher cumulative concentration of Fe and Zn in the myocardium was associated with a younger age at which patients received heart transplantation or LVAD, potentially suggesting an acceleration of HF. A positive correlation between myocardial Cu, Mn, and Zn and the expression of UPRmt proteins and a negative correlation between myocardial Fe and YME1L expression suggest that these trace elements exerted their actions on the human heart by interacting with the UPRmt. An altered generation of oxidative stress was not an underlying mechanism of the observed changes.


Asunto(s)
Hierro , Respuesta de Proteína Desplegada , Zinc , Humanos , Zinc/metabolismo , Zinc/análisis , Masculino , Hierro/metabolismo , Persona de Mediana Edad , Femenino , Adulto , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Estrés Oxidativo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Anciano , Trasplante de Corazón , Corazón Auxiliar/efectos adversos , Aldehídos/metabolismo
19.
Geroscience ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39294474

RESUMEN

Protein folding in the endoplasmic reticulum (ER) requires a high ratio of oxidized to reduced glutathione (GSSG/rGSH). Since the GSSG/rGSH depends on total glutathione (tGSH = GSSG + rGSH) levels, we hypothesized that limiting GSH biosynthesis will ameliorate protein misfolding by enhancing the ER oxidative milieu. As a proof-of-concept, we used DL-buthionine-(S,R)-sulfoximine (BSO) to inhibit GSH biosynthesis in Akita mice, which are prone to proinsulin misfolding. We conducted a 2-week intervention to investigate if BSO was safe and a 6-week intervention to find its effect on glucose intolerance. In both cohorts, male heterozygous Akita (AK) and wild-type (WT) mice were continuously administered 15 mM BSO. No adverse effects were observed on body weight, food intake, and water intake in either cohort. Unaltered levels of plasma aspartate and alanine aminotransferases, and cystatin-C, indicate that BSO was safe. BSO-induced decreases in tGSH were tissue-dependent with maximal effects in the kidneys, where it altered the expression of genes associated with GSH biosynthesis, redox status, and proteostasis. BSO treatment decreased random blood glucose levels to 80% and 67% of levels in untreated mice in short-term and long-term cohorts, respectively, and 6-h fasting blood glucose to 82% and 74% ï»¿of levels in untreated mice, respectively. BSO also improved glucose tolerance by 37% in AK mice in the long-term cohort, without affecting insulin tolerance. Neither glucose tolerance nor insulin tolerance were affected in WT. Data indicate that BSO might treat misfolded proinsulin-induced glucose intolerance. Future studies should investigate the effect of BSO on proinsulin misfolding and if it improves glucose intolerance in individuals with Mutant Insulin Diabetes of Youth.

20.
EMBO J ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232130

RESUMEN

Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA